Четные и нечетные функции. Четность и нечетность функции
















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели:

  • сформировать понятие чётности и нечётности функции, учить умению определять и использовать эти свойства при исследовании функций, построении графиков;
  • развивать творческую активность учащихся, логическое мышление, умение сравнивать, обобщать;
  • воспитывать трудолюбие, математическую культуру; развивать коммуникативные качества.

Оборудование: мультимедийная установка, интерактивная доска, раздаточный материал.

Формы работы: фронтальная и групповая с элементами поисково-исследовательской деятельности.

Информационные источники:

1.Алгебра9класс А.Г Мордкович. Учебник.
2.Алгебра 9класс А.Г Мордкович. Задачник.
3.Алгебра 9 класс. Задания для обучения и развития учащихся. Беленкова Е.Ю. Лебединцева Е.А

ХОД УРОКА

1. Организационный момент

Постановка целей и задач урока.

2. Проверка домашнего задания

№10.17 (Задачник 9кл. А.Г. Мордкович).

а) у = f (х ), f (х ) =

б) f (–2) = –3; f (0) = –1; f (5) = 69;

в) 1. D(f ) = [– 2; + ∞)
2. Е(f ) = [– 3; + ∞)
3. f (х ) = 0 при х ~ 0,4
4. f (х ) >0 при х > 0,4 ; f (х ) < 0 при – 2 < х < 0,4.
5. Функция возрастает при х € [– 2; + ∞)
6. Функция ограничена снизу.
7. у наим = – 3, у наиб не существует
8. Функция непрерывна.

(Вы использовали алгоритм исследования функции?) Слайд.

2. Таблицу, которую вам задавалась, проверим по слайду.

Заполните таблицу

Область определения

Нули функции

Промежутки знакопостоянства

Координаты точек пересечения графика с Оу

х = –5,
х = 2

х € (–5;3) U
U (2; ∞)

х € (–∞;–5) U
U (–3;2)

х ∞ –5,
х ≠ 2

х € (–5;3) U
U (2; ∞)

х € (–∞;–5) U
U (–3;2)

х ≠ –5,
х ≠ 2

х € (–∞; –5) U
U (2; ∞)

х € (–5; 2)

3. Актуализация знаний

– Даны функции.
– Указать область определения для каждой функции.
– Сравнить значение каждой функции для каждой пары значения аргумента: 1 и – 1; 2 и – 2.
– Для каких из данных функций в области определения выполняются равенства f (– х ) = f (х ), f (– х ) = – f (х )? (полученные данные занести в таблицу) Слайд

f (1) и f (– 1) f (2) и f (– 2) графики f (– х ) = –f (х ) f (– х ) = f (х )
1. f (х ) =
2. f (х ) = х 3
3. f (х ) = | х |
4. f (х ) = 2х – 3
5. f (х ) =

х ≠ 0

6. f (х )= х > –1

и не опред.

4. Новый материал

– Выполняя данную работу, ребята мы выявили ещё одно свойство функции, незнакомое вам, но не менее важное, чем остальные – это чётность и нечетность функции. Запишите тему урока: «Чётные и нечётные функции», наша задача – научиться определять чётность и нечётность функции, выяснить значимость этого свойства в исследовании функций и построении графиков.
Итак, найдём определения в учебнике и прочитаем (стр. 110). Слайд

Опр. 1 Функция у = f (х ), заданная на множестве Х называется чётной , если для любого значения х Є Х выполняется равенство f(–х)= f(х). Приведите примеры.

Опр. 2 Функция у = f (х) , заданная на множестве Х называется нечётной , если для любого значения х Є Х выполняется равенство f(–х)= –f(х). Приведите примеры.

Где мы встречались с терминами «четные» и «нечётные»?
Какие из данных функций будут чётными, как вы думаете? Почему? Какие нечётными? Почему?
Для любой функции вида у = х n , где n – целое число можно утверждать, что функция нечётна при n – нечётном и функция чётна при n – чётном.
– Функции вида у = и у = 2х – 3 не являются ни чётным, ни нечётными, т.к. не выполняются равенства f (– х ) = – f (х ), f (– х ) = f (х )

Изучение вопроса о том, является ли функция чётной или нечётной называют исследованием функции на чётность. Слайд

В определениях 1 и 2 шла речь о значениях функции при х и – х, тем самым предполагается, что функция определена и при значении х , и при – х .

Опр 3. Если числовое множество вместе с каждым своим элементом х содержит и противоположный элемент –х, то множество Х называют симметричным множеством.

Примеры:

(–2;2), [–5;5]; (∞;∞) – симметричные множества, а , [–5;4] – несимметричные.

– У чётных функций область определения – симметричное множество? У нечётных?
– Если же D(f ) – несимметричное множество, то функция какая?
– Таким образом, если функция у = f (х ) – чётная или нечётная, то её область определения D(f ) – симметричное множество. А верно ли обратное утверждение, если область определения функции симметричное множество, то она чётна, либо нечётна?
– Значит наличие симметричного множества области определения – это необходимое условие, но недостаточное.
– Так как же исследовать функцию на четность? Давайте попробуем составить алгоритм.

Слайд

Алгоритм исследования функции на чётность

1. Установить, симметрична ли область определения функции. Если нет, то функция не является ни чётной, ни нечётной. Если да, то перейти к шагу 2 алгоритма.

2. Составить выражение для f (– х ).

3. Сравнить f (– х ).и f (х ):

  • если f (– х ).= f (х ), то функция чётная;
  • если f (– х ).= – f (х ), то функция нечётная;
  • если f (– х ) ≠ f (х ) и f (– х ) ≠ –f (х ), то функция не является ни чётной, ни нечётной.

Примеры:

Исследовать на чётность функцию а) у = х 5 +; б) у = ; в) у = .

Решение.

а) h(х) = х 5 +,

1) D(h) = (–∞; 0) U (0; +∞), симметричное множество.

2) h (– х) = (–х) 5 + – х5 –= – (х 5 +),

3) h(– х) = – h (х) => функция h(х) = х 5 + нечётная.

б) у =,

у = f (х ), D(f) = (–∞; –9)? (–9; +∞), несимметричное множество, значит функция ни чётная, ни нечётная.

в) f (х ) = , у = f (х),

1) D(f ) = (–∞; 3] ≠ ; б) (∞; –2), (–4; 4]?

Вариант 2

1. Является ли симметричным заданное множество: а) [–2;2]; б) (∞; 0], (0; 7) ?


а); б) у = х· (5 – х 2). 2. Исследуйте на чётность функцию:

а) у = х 2 · (2х – х 3), б) у =

3. На рис. построен график у = f (х ), для всех х , удовлетворяющих условию х ? 0.
Постройте график функции у = f (х ), если у = f (х ) – чётная функция.

3. На рис. построен график у = f (х ), для всех х, удовлетворяющих условию х? 0.
Постройте график функции у = f (х ), если у = f (х ) – нечётная функция.

Взаимопроверка по слайду.

6. Задание на дом: №11.11, 11.21,11.22;

Доказательство геометрического смысла свойства чётности.

***(Задание варианта ЕГЭ).

1. Нечётная функция у = f(х) определена на всей числовой прямой. Для всякого неотрицательного значения переменной х значение этой функции совпадает со значением функции g(х ) = х (х + 1)(х + 3)(х – 7). Найдите значение функции h(х ) = при х = 3.

7. Подведение итогов

Четность и нечетность функции являются одним из основных ее свойств, и на четность занимает внушительную часть школьного курса по математике. Она во много определяет характер поведения функции и значительно облегчает построение соответствующего графика.

Определим четность функции. Вообще говоря, исследуемую функцию считают четной, если для противоположных значений независимой переменной (x), находящихся в ее области определения, соответствующие значения y (функции) окажутся равными.

Дадим более строгое определение. Рассмотрим некоторую функцию f (x), которая задана в области D. Она будет четной, если для любой точки x, находящейся в области определения:

  • -x (противоположная точка) также лежит в данной области определения,
  • f (-x) = f (x).

Из приведенного определения следует условие, необходимое для области определения подобной функции, а именно, симметричность относительно точки О, являющейся началом координат, поскольку если некоторая точка b содержится в области определения четной функции, то соответствующая точка - b тоже лежит в этой области. Из вышесказанного, таким образом, вытекает вывод: четная функция имеет симметричный по отношению к оси ординат (Oy) вид.

Как на практике определить четность функции?

Пусть задается с помощью формулы h(x)=11^x+11^(-x). Следуя алгоритму, вытекающему непосредственно из определения, исследуем прежде всего ее область определения. Очевидно, что она определена для всех значений аргумента, то есть первое условие выполнено.

Следующим шагом подставим вместо аргумента (x) его противоположное значение (-x).
Получаем:
h(-x) = 11^(-x) + 11^x.
Поскольку сложение удовлетворяет коммутативному (переместительному) закону, то очевидно, h(-x) = h(x) и заданная функциональная зависимость - четная.

Проверим четность функции h(x)=11^x-11^(-x). Следуя тому же алгоритму, получаем, что h(-x) = 11^(-x) -11^x. Вынеся минус, в итоге, имеем
h(-x)=-(11^x-11^(-x))=- h(x). Следовательно, h(x) - нечетная.

Кстати, следует напомнить, что есть функции, которые невозможно классифицировать по этим признакам, их называют ни четными, ни нечетными.

Четные функции обладают рядом интересных свойств:

  • в результате сложения подобных функций получают четную;
  • в результате вычитания таких функций получают четную;
  • четной, также четная;
  • в результате умножения двух таких функций получают четную;
  • в результате умножения нечетной и четной функций получают нечетную;
  • в результате деления нечетной и четной функций получают нечетную;
  • производная такой функции - нечетная;
  • если возвести нечетную функцию в квадрат, получим четную.

Четность функции можно использовать при решении уравнений.

Чтобы решить уравнение типа g(x) = 0, где левая часть уравнения представляет из себя четную функцию, будет вполне достаточно найти ее решения для неотрицательных значений переменной. Полученные корни уравнения необходимо объединить с противоположными числами. Один из них подлежит проверке.

Это же успешно применяют для решения нестандартных задач с параметром.

Например, есть ли какое-либо значение параметра a, при котором уравнение 2x^6-x^4-ax^2=1 будет иметь три корня?

Если учесть, что переменная входит в уравнение в четных степенях, то понятно, что замена х на - х заданное уравнение не изменит. Отсюда следует, что если некоторое число является его корнем, то им же является и противоположное число. Вывод очевиден: корни уравнения, отличные от нуля, входят в множество его решений «парами».

Ясно, что само число 0 не является, то есть число корней подобного уравнения может быть только четным и, естественно, ни при каком значении параметра оно не может иметь трех корней.

А вот число корней уравнения 2^x+ 2^(-x)=ax^4+2x^2+2 может быть нечетным, причем для любого значения параметра. Действительно, легко проверить, что множество корней данного уравнения содержит решения «парами». Проверим, является ли 0 корнем. При подстановке его в уравнение, получаем 2=2 . Таким образом, кроме «парных» 0 также является корнем, что и доказывает их нечетное количество.

Для этого воспользуйтесь миллиметровкой или графическим калькулятором. Выберите несколько любых числовых значений независимой переменной x {\displaystyle x} и подставьте их в функцию, чтобы вычислить значения зависимой переменной y {\displaystyle y} . Найденные координаты точек нанесите на координатную плоскость, а затем соедините эти точки, чтобы построить график функции.

  • В функцию подставьте положительные числовые значения x {\displaystyle x} и соответствующие отрицательные числовые значения. Например, дана функция . Подставьте в нее следующие значения x {\displaystyle x} :
    • f (1) = 2 (1) 2 + 1 = 2 + 1 = 3 {\displaystyle f(1)=2(1)^{2}+1=2+1=3} (1 , 3) {\displaystyle (1,3)} .
    • f (2) = 2 (2) 2 + 1 = 2 (4) + 1 = 8 + 1 = 9 {\displaystyle f(2)=2(2)^{2}+1=2(4)+1=8+1=9} . Получили точку с координатами (2 , 9) {\displaystyle (2,9)} .
    • f (− 1) = 2 (− 1) 2 + 1 = 2 + 1 = 3 {\displaystyle f(-1)=2(-1)^{2}+1=2+1=3} . Получили точку с координатами (− 1 , 3) {\displaystyle (-1,3)} .
    • f (− 2) = 2 (− 2) 2 + 1 = 2 (4) + 1 = 8 + 1 = 9 {\displaystyle f(-2)=2(-2)^{2}+1=2(4)+1=8+1=9} . Получили точку с координатами (− 2 , 9) {\displaystyle (-2,9)} .
  • Проверьте, симметричен ли график функции относительно оси Y. Под симметрией подразумевается зеркальное отображение графика относительно оси ординат. Если часть графика справа от оси Y (положительные значения независимой переменной) совпадает с частью графика слева от оси Y (отрицательные значения независимой переменной), график симметричен относительно оси Y. Если функция симметрична относительно оси ординат, такая функция четная.

    • Проверить симметричность графика можно по отдельным точкам. Если значение y {\displaystyle y} x {\displaystyle x} , совпадает со значением y {\displaystyle y} , которое соответствует значению − x {\displaystyle -x} , функция является четной. В нашем примере с функцией f (x) = 2 x 2 + 1 {\displaystyle f(x)=2x^{2}+1} мы получили следующие координаты точек:
      • (1,3) и (-1,3)
      • (2,9) и (-2,9)
    • Обратите внимание, что при x=1 и x=-1 зависимая переменная у=3, а при x=2 и x=-2 зависимая переменная у=9. Таким образом, функция четная. На самом деле, чтобы точно выяснить вид функции, нужно рассмотреть более двух точек, но описанный способ является хорошим приближением.
  • Проверьте, симметричен ли график функции относительно начала координат. Начало координат – это точка с координатами (0,0). Симметрия относительно начала координат означает, что положительному значению y {\displaystyle y} (при положительном значении x {\displaystyle x} ) соответствует отрицательное значение y {\displaystyle y} (при отрицательном значении x {\displaystyle x} ), и наоборот. Нечетные функции обладают симметрией относительно начала координат.

    • Если в функцию подставить несколько положительных и соответствующих отрицательных значений x {\displaystyle x} , значения y {\displaystyle y} будут различаться по знаку. Например, дана функция f (x) = x 3 + x {\displaystyle f(x)=x^{3}+x} . Подставьте в нее несколько значений x {\displaystyle x} :
      • f (1) = 1 3 + 1 = 1 + 1 = 2 {\displaystyle f(1)=1^{3}+1=1+1=2} . Получили точку с координатами (1,2).
      • f (− 1) = (− 1) 3 + (− 1) = − 1 − 1 = − 2 {\displaystyle f(-1)=(-1)^{3}+(-1)=-1-1=-2}
      • f (2) = 2 3 + 2 = 8 + 2 = 10 {\displaystyle f(2)=2^{3}+2=8+2=10}
      • f (− 2) = (− 2) 3 + (− 2) = − 8 − 2 = − 10 {\displaystyle f(-2)=(-2)^{3}+(-2)=-8-2=-10} . Получили точку с координатами (-2,-10).
    • Таким образом, f(x) = -f(-x), то есть функция нечетная.
  • Проверьте, имеет ли график функции какую-нибудь симметрию. Последний вид функции – это функция, график которой не имеет симметрии, то есть зеркальное отображение отсутствует как относительно оси ординат, так и относительно начала координат. Например, дана функция .

    • В функцию подставьте несколько положительных и соответствующих отрицательных значений x {\displaystyle x} :
      • f (1) = 1 2 + 2 (1) + 1 = 1 + 2 + 1 = 4 {\displaystyle f(1)=1^{2}+2(1)+1=1+2+1=4} . Получили точку с координатами (1,4).
      • f (− 1) = (− 1) 2 + 2 (− 1) + (− 1) = 1 − 2 − 1 = − 2 {\displaystyle f(-1)=(-1)^{2}+2(-1)+(-1)=1-2-1=-2} . Получили точку с координатами (-1,-2).
      • f (2) = 2 2 + 2 (2) + 2 = 4 + 4 + 2 = 10 {\displaystyle f(2)=2^{2}+2(2)+2=4+4+2=10} . Получили точку с координатами (2,10).
      • f (− 2) = (− 2) 2 + 2 (− 2) + (− 2) = 4 − 4 − 2 = − 2 {\displaystyle f(-2)=(-2)^{2}+2(-2)+(-2)=4-4-2=-2} . Получили точку с координатами (2,-2).
    • Согласно полученным результатам, симметрии нет. Значения y {\displaystyle y} для противоположных значений x {\displaystyle x} не совпадают и не являются противоположными. Таким образом, функция является ни четной, ни нечетной.
    • Обратите внимание, что функцию f (x) = x 2 + 2 x + 1 {\displaystyle f(x)=x^{2}+2x+1} можно записать так: f (x) = (x + 1) 2 {\displaystyle f(x)=(x+1)^{2}} . Будучи записанной в такой форме, функция кажется четной, потому что присутствует четный показатель степени. Но этот пример доказывает, что вид функции нельзя быстро определить, если независимая переменная заключена в скобки. В этом случае нужно раскрыть скобки и проанализировать полученные показатели степени.
  • Нули функции
    Нулём функции называется то значение х , при котором функция обращается в 0, то есть f(x)=0.

    Нули – это точки пересечения графика функции с осью Ох.

    Четность функции
    Функция называется чётной, если для любого х из области определения выполняется равенство f(-x) = f(x)

    Четная функция симметрична относительно оси Оу

    Нечетность функции
    Функция называется нечётной, если для любого х из области определения выполняется равенство f(-x) = -f(x).

    Нечетная функция симметрична относительно начала координат.
    Функция которая не является ни чётной,ни нечётной называется функцией общего вида.

    Возрастание функции
    Функция f(x) называется возрастающей, если большему значению аргумента соответствует большее значение функции, т.е.

    Убывание функции
    Функция f(x) называется убывающей, если большему значению аргумента соответствует меньшее значение функции, т.е.

    Промежутки, на которых функция либо только убывает, либо только возрастает, называются промежутками монотонности . Функция f(x) имеет 3 промежутка монотонности:

    Находят промежутки монотонности с помощью сервиса Интервалы возрастания и убывания функции

    Локальный максимум
    Точка х 0 называется точкой локального максимума, если для любого х из окрестности точки х 0 выполняется неравенство: f(x 0) > f(x)

    Локальный минимум
    Точка х 0 называется точкой локального минимума, если для любого х из окрестности точки х 0 выполняется неравенство: f(x 0) < f(x).

    Точки локального максимума и точки локального минимума называются точками локального экстремума.

    точки локального экстремума.

    Периодичность функции
    Функция f(x) называется периодичной, с периодом Т , если для любого х выполняется равенство f(x+T) = f(x) .

    Промежутки знакопостоянства
    Промежутки, на которых функция либо только положительна, либо только отрицательна, называются промежутками знакопостоянства.

    Непрерывность функции
    Функция f(x) называется непрерывной в точке x 0 , если предел функции при x → x 0 равен значению функции в этой точке, т.е. .

    Точки разрыва
    Точки, в которых нарушено условие непрерывности называются точками разрыва функции.

    x 0 - точка разрыва.

    Общая схема для построения графиков функций

    1. Найти область определения функции D(y).

    2. Найти точки пересечения графика функций с осями координат.

    3. Исследовать функцию на четность или нечетность.

    4. Исследовать функцию на периодичность.

    5. Найти промежутки монотонности и точки экстремума функции.

    6. Найти промежутки выпуклости и точки перегиба функции.

    7. Найти асимптоты функции.

    8. По результатам исследования построить график.

    Пример: Исследовать функцию и построить ее график: y = x 3 – 3x

    1) Функция определена на всей числовой оси, т. е. ее область определения D(y) = (-∞; +∞).

    2) Найдем точки пересечения с осями координат:

    с осью ОХ: решим уравнение x 3 – 3x = 0

    с осью ОY: y(0) = 0 3 – 3*0 = 0

    3) Выясним, не является ли функция четной или нечетной:

    y(-x) = (-x) 3 – 3(-x) = -x 3 + 3x = - (x 3 – 3x) = -y(x)

    Отсюда следует, что функция является нечетной.

    4) Функция непериодична.

    5) Найдем промежутки монотонности и точки экстремума функции: y’ = 3x 2 - 3.

    Критические точки: 3x 2 – 3 = 0, x 2 =1, x= ±1.

    y(-1) = (-1) 3 – 3(-1) = 2

    y(1) = 1 3 – 3*1 = -2

    6) Найдем промежутки выпуклости и точки перегиба функции: y’’ = 6x

    Критические точки: 6x = 0, x = 0.

    y(0) = 0 3 – 3*0 = 0

    7) Функция непрерывна, асимптот у нее нет.

    8) По результатам исследования построим график функции.