Новый телескоп джеймса вебба запуск. «джеймс уэбб» почти готов: наса предлагает ученым присылать предложения для работы с телескопом

Главные подрядчики Northrop Grumman
Ball Aerospace Волновой диапазон 0,6-28 мкм (части видимого и инфракрасного) Местонахождение точка Лагранжа L 2 системы Солнце - Земля (1,5 млн км от Земли в противоположную Солнцу сторону) Тип орбиты гало-орбита Дата запуска 30 Марта 2021 года Место запуска Куру Средство вывода на орбиту Ариан-5 или Ариан-6 Продолжительность 5-10 лет Дата схода с орбиты около 2024 Масса 6,2 тонны Тип телескопа телескоп-рефлектор системы Корша Диаметр около 6,5 м Площадь собирающей
поверхности около 25 м² Фокусное расстояние 131,4 м Научные инструменты
  • MIRI
прибор среднего инфракрасного диапазона
  • NIRCam
камера ближнего инфракрасного диапазона
  • NIRSpec
спектрограф ближнего инфракрасного диапазона
  • FGS/NIRISS
датчик точного наведения с устройством формирования изображения в ближнем инфракрасном диапазоне и бесщелевым спектрографом Сайт www.jwst.nasa.gov Медиафайлы на Викискладе

Первоначально назывался «Космический телескоп нового поколения» (англ. Next-generation space telescope, NGST ). В 2002 году переименован в честь второго руководителя НАСА Джеймса Уэбба (1906-1992), возглавлявшего агентство в 1961-1968 годах во время реализации программы Аполлон .

«Джеймс Уэбб» будет обладать составным зеркалом 6,5 метров в диаметре с площадью собирающей поверхности 25 м² , скрытым от инфракрасного излучения со стороны Солнца и Земли тепловым экраном . Телескоп будет размещён на гало-орбите в точке Лагранжа L 2 системы Солнце - Земля.

Проект представляет собой результат международного сотрудничества 17 стран , во главе которых стоит NASA , со значительным вкладом Европейского и Канадского космических агентств.

Текущие планы предусматривают, что телескоп будет запущен с помощью ракеты «Ариан-5 » в марте 2021 года . В этом случае первые научные исследования начнутся осенью 2021 года. Срок работы телескопа составит не менее пяти лет.

Задачи

Астрофизика

Первичными задачами JWST являются: обнаружение света первых звёзд и галактик , сформированных после Большого взрыва , изучение формирования и развития галактик, звёзд, планетных систем и происхождения жизни. Также «Уэбб» сможет рассказать о том, когда и где началась реионизация Вселенной и что её вызвало .

Экзопланетология

Телескоп позволит обнаруживать относительно холодные экзопланеты с температурой поверхности до 300 К (что практически равно температуре поверхности Земли), находящиеся дальше 12 а. е. от своих звёзд, и удалённые от Земли на расстояние до 15 световых лет. В зону подробного наблюдения попадут более двух десятков ближайших к Солнцу звезд. Благодаря JWST ожидается настоящий прорыв в экзопланетологии - возможностей телескопа будет достаточно не только для того, чтобы обнаруживать сами экзопланеты, но даже спутники и спектральные линии этих планет (что будет являться недостижимым показателем ни для одного наземного и космического телескопа до 2025 года, когда в строй будет введен Европейский чрезвычайно большой телескоп с диаметром зеркала в 39,3 м ) . Для поиска экзопланет будут также использованы данные, которые получил телескоп «Кеплер» начиная с 2009 года. Однако возможностей телескопа будет недостаточно для получения изображений найденных экзопланет. Такая возможность появится не раньше середины 2030-х годов, когда будет запущен телескоп-наследник «Джеймса Уэбба» - ATLAST .

Водные миры Солнечной системы

Инфракрасные инструменты телескопа будут использованы для изучения водных миров Солнечной системы - спутника Юпитера Европы и спутника Сатурна Энцелада . Инструмент NIRSpec будет использован для поиска биосигнатур (метан, метанол, этан) в гейзерах обоих спутников .

Инструмент NIRCam сможет получить изображения Европы в высоком разрешении, которые будут использованы для изучения её поверхности и поиска регионов с гейзерами и высокой геологической активностью. Состав зафиксированных гейзеров будет проанализирован с помощью инструментов NIRSpec и MIRI. Данные, полученные в ходе этих исследований, будут также использованы при исследовании Европы зондом Europa Clipper .

Для Энцелада, ввиду его удаленности и малых размеров, получить изображения в высоком разрешении не удастся, однако возможности телескопа позволят провести анализ молекулярного состава его гейзеров.

История

Изменение планируемой даты запуска и бюджета
Год Планируемая
дата запуска
Планируемый
бюджет
(млрд долларов)
1997 2007 0,5
1998 2007 1
1999 2007-2008 1
2000 2009 1,8
2002 2010 2,5
2003 2011 2,5
2005 2013 3
2006 2014 4,5
2008 2014 5,1
2010 не раньше сентября 2015 ≥6,5
2011 2018 8,7
2013 2018 8,8
2017 весна 2019 8,8
2018 не раньше марта 2020 ≥8,8
2018 30 марта 2021 9,66

Изначально запуск намечался на 2007 год, в дальнейшем переносился несколько раз (см. таблицу). Первый сегмент зеркала был установлен на телескоп лишь в конце 2015 года, а полностью главное составное зеркало было собрано только в феврале 2016 года. По данным на весну 2018 года, планируемая дата запуска была сдвинута на 30 марта 2021 года .

Финансирование

Стоимость проекта тоже неоднократно увеличивалась. В июне 2011 года стало известно, что стоимость телескопа превысила изначальные расчёты по меньшей мере в четыре раза. В бюджете НАСА, предложенном в июле 2011 года конгрессом, предполагалось прекращение финансирования строительства телескопа из-за плохого управления и превышения бюджета программы , но в сентябре того же года бюджет был пересмотрен, и проект сохранил финансирование . Окончательное решение о продолжении финансирования было принято сенатом 1 ноября 2011 года.

В 2013 году на постройку телескопа было выделено 626,7 млн долларов .

К весне 2018 года стоимость проекта возросла до 9,66 млрд долларов .

Изготовление оптической системы

Проблемы

Чувствительность телескопа и его разрешающая способность напрямую связаны с размером площади зеркала, которое собирает свет от объектов. Учёные и инженеры определили, что минимальный диаметр главного зеркала должен быть 6,5 метра , чтобы измерить свет от самых далёких галактик . Простое изготовление зеркала, подобного зеркалу телескопа «Хаббл », но большего размера, было неприемлемо, так как его масса была бы слишком большой, чтобы можно было запустить телескоп в космос. Команде учёных и инженеров необходимо было найти решение, чтобы новое зеркало имело 1/10 массы зеркала телескопа «Хаббл » на единицу площади .

Разработка и испытания

Производство

Для зеркала «Уэбба» используется особый тип бериллия . Он представляет собой мелкий порошок. Порошок помещается в контейнер из нержавеющей стали и прессуется в плоскую форму. После того как стальной контейнер удалён, кусок бериллия разрезается пополам, чтобы сделать две заготовки зеркала около 1,3 метра в поперечнике. Каждая заготовка зеркала используется для создания одного сегмента.

Процесс формирования зеркала начинается с вырезания излишков материала на оборотной стороне бериллиевой заготовки таким образом, что остаётся тонкая рёберная структура. Передняя же сторона каждой заготовки сглаживается с учётом положения сегмента в большом зеркале.

Затем поверхность каждого зеркала стачивается для придания формы, близкой к расчётной. После этого зеркало тщательно сглаживают и полируют. Этот процесс повторяется до тех пор, пока форма сегмента зеркала не станет близка к идеальной. Далее сегмент охлаждается до температуры −240 °C, и с помощью лазерного интерферометра производятся измерения размеров сегмента. Затем зеркало с учётом полученной информации проходит окончательную полировку.

По завершении обработки сегмента передняя часть зеркала покрывается тонким слоем золота для лучшего отражения инфракрасного излучения в диапазоне 0,6-29 мкм , и готовый сегмент проходит повторные испытания при криогенных температурах .

Тестирование

10 июля 2017 года - начало финального криогенного теста телескопа при температуре 37 в космическом центре имени Джонсона в Хьюстоне , который продлился 100 дней .

Помимо испытаний в Хьюстоне аппарат прошел серию механических проверок в центре космических полётов Годдарда, которые показали, что он сможет выдержать запуск с помощью тяжелой ракеты-носителя.

В начале февраля 2018 года гигантские зеркала и различные приборы доставлены на предприятие компании Northrop Grumman в Редондо-Бич для последнего этапа сборки телескопа. Там уже идет сооружение двигательного модуля телескопа и его солнцезащитного экрана. Когда вся конструкция будет собрана, её отправят на морском судне из Калифорнии во французскую Гвиану .

Оборудование

JWST будет иметь следующие научные инструменты для проведения исследования космоса:

  • Камера ближнего инфракрасного диапазона (англ. Near-Infrared Camera );
  • Прибор для работы в среднем диапазоне инфракрасного излучения (англ. Mid-Infrared Instrument, MIRI );
  • Спектрограф ближнего инфракрасного диапазона (англ. Near-Infrared Spectrograph, NIRSpec );
  • Датчик точного наведения (англ. Fine Guidance Sensor, FGS ) и устройство формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф (англ. Near InfraRed Imager and Slitless Spectrograph, NIRISS ).

Камера ближнего инфракрасного диапазона

Камера ближнего инфракрасного диапазона является основным блоком формирования изображения «Уэбба» и будет состоять из массива ртутно-кадмиево-теллуровых детекторов . Рабочий диапазон прибора составляет от 0,6 до 5 мкм . Его разработка поручена Аризонскому университету и Центру продвинутых технологий компании Lockheed Martin .

В задачи прибора входят:

  • обнаружение света от самых ранних звёзд и галактик на стадии их формирования;
  • изучение звёздных населений в ближайших галактиках ;
  • изучение молодых звёзд Млечного Пути и объектов пояса Койпера ;
  • определение морфологии и цвета галактик при сильном красном смещении ;
  • определение кривых блеска дальних сверхновых ;
  • создание карты тёмной материи с помощью гравитационного линзирования .

Многие объекты, которые «Уэбб» будет изучать, излучают настолько мало света, что телескопу для анализа спектра необходимо собирать свет от них в течение сотен часов. Чтобы изучить тысячи галактик за 5 лет работы телескопа, спектрограф был разработан с возможностью наблюдения за 100 объектами на площади неба 3×3 угловых минуты одновременно. Для этого учёные и инженеры Годдарда разработали новую технологию микрозатворов для управления светом, входящим в спектрограф .

Суть технологии, позволяющей получать 100 одновременных спектров, заключается в микроэлектромеханической системе, именуемой «массив микрозатворов» (англ. microshutter array ). У ячеек микрозатворов спектрографа NIRSpec есть крышки, которые открываются и закрываются под действием магнитного поля. Каждая ячейка размером 100 на 200 мкм индивидуально управляется и может быть открытой или закрытой, предоставляя или, наоборот, блокируя часть неба для спектрографа , соответственно.

Именно эта регулируемость позволяет прибору делать спектроскопию такого количества объектов одновременно. Поскольку объекты, которые будет исследовать NIRSpec , находятся далеко и тусклы, инструмент нуждается в подавлении излучения от более близких ярких источников. Микрозатворы работают подобно тому, как люди смотрят искоса, чтобы сосредоточиться на объекте, блокируя нежелательный источник света.

Прибор уже разработан и в данный момент проходит испытания в Европе .

Прибор для работы в среднем диапазоне инфракрасного излучения

Прибор для работы в среднем диапазоне инфракрасного излучения (5 -28 мкм ) состоит из камеры с датчиком, имеющим разрешение 1024×1024 пикселя , и спектрографа .

MIRI состоит из трёх массивов мышьяко -кремниевых детекторов. Чувствительные детекторы этого прибора позволят увидеть красное смещение далёких галактик , формирование новых звёзд и слабо видимые кометы , а также объекты в поясе Койпера . Модуль камеры предоставляет возможность съёмки объектов в широком диапазоне частот с большим полем зрения, а модуль спектрографа обеспечивает спектроскопию среднего разрешения с меньшим полем зрения, что позволит получать подробные физические данные об удалённых объектах.

Номинальная рабочая температура для MIRI - 7 . Такая температура не может быть достигнута использованием только пассивной системы охлаждения. Вместо этого, охлаждение производится в два этапа: установка предварительного охлаждения на основе пульсационной трубы охлаждает прибор до 18 К , затем теплообменник с адиабатическим дросселированием (эффект Джоуля - Томсона) понижает температуру до 7 К .

MIRI разрабатывает группа под названием MIRI Consortium, состоящая из ученых и инженеров из стран Европы, команды сотрудников Лаборатории реактивного движения в Калифорнии и учёных из ряда институтов США .

FGS/NIRISS

Датчик точного наведения (FGS ) и устройство формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф (NIRISS ) будут упакованы вместе в «Уэббе», но по сути это два разных устройства . Оба устройства разрабатываются Канадским космическим агентством , и они уже получили прозвище «канадские глаза» по аналогии с «канадской рукой ». Этот инструмент уже прошел интегрирование со структурой ISIM в феврале 2013 года.

Датчик точного наведения

Датчик точного наведения (FGS ) позволит «Уэббу» производить точное наведение, чтобы он мог получать изображения высокого качества.

Камера FGS может формировать изображение из двух смежных участков неба размером 2,4×2,4 угловых минуты каждый, а также считывать информацию 16 раз в секунду с небольших групп пикселей размером 8×8, чего достаточно для нахождения соответствующей опорной звезды с 95-процентной вероятностью в любой точке неба, включая высокие широты.

Основные функции FGS включают в себя:

  • получение изображения для определения положения телескопа в пространстве;
  • получение предварительно выбранных опорных звёзд;
  • обеспечение системы управления положением англ. Attitude Control System измерениями центроида опорных звёзд со скоростью 16 раз в секунду.

Во время вывода на орбиту телескопа FGS также будет сообщать об отклонениях при развёртывании главного зеркала.

Устройство формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф

Устройство формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф (NIRISS ) работают в диапазоне 0,8 -5,0 мкм и является специализированным инструментом с тремя основными режимами, каждый из которых работает с отдельным диапазоном.

NIRISS будет использоваться для выполнения следующих научных задач:

  • получение «первого света »;
  • обнаружение экзопланет ;
  • получение их характеристик;
  • транзитная спектроскопия.

См. также

Примечания

Примечания

Сноски

  1. Jim Bridenstine on Twitter: "The James Webb Space Telescope will produce first of its kind, world-class science. Based on recommendations by an Independent Review Board, the n...
  2. With further delays, Webb telescope at risk of seeing its rocket retired | Ars Technica
  3. https://www.ama-science.org/proceedings/details/368
  4. NASA Completes Webb Telescope Review, Commits to Launch in Early 2021 (англ.) . NASA (27 June 2018). Дата обращения 28 июня 2018.
  5. Icy Moons, Galaxy Clusters, and Distant Worlds Among Selected Targets for James Webb Space Telescope (неопр.) (15 июня 2017).
  6. https://nplus1.ru/news/2017/06/16/webb-telescope (неопр.) (16 июня 2017).
  7. Webb Science: The End of the Dark Ages: First Light and Reionization (неопр.) . НАСА . Дата обращения 18 марта 2013. Архивировано 21 марта 2013 года.
  8. Щепотка бесконечности (неопр.) (25 марта 2013). Архивировано 4 апреля 2013 года.
  9. «Кеплер» нашел десять новых возможных двойников Земли (неопр.) (19 июня 2017).
  10. NASA’s Webb Telescope Will Study Our Solar System’s “Ocean Worlds” (неопр.) (24 августа 2017).
  11. Berardelli, Phil . Next Generation Space Telescope will peer back to the beginning of time and space , CBS (27 октября 1997).
  12. The Next Generation Space Telescope (NGST) (неопр.) . University of Toronto (27 ноября 1998).
  13. Reichhardt, Tony. US astronomy: Is the next big thing too big? (англ.) // Nature. - 2006. - March (vol. 440 , no. 7081 ). - P. 140-143 . - DOI :10.1038/440140a . - Bibcode : 2006Natur.440..140R .
  14. Cosmic Ray Rejection with NGST (неопр.) .
  15. MIRI spectrometer for NGST (неопр.) (недоступная ссылка) . Архивировано 27 сентября 2011 года.
  16. NGST Weekly Missive (неопр.) (25 апреля 2002).
  17. NASA Modifies James Webb Space Telescope Contract (неопр.) (12 ноября 2003).

Главное зеркало телескопа «Джеймс Уэбб»

NASA и ESA опубликовали список первых целей космического телескопа «Джеймс Уэбб», запуск которого назначен на 2018 год. Прибор станет крупнейшим космическим телескопом, работающим в оптическом, ближнем и среднем инфракрасном диапазонах - диаметр его главного зеркала почти в три раза больше такового у «Хаббла» - 6,5 метра. Среди целей - планеты и малые тела Солнечной системы, экзопланеты и протопланетные диски, галактики и скопления галактик, далекие квазары. Об этом сообщает пресс-релиз NASA, список опубликован на сайте телескопа.

Телескоп имени Джеймса Уэбба разрабатывается с 1996 года - он должен в некотором смысле сменить «Хаббл» и обеспечить гораздо большее разрешение и чувствительность, чем земные и космические инфракрасные телескопы. С работой телескопа связывают надежды на исследование ранних галактик (527-980 миллионов лет после Большого Взрыва). В тот момент в пространстве было много нейтрального водорода, поглощавшего ультрафиолетовое излучение звезд.

Приборное время телескопа распределяется по заявкам от научных групп. Приоритет в заявках и около 10 процентов времени выделены для научных групп, помогавших в разработке телескопа. Запросы именно от этих научных групп и были недавно опубликованы. Они сгруппированы тематически на: объекты Солнечной системы, экзопланеты, коричневые карлики, протозвезды, осколочные диски, звездные скопления и области звездообразования, галактики, скопления галактик и квазары, а также обзоры дальнего космоса.

Среди малых тел запланированы наблюдения Цереры, Паллады, астероида Рюгу (его через год достигнет «Хаябуса-2»), транснептуновых объектов и нескольких комет. Из экзопланет можно выделить HD189733b (обладательница ), HAT-P-26b (на ней ), TRAPPIST-1e (находится в обитаемой зоне недавно системы из семи экзопланет), HD131399 (это система из трех звезд, в которой ). Всего запланированы исследования нескольких десятков экзопланет, в том числе и их атмосфер. Среди других объектов известная система беты Живописца с обломочным диском, туманность Конская голова, остаток сверхновой SN 1987A и несколько квазаров, которые мы видим такими, какими они были через миллиард лет после Большого взрыва или меньше. Всего запланировано уже свыше 2100 наблюдений.

Сейчас «Уэбб» находится на стадии тестирования основных систем. Его главное зеркало было полностью в феврале 2016 года, оно состоит из 18 шестиугольных сегментов. Общая площадь составляет 25 квадратных метров, масса - 705 килограммов. Каждый сегмент массой 20,1 килограмма изготовлен из бериллия и покрыт слоем золота толщиной 100 нанометров.

Владимир Королёв

Телескоп «Джеймс Уэбб»

Космические телескопы всегда будут на острие познания космоса - им не мешает ни с ее искажениями и облачностью, ни вибрации и шумы на поверхности планеты. Именно внеземные устройства позволили получить детальные и красивые фотографии отдаленных туманностей и галактик, которые даже не видны человеческому глазу на ночном небе. Однако в 2018 году начнется новая эпоха в изучении космоса, которая отодвинет дальше видимые границы Вселенной - будет запущен космический телескоп «Джеймс Уэбб», рекордсмен индустрии. Причем рекорды от бьет не только по характеристикам: стоимость проекта на сегодняшний день достигает 8,8 миллиарда долларов.

Прежде чем говорить об устройстве и функционале «Джеймса Уэбба», стоить разобраться, для чего он нужен. Казалось бы, изучению Вселенной мешает всего-то одна атмосфера Земли, и можно попросту доставить телескоп с прикрученной к нему камерой на орбиту и радоваться жизни. Но при этом «Джеймса Уэбба» разрабатывают уже больше десятка лет, а итоговый бюджет еще на стадии раннего проецирования превысил стоимость его предшественника, ! Следовательно, орбитальный телескоп - это нечто более сложное, чем любительская подзорная труба на треноге, и его открытия будут в сотни раз ценнее. Но что такого особенного можно исследовать телескопом, тем более космическим?

Подняв голову к небу, каждый может увидеть звезды. Но изучение отдаленных на миллиарды километров объектов - достаточно сложная задача. Свет звезд и галактик, который движется миллионами, а то и миллиардами лет, претерпевает значительные изменения - а то и вовсе не доходит до нас. Так, пылевые облака, которые часто распространены в галактиках, способны полностью поглотить все видимое излучение звезды. Еще непрестанное расширение Вселенной приводит к света - его волны стают длиннее, изменяя диапазон в сторону красного, или же невидимого инфракрасного. А сияние даже самых больших объектов, пролетев расстояние в миллиарды световых лет, становится подобно свету карманного фонарика среди сотен прожекторов - для обнаружения сверхотдаленных галактик требуются приборы невиданной чувствительности.

Идея строительства нового мощного космического телескопа возникла почти 20 лет назад, в 1996 году когда американские астрономы выпустили доклад HST and Beyond, в котором обсуждался вопрос - куда же должна двигаться астрономия дальше. Незадолго до этого, в 1995 году была открыта первая экзопланета рядом со звездой, похожей на наше Солнце. Это взбудоражило научное сообщество - ведь появился шанс, что где-то может существовать мир, напоминающий Землю - поэтому исследователи попросили NASA построить телескоп, который будет пригоден в том числе для поиска и изучения экзопланет. Именно здесь берет начало история «Джеймса Уэбба». Запуск этого телескопа постоянно откладывался (первоначально планировалось отправить его в космос еще в 2011 году), но теперь он, кажется, выходит на финишную прямую. Редакция N+1 попыталась разобраться, что астрономы рассчитывают узнать с помощью «Уэбба», и поговорила с теми, кто создает этот инструмент.

Название «Джеймс Уэбб» телескопу было присвоено в 2002 году, до этого он назывался Next Generation Space Telescope («Космический телескоп нового поколения») или сокращенно NGST, поскольку новый инструмент должен продолжить исследования, начатые «Хабблом». Если « » исследует Вселенную преимущественно в оптическом диапазоне, захватывая лишь ближний инфракрасный и ультрафиолетовый диапазон, которые граничат с видимым излучением, то «Джеймс Уэбб» сконцентрируется на инфракрасной части спектра, где видно более древние и более холодные объекты. Кроме того, выражение «новое поколение» указывает на продвинутые технологии и инженерные решения, которые будут использоваться в телескопе.


Процесс изготовления зеркала телескопа


Фрагмент зеркала телескопа


Процесс изготовления зеркала телескопа


Фрагмент зеркала телескопа


Фрагмент зеркала телескопа


Фрагмент зеркала телескопа

Пожалуй, самое нестандартное и сложное из них - это главное зеркало «Джеймса Уэбба» диаметром 6,5 метра. Ученые не стали создавать увеличенную версию зеркала «Хаббла», потому что оно весило бы слишком много, и придумали изящный выход из ситуации: они решили собрать зеркало из 18 отдельных сегментов. Для них использовался легкий и прочный металл бериллий, на который был нанесен тонкий слой золота. В итоге зеркало весит 705 килограммов, в то время как его площадь составляет 25 квадратных метров. Зеркало «Хаббла» весит 828 килограммов при площади 4,5 квадратных метра.

Другой важный компонент телескопа, который в последнее время доставляет немало хлопот инженерам - развертываемый теплозащитный экран, необходимый для защиты приборов «Джеймса Уэбба» от перегрева. На околоземной орбите под прямыми лучами Солнца предметы могут разогреваться до 121 градуса Цельсия. Приборы «Джеймса Уэбба» предназначены для работы в условиях достаточно низких температур, поэтому и понадобился теплозащитный экран, закрывающий их от Солнца.

По размеру он сравним с теннисным кортом, 21 x 14 метров, поэтому отправить его в точку Лагранжа L2 (именно там будет работать телескоп) в развернутом виде невозможно. Здесь и начинаются основные трудности - как доставить щит к пункту назначения так, чтобы он не повредился? Самым логичным решением оказалось сложить его на время полета, а потом развернуть, когда «Джеймс Уэбб» будет в рабочей точке.


Внешняя сторона щита, где находится антенна, бортовой компьютер, гироскопы и солнечная панель, разогреется, как ожидают ученые, до 85 градусов Цельсия. Зато на «ночной» стороне, где находятся основные научные приборы, будет морозно: около 233 градусов ниже нуля. Обеспечивать теплоизоляцию будут пять слоев щита - каждый холоднее предыдущего.



Разворачиваемый щит «Джеймса Уэбба»

Какие же научные приборы требуется так тщательно укрывать от Солнца? Всего их четыре: камера ближнего инфракрасного диапазона NIRCam, прибор для работы в среднем ИК-диапазоне MIRI, спектрограф ближнего ИК-диапазона NIRSpec и система FGS/NIRISS. На картинке ниже можно наглядно увидеть, в каком «свете» они будут видеть Вселенную:


Изображение показывает диапазон, который захватят инструменты телескопа

С помощью научных приборов ученые надеются ответить на многие фундаментальные вопросы. В первую очередь, они касаются экзопланет.

Несмотря на то, что на сегодняшний день телескоп «Кеплер» открыл более 2,5 тысячи экзопланет, оценки плотности существуют лишь для нескольких сотен. Меж тем, эти оценки позволяют нам понять, к какому типу принадлежит планета. Если у нее низкая плотность - очевидно, перед нами газовый гигант. Если же небесное тело имеет высокую плотность, то, скорее всего, это каменистая планета, напоминающая Землю или Марс. Астрономы надеются, что «Джеймс Уэбб» поможет собрать больше данных о массах и диаметрах планет, что поможет вычислить их плотность и определить их тип.


NASA/Goddard Space Flight Center and the Advanced Visualization Laboratory at the National Center for Supercomputing Applications

Другой важный вопрос касается атмосфер экзопланет. «Хаббл» и «Спитцер» собрали данные о газовых оболочках примерно ста планет. Инструменты «Джеймса Уэбба» позволят увеличить это число, как минимум, в три раза. Благодаря научным приборам и разным режимам наблюдений, астрономы смогут определить присутствие огромного числа веществ, в том числе воды, метана и углекислого газа - причем не только на крупных планетах, но и на планетах земного типа. Одной из наблюдательных целей станет , где находится сразу семь землеподобных планет.

Больше всего результатов ожидается для молодых, только сформировавшихся юпитеров, которые все еще излучают в инфракрасном диапазоне. В частности, в Солнечной системе по мере уменьшения массы газовых гигантов, содержание в них металлов (элементов тяжелее водорода и гелия) возрастает. «Хаббл» в свое время показал, что не все планетные системы подчиняются этому закону, однако статистически достоверной выборки пока что нет - ее получит «Джеймс Уэбб». Кроме того, ожидается, что телескоп также изучит субнептуны и суперземли.

Другой важной целью телескопа станут древние галактики. Сегодня мы уже достаточно много знаем об окрестных галактиках, но все еще очень мало о тех, что появились в очень молодой Вселенной. «Хаббл» может видеть Вселенную такой, какой она была спустя 400 миллионов лет после Большого взрыва, а обсерватория «Планк» наблюдала космическое микроволновое излучение, которое возникло спустя 400 тысяч лет после Большого взрыва. «Джеймсу Уэббу» предстоит заполнить пробел между ними и выяснить, как выглядели галактики в первые 3 процента космической истории.

Сейчас астрономы наблюдают прямую зависимость между размером галактики и ее возрастом - чем старше Вселенная, тем больше в ней маленьких галактик. Однако этот тренд вряд ли сохранится, и ученые надеются определить некоторую «поворотную точку», найти нижний предел размера галактик. Таким образом, астрономы хотят ответить на вопрос, когда возникли первые галактики.

Отдельным пунктом стоит изучение молекулярных облаков и протопланетных дисков. В прошлом «Спитцер» мог заглянуть лишь в ближайшие окрестности Солнечной системы. «Уэбб» намного более чувствителен и фактически сможет увидеть другой край Млечного пути, равно как и его центр.

Также «Джеймс Уэбб» будет искать гипотетические звезды населения III - это очень тяжелые объекты, в которых почти нет элементов тяжелее гелия, водорода и лития. Предполагается, что звезды этого типа должны составлять после Большого взрыва.



Пара взаимодействующих галактик, получившая название «Антенны»

Сегодня запуск «Джеймса Уэбба» намечен на июнь 2019 года. Изначально предполагалось, что телескоп отправят в космос ранней весной, однако миссия была отложена на несколько месяцев из-за технических проблем. Кристин Пуллиам (Christine Pulliam), заместитель научного руководителя проекта, ответила на вопросы N+1 о самом телескопе и сложностях при его строительстве.

Наверное, я задам очевидный вопрос, но что делает «Джеймс Уэбб» уникальным?

«Уэбб» позволит нам увидеть Вселенную такой, какой мы никогда не видели ее раньше. Он будет вести наблюдения в инфракрасном диапазоне, то есть на других длинах волн, нежели «Хаббл», сможет заглянуть дальше, чем «Спитцер», и в другие области, нежели «Гершель». Он заполнит пробелы и поможет создать целостную картину Вселенной. Обширные наблюдения в ИК-диапазоне помогут нам увидеть зарождающиеся звезды и планеты. Нам наконец-то откроются первые галактики, и это поможет сложить воедино всю космологическую историю. Некоторые любят говорить, что телескопы - это машины времени, и это очень хорошее выражение. Когда мы смотрим в космос, мы видим прошлое, потому что свету требуется время, чтобы достигнуть Земли. Мы увидим Вселенную, когда она была крайне молодой - и это поможет понять, как появились мы, и как работает Вселенная. Если говорить о чем-то более близком человечеству, то мы увидим, как возникали звезды, как формировались экзопланеты, и мы сможем даже охарактеризовать их атмосферы.

Да, вопрос об атмосферах далеких планет волнует очень многих. Какие результаты вы ожидаете получить?

У нас были миссии вроде «Кеплера», которые занимались поиском кандидатов. Благодаря им, сегодня нам известны тысячи экзопланет. Теперь же «Джеймс Уэбб» будет смотреть на уже известные объекты и исследовать их атмосферы. В частности это касается планет-гигантов - небесных тел по размеру находящихся между нептунами и супер-юпитерами. Нам крайне важно понять, как такие объекты формируются, как они эволюционируют и на что похожи системы, в состав которых они входят. Например, если мы видим систему из нескольких планет, нам важно определить, может ли там быть вода и где ее искать.

Фактически определить зону обитаемости?

Именно. Для разных звезд она будет разной. «Джеймс Уэбб» поможет нам охарактеризовать далекие планеты и понять, насколько уникален наш дом.

Ожидается, что миссия телескопа продлится около десяти лет. Однако каковы реальные прогнозы? Все мы помним «Вояджеры», которые до сих пор находятся в рабочем состоянии и отправляют данные на Землю, хотя этого никто не планировал.

Номинальный срок службы инструмента - пять лет, и мы надеемся, что сможет столько проработать. Если давать более смелые оценки, то это десять лет. Мы ограничены запасом охладителя, который должен поддерживать системы телескопа в рабочем состоянии. Я не думаю, что «Джеймс Уэбб» сможет, как и «Хаббл», протянуть 29 лет.

Да, «Джеймс Уэбб» будет слишком далеко от Земли, во второй точке Лагранжа. Как вы думаете, позволят ли нам технологии в будущем долететь до телескопа и починить его в случае поломки?

Такая возможность не исключается. На этот случай на телескопе есть крепление для роботизированного манипулятора, который может быть установлен на «Уэббе». Тем не менее, с самого начала обслуживание телескопа не предусматривалось, поэтому на это не стоит возлагать слишком много надежд. С учетом того, что инструмент будет работать всего 5-10 лет, мы вряд ли успеем шагнуть так далеко вперед, чтобы отправить к нему космический корабль.

Сможет ли «Джеймс Уэбб» работать в паре с другими космическими аппаратами? Например, Космический и астрономический центр Университета Колорадо предлагают создать внешний коронограф для него. В 2013 году они говорили о возможной совместной работе с телескопом - есть ли такие планы в действительности?

Я бы не сказала, что в данный момент мы рассматриваем такую возможность. Если я не ошибаюсь, то за этот проект отвечает Уэбб Кэш, но есть и другой проект звездного щита, а также несколько других групп, которые занимаются созданием похожих инструментов. Никаких конкретных планов относительно того, чтобы связать «Джеймс Уэбб» с другим инструментом, сегодня нет, хотя гипотетически он может работать совместно с любой космической обсерваторией.

А как планируется распределять время наблюдений?

Сейчас астрономы со всего мира присылают нам свои заявки, и после того, как они пройдут рецензирование, мы получим приблизительный план. Существует «гарантированное время для наблюдений», которое закреплено за учеными, помогающими в проектировании и создании «Джеймса Уэбба» сегодня, что-то вроде благодарности за их работу. Эти исследователи будут изучать галактики, экзопланеты, например планеты системы TRAPPIST. Отчасти мы сами выбираем цели, чтобы проверить возможности «Джеймса Уэба». При создании телескопа мы только начинали задумываться об экзопланетах, но теперь - это очень перспективная область в астрономии, и мы должны понять, как использовать «Джеймс Уэбб» для изучения планет за пределами Солнечной системы. Как раз этим и займутся команды, которые будут проводить наблюдения в первый год. Осенью уже станет известно, что мы «увидим» в первый год.


Hubble Ultra Deep Field

Почему сроки запуска вновь сдвигают? Ходят слухи о финансовых проблемах и о проблемах с системой зеркал.

Дело в том, что «Уэбб» - очень непростой телескоп, и мы впервые решаем столь сложную задачу. В аппарате есть несколько главных компонентов: зеркала, инструменты, огромный щит и охлаждающие механизмы. Все эти элементы надо построить и протестировать, совместить, протестировать снова - само собой, это требует времени. Также надо убедиться, что мы все сделали правильно, что все детали подходят друг к другу, что запуск будет удачным, а все элементы развернутся правильно. Задержки происходят из-за большого количества этапов и необходимости тщательной проверки.

То есть сейчас вы проводили тесты, и поняли, что не укладываетесь в изначальное расписание?

Да. На самом деле, у нас есть еще много резервного времени. Мы изначально знали, что все будет в порядке, но допускали, что подготовка может по некоторым причинам затянуться. Кроме того, когда мы будем готовы запускать аппарат, нам также потребуется договориться о конкретной дате с ESA, которому принадлежит ракета «Ариан». Поэтому мы подумали - куда торопиться?

Расскажите, какие тесты должен пройти и проходит телескоп?

Совсем недавно завершилась проверка системы OTISS (Optical Telescope and Instrument Assembly) в космическом центре имени Линдона Джонсона. Ее охладили до крайне низких рабочих температур, протестировали всю оптику и сам телескоп. Недавно ученые вынули систему из охлаждающей камеры, нагрели ее снова и теперь OTISS отправится в Калифорнию, в Космический парк на пляже Редандо, где ее соединят с солнцезащитным щитом. Кроме того, сейчас ведется работа и над самим щитом, специалисты проводят многочисленные проверки. Когда все элементы будут прикреплены к щиту, его будут складывать и раскладывать, чтобы убедиться, что он работает без нареканий, а затем будут проведены и другие тесты, включая тест на вибрацию, с которой телескоп столкнется во время полета на ракете. Запуск в космос - серьезное испытание для аппарата, поэтому инженеры хотят быть уверены, что все его компоненты переживут полет. Затем исследователи подготовят «Джеймс Уэбб» к запуску, погрузят на баржу, и отправят его на космодром во Французской Гвиане где-то в начале 2019 года.

А что насчет остальных инструментов? Насколько мне известно, вы упомянули не все. Они уже прошли предварительные проверки?

Да, они уже прошли все тесты и сейчас уже установлены на телескоп. Это отдельные приборы, которые будут проводить многочисленные научные исследования - спектрограф, изучающий небо в среднем ИК-диапазоне, камера. Кроме того, у всех инструментов разные режимы, поэтому надо проверить, действительно ли они работают так, как мы задумали. Это очень важно - необходимо «тряхнуть» прибор и убедиться, что угол зрения остался тем же.

Когда нам следует ждать первых результатов?

Скорее всего, первые данные придут только в конце будущего года или в начале 2020 года. Между запуском и получением первой информации пройдет где-то полгода. В течение этого времени телескоп будет разворачиваться, и мы убедимся, что он раскрылся и работает нормально. Затем приборам нужно будет охладиться, это займет достаточно много времени. На Земле «Джеймс Уэбб» находится при комнатной температуре, но когда мы запустим его в космос, необходимо будет дождаться, когда его инструменты достигнут рабочих температур. Затем мы введем их в эксплуатацию: сейчас уже запланирован ряд «тренировочных упражнений» - несколько плановых наблюдений и проверок разных режимов работы, которые позволят убедиться, что все функционирует, как и должно. Так как у нас нет пусковой даты, и, как следствие, нам неизвестно, что попадет в поле зрения телескопа, конкретный объект для наблюдений не выбран. Скорее всего, мы будем калибровать приборы телескопа на какой-нибудь далекой звезде. Все это внутренние процессы - сначала предстоит убедиться, что мы вообще можем что-либо увидеть.

Однако после того, как мы удостоверимся, что все инструменты работают, мы приступим непосредственно к научным экспериментам. Команда ученых, которая специализируется на снимках, определит, какие цели будут выглядеть по-настоящему завораживающими и зацепят публику. Работа будет выполнена теми же художниками, которые работали со снимками «Хаббла» - это люди с многолетним опытом обработки астрономических изображений. Кроме того, будут проводиться дополнительные тесты оборудования.

После того, как выйдут первые изображения, у нас будет год с небольшим для научных наблюдений. Они включают уже известные программы по изучению очень далеких галактик, квазаров, экзопланет и Юпитера. В целом, астрономы будут наблюдать все, что только возможно - начиная с областей активного звездообразования и заканчивая льдом в протопланетных дисках. Эти исследования важны для всех нас: все остальное научное сообщество сможет увидеть результаты других команд и понять, куда им следует двигаться дальше.

Кристина Уласович

Агентство NASA сегодня подтвердило планы по проекту телескопа Джеймс Уэбб. Руководство заявило, что и текущий бюджет, и планы по запуску космического телескопа на 2018 год актуальны. Стоит отметить, что в самом агентстве рассматривают этот телескоп, скорее, как следующую модель Хаббла, чем его замену.

Возможности телескопа значительно превышают возможности Хаббла. «Джеймс Уэбб» будет обладать составным зеркалом 6,5 метров в диаметре (диаметр зеркала «Хаббла» - 2,4 метра) с площадью собирающей поверхности 25 м² и солнечным щитом размером с теннисный корт. Телескоп будет размещён в точке Лагранжа L2 системы Солнце - Земля.


Джеймс Уэбб сможет совершить путешествие в далекое прошлое Вселенной - на время от 100 до 250 млн лет после Большого Взрыва. Другими словами, новый телескоп сможет заглянуть значительно дальше в глубины космического пространства, чем Хаббл, который может «путешествовать» не далее, чем на 800 млн - 1 млрд лет после Большого Взрыва. Кроме того, Уэбб не «заточен» под видимый свет, его специализация - инфракрасный спектр. Тем не менее, Джеймс Уэбб может фиксировать и излучение, видимое глазу человека.


Моделирование того, что «увидит» телескоп Джеймс Уэбб и что видит Хаббл в одной и той же точке пространства

Сложности реализации проекта

Основная проблема таких крупных проектов, как Джеймс Уэбб и Хаббл - бюджет. Что первый, что второй проект вышли за бюджетные рамки. Но, поскольку значительная часть бюджета уже освоена, ничего не остается, кроме как продолжать реализацию планов.

В случае с Хабблом ситуация была усложнена еще и тем фактом, что зеркало было изначально неправильно установлено. Это повлияло на возможности телескопа, и прошло много времени, чем ошибка была подкорректирована при помощи внешней экспедиции, во время которой были установлены коррекционные линзы.

Что касается Джеймса Уэбба - здесь ошибка непростительна. Как уже говорилось выше, новый телескоп планируется установить в точке Лагранжа L2. Если что-то пойдет не так, о проекте придется забыть. Тем не менее, шансы на успешную реализацию проекта довольно значительны.