Выделение метана в шахтах. Получение биогаза

  • 7. Запасы полезного ископаемого в пределах шахтного поля.
  • 8. Основные параметры шахты.
  • 9. Стадии разработки месторождения.
  • 10. Вертикальные горные выработки.
  • 11. Наклонные горные выработки.
  • 12. Горизонтальные горные выработки.
  • 13. Деление шахтного поля на части.
  • 14. Вскрытие месторождений вертикальными стволами.
  • 15. Вскрытие месторождений наклонными стволами.
  • 16. Вскрытие месторождений штольнями.
  • 17. Основные и дополнительные вскрывающие выработки.
  • 18. Варианты расположения главного ствола по падению шахтного поля.
  • 19. Сравнение одно- и двукрылых шахтных полей.
  • 20. Варианты расположения главного ствола вкрест простирания месторождения при вскрытии свиты пластов.
  • 21. Варианты расположения вспомогательного ствола при вскрытии шахтного поля.
  • 22. Одногоризонтное вскрытие пологих пластов вертикальными стволами.
  • 23. Многогоризонтное вскрытие пологих пластов вертикальными стволами.
  • 24. Вскрытие свиты крутонаклонных и крутых пластов.
  • 25. Вскрытие пластов наклонными стволами.
  • 26. Вскрытие пластов штольнями.
  • 27. Комбинированные способы вскрытия шахтных полей. Примеры.
  • 29. Панельная подготовка шахтного поля.
  • 30. Этажная подготовка шахтного поля.
  • 31. Погоризонтная подготовка шахтного поля.
  • 32. Последовательность отработки этажей в пределах шахтного поля.
  • 33. Последовательность отработки панелей в пределах шахтного поля.
  • 34. Последовательность отработки выемочных столбов в пределах шахтного поля при погоризонтном способе подготовки шахтного поля.
  • 35. Порядок отработки этажей и ярусов.
  • 36. Порядок отработки выемочных столбов при погоризонтной подготовке шахтного поля.
  • 37. Очередность отработки пластов в свите.
  • 38. Способы подготовки угольных пластов.
  • 39. Типы околоствольных дворов.
  • 40. Основные камеры околоствольного двора.
  • 41. Технологический комплекс поверхности шахты.
  • 42. Горное давление в очистном забое.
  • 43. Классификация слоев пород, вмещающих пласт.
  • 44. Классификация пород кровли по их обрушаемости.
  • 45. Способы выемки угольных пластов в зависимости от ширины вынимаемой полосы.
  • 46. Отличительные особенности фронтальной и фланговой схем выемки угольных пластов.
  • 47. Схемы работы очистных комбайнов.
  • 48. Сущность и условия применения струговой выемки.
  • 49. Способы доставки угля в очистных забоях.
  • 50. Сущность горного давления и его проявления.
  • 51. Факторы, влияющие на характер проявления горного давления.
  • 52. Крепь очистных выработок.
  • 60. Требования, предъявляемые к системам разработки.
  • 61. Классификация систем разработки.
  • 62. Факторы, влияющие на выбор системы разработки.
  • 63. Сущность сплошной системы разработки.
  • 64. Сущность столбовой системы разработки.
  • 65. Система разработки длинными столбами по простиранию при панельной подготовке шахтного поля.
  • 66. Система разработки длинными столбами по падению (восстанию) при погоризонтной подготовке шахтного поля.
  • 67. Система разработки длинными столбами по простиранию на пологих пластах при этажной подготовке шахтного поля.
  • 68. Столбовая система разработки по простиранию на крутых пластах.
  • 69. Поддержание и охрана горных выработок.
  • 70. Сравнительная оценка сплошных и столбовых систем разработки.
  • 71. Особенности разработки пластов, склонных к внезапным выбросам угля и газа.
  • 72. Особенности разработки пластов, склонных к горным ударам.
  • 73. Способы деления мощных угольных пластов на слои.
  • 74. Разработка пологих пластов наклонными слоями с обрушением пород кровли.
  • 82. Вскрытие крутых рудных залежей вертикальными стволами с концентрационными горизонтами.
  • 87. Сущность процесса отбойки руды.
  • 92. Классификация систем разработки рудных месторождений.
  • 5. Виды выделения метана.

    При подземных горных работах из угля и вмещающих пласт пород в горные выработки выделяется метан. Существуют три формы его выделения: обыкновенное, суфлярное и внезапное. При обыкновенном выделении метан поступает в рудничную атмосферу непрерывно сравнительно равномерными порциями со всей обнаженной площади пласта и пород.

    При суфлярном выделении газ поступает из разломов пород, шпуров и скважин в пласте, участков геологических нарушений. При этом выделение метана продолжается длительное время (часами, даже месяцами). Под внезапным выделением следует понимать такое динамическое явление, при котором происходит быстрое разрушение части угольного пласта с почти мгновенным выбросом большого количества газа, выносом измельченного угля в прилегающую выработку и образованием характерной полости.

    Угольные шахты в зависимости от метанообильности разделяются на пять категорий. Критерием для такого деления является относительная метанообильность, т. е. количество метана в кубических метрах, выделяющегося в сутки на 1 т среднесуточной добычи.

    6. Деление шахт на категории по газу.

    При подземных горных работах из угля и вмещающих пласт пород в горные выработки выделяется метан. Существуют три формы его выделения: обыкновенное, суфлярное и внезапное. При обыкновенном выделении метан поступает в атмосферу непрерывно сравнительно равномерными порциями со всей обнаженной площади пласта и пород. При суфлярном выделении газ поступает из разломов пород, шпуров и скважин в пласте, участков геологических нарушений. Как правило, дебит суфляр - в первоначальный момент максимальный, с течением времени он постепенно уменьшается. Продолжительность суфляров - различна - от нескольких дней до нескольких лет. Под внезапным выделением следует понимать такое динамическое явление, при котором происходит быстрое разрушение части угольного пласта с почти мгновенным выбросом большого количества газа, выносом измельченного угля в прилегающую выработку и образованием характерной полости. Угольные шахты в зависимости от метанообильности разделяются на пять категорий (табл. 1.1). Критерием для такого деления является относительная метанообильность, т. е. количество метана, м3, выделяющегося в сутки на 1 т среднесуточной добычи.

    В пределах шахтного поля заключены определенные запасы полезного ископаемого. Различают геологические, балансовые и забалансовые запасы (рис. 1.5).

    Геологическими называют общее количество запасов полезного ископаемого месторождения или его части. Балансовыми называют такие запасы, разработка которых экономически целесообразна; по качеству полезного ископаемого они отвечают требованиям их промышленного использования, а по количеству и условиям залегания пригодны для добывания при современном уровне техники. Забалансовые запасы не отвечают действующим кондициям по мощности и качеству, однако их следует рассматривать как объект освоения в будущем, по мере развития техники, технологии добычи и переработки полезных ископаемых. Балансовые запасы равны геологическим за вычетом забалансовых запасов. К забалансовым относят запасы, которые сосредоточены в пластах нерабочей мощности или уголь имеет высокую зольность, сверхлимитное содержание серы, или залегают на глубине, недоступной для разработки с использованием существующей технологии. Запасы полезного ископаемого в зависимости от их изученности подразделяются на четыре категории: А, В, С1 и С2. К категории А относятся запасы, детально разведанные и изученные с помощью горных выработок; имеются полные данные о качестве полезного ископаемого.

    Борьба с выделениями и взрывами метана

    В шахтах, опасных по газу (т. е. в таких, в которых хотя бы на одном пласте обнаружен метан), необходимо соблюдать специаль­ный режим, одно из основных требований которого заключается в разжижении выделяющегося метана до безопасных концентраций. Правилами безопасности установлены следующие предельные кон­центрации метана (в процентах по объему):

    Исходящая вентиляционная струя из участка, очистных за­боев и подготовительных выработок........... 1,00

    Общая исходящая струя из шахты, крыла......... 0,75

    Поступающая струя в очистные или подготовительные забои……. 0,50 Местное (в отдельных местах) скопление в очистных ьабоях,

    в подготовительных и других выработках........ 2,00

    Запрещается приступать к заряжанию шпуров и производить взрывные работы при содержании в забое, а также в примыкающих к нему выработках на протяжении 20 м от него и в местах укрытия взрывника 1 % метана и более.

    Если в отдельных местах образуются скопления метана, достига­ющие 2%, то работы прекращаются, и возобновлять их разрешается только после снижения содержания метана до 1%.

    В течение целого ряда десятилетий разбавление метана до допу­стимых норм (хотя сами нормы неоднократно менялись) осуществля­лось главным образом вентиляционными средствами. Однако в по­следние годы в связи с переходом на разработку глубоких горизонтов и интенсификацией процессов добычи угля газообильность шахт так возросла, что обычные методы вентиляции не могут обеспечить сни­жения концентрации до установленных норм. Вследствие этого возникла необходимость управления газовыделением с целью умень­шения общего количества выделяющихся в выработки газов, регули­рования выделения во времени, а также предупреждения или умень­шения интенсивности суфлярных выделений и внезапных выбросов.

    Дегазация.

    Наиболее распространенным способом сниже­ния газообильности угольных шахт является дегазация разрабаты­ваемых и сближенных угольных пластов и выработанных прост­ранств, представляющая собой комплекс мероприятий по сбору и обособленной выдаче из шахты концентрированных метано-воздуш-ных смесей. Дегазацию начали применять в СССР с 1952 г., и она быстро получила распространение.

    В настоящее время дегазация (или изолированный отвод метана) применяется практически на всех шах­тах, количество отсасываемого или отводимого метана достигает 1,4 млн. м 3 /сутки, а в 2010 г. составит около 2,5 млн. м 3 /сутки.

    Отсасываемый метан используется пока явно недостаточно, всего на 10 -15%. Он применяется главным образом для нагрева паровых котлов в шахтных котельных.

    В шахтах России применяются три основные группы способов дегазации:

    а) дегазация угольных пластов и вмещающих пород без использования эффекта разгрузки от горного давления;

    б) дегазация подрабатываемых и надрабатываемых смежных угольных пластов и вмещающих пород с использованном эффекта разгрузки от горного давления;

    в) отсос метано-воздушных смесей из выработанных про­странств.

    Каждая группа подразделяется на ряд схем и вариантов в зависимости от горнотехнических условий разработки, геологиче­ских особенностей месторождений, газопроницаемости пластов, нали­чия сближенных пластов и т. п.

    Дегазация угольного пласта до начала очистных работ иногда производится путем отсасывания газа из предварительно проведен­ных и затем изолированных герметизирующими перемычками подго­товительных выработок. При этом для удаления газа через перемычки пропускается газопровод. Этот способ дегазации рекомендуется при­менять только при высокой газопроницаемости пласта. Срок дегаза­ции от 8 до 12 месяцев.

    В настоящее время Московским горным институтом проведены

    лабораторные и натурные исследования по предварительной дегаза­ции с

    направленным гидравлическим расчленением пластов, осуще­ствляемой с

    земной поверхности до проведения горных работ и без связи с ними.

    Сущность этого метода заключается в том, что на участки дегазируемых

    пластов проводятся на расстоянии 250-300 м одна от другой буровые

    скважины (или используются скважины гео­логоразведочного бурения), через

    которые производится гидрорасчле­нение пласта. Для направленного

    введения рабочей жидкости в пласте абразивным гидроперфоратором

    создается щель высотой 30-40 мм, радиусом от 1 до З м. Закачка жидкости

    ведется с медленным нараста­нием расхода до 125 л/сек. При этом вокруг

    скважины па расстоянии порядка 100 м происходит раскрытие трещин.

    Общий расход жидкости при закачке достигает 900 м3, песка 30-40 т.

    После откачки из скважины жидкости начинает выделяться газ, причем среднесуточный дебит равен 1000-4000 м 3 , а в отдельные сутки доходит до 6000 м 3 .

    После дегазации таким способом пласта K 12 (Караганда) газо­обильность выработок при его выемке была в 4-6 раз меньше, чем ожидалось без дегазации, и в 2-3 раза меньше газообильности выра­боток в аналогичных условиях, но при дегазации с помощью восста­ющих скважин, пробуренных по пласту. Для сокращения срока дега­зации рассматриваемым способом рекомендуется применять испаря­ющиеся при атмосферных условиях и пластовых температурах жидкости (например. СО2). При дегазации с земной поверхности скважины дают почти чистый метан, что облегчает его рацио­нальное использование и способствует окупаемости дегазацион­ных работ.

    С использованием эффекта разгрузки от горного давления осуще­ствляется дегазация сближенных угольных пластов, т. е. газонос­ных пластов, залегающих на таком расстоянии от разрабатываемого, на котором происходят обрушение пород, разгрузка дегазируемого пласта от горного давления и повышенная газоотдача. Выделя­ющийся газ отсасывается через специальные скважины, пробуренные с вентиляционного (иногда с откаточного) штрека. Скважины эти должны пересекать дегазируемый пласт на границе зоны обрушения, где оседание пород происходит с образованием пустот, которые за­полняются газом. Поскольку успех дегазации зависит от правильной ориентировки дегазационных скважин, азимут, угол наклона и про­ектная глубина скважин определяются на основании точных марк­шейдерских данных.

    Дегазация угольных пластов позволяет вести очистные работы на пластах, отличающихся высокой метанообильностью. Однако в последнее время возникают большие трудности при проведении подготовительных выработок, так как работы эти ведутся в основном еще до начала дегазации и в ряде случаев газовыделение в выработки достигает 6,0-7,5 м 3 "мин. Разжижение таких количеств газа свежей вентиляционной струей требует подачи в выработки громадных количеств воздуха. С целью создания безопасных условий проходки в настоящее время применяется ограждающая дегазация.

    При проведении выработок по углю часто в их подкровельной части

    образуются так называемые слоевые скопления метана, содержа­ние которого в

    смеси с воздухом достигает 2% и более. Границей между воздушной струей и

    концентрацией СН 4 2%. Протяженность слоевых скоплений обычно 20-40 м.

    но иногда достигает 100 м и более. Загазованию подвергаются обычно

    призабойные части штре­ков, а также места геологических нарушений, зоны

    трещиноватого угля и т. п.

    Борьба со слоевыми скоплениями ведется путем увеличения скорости движения вентиляционной струи, прижа­тием воздушного потока к кровле выработки при помощи паруса, перекрывающего нижнюю часть выработки, и обеспечением деятель­ного перемешивания воздуха е кровле выработки. Последнее дости­гается при помощи сжатого воздуха, вытекающего из трубопровода через специальные отверстия.

    Борьба с суфлярами. Суфлярные выделения часто вынуждают прекращать работу в забое и отводить газ по специаль­ному трубопроводу в исходящую струю шахты или по скважине на поверхность. После того как суфлярное выделение прекратится, работы возобновляются.

    Если дебит суфляра невелик, то в ряде случаев возможно продол­жать проходческие работы при условии подачи достаточного коли­чества воздуха для разжижения выделяющегося метана и принятия мер против образования слоевых скоплений.

    В тех случаях, когда на разрабатываемом месторождении суфляр­ные выделения связаны с тектоническими нарушениями или зонами трещиноватых, раздробленных пород, лучшей мерой борьбы с суфля­рами следует считать бурение специальных разведочных скважин при приближении забоя выработки к нарушению или к зоне трещиноватости. После вскрытия суфляра разведочными скважинами про­буриваются специальные дренажные скважины, через которые газ отводится на поверхность.

    Вторичные суфляры вызываются производственными процессами, возникают неожиданно и к ним трудно заранее подготовиться. Спо­собы борьбы в этом случае зависят от характера выделения. Так, при возникновении суфляра и виде трещины, образовавшейся в ночве призабойного пространства лавы в результате разгрузки пород от горного давления, трещину закрывают швеллерами или рештаками, уплотняемыми бетонным покрытием. После этого выделяющийся метан отсасывается и выдается по трубам в исходящую струю или на поверхность.

    Борьба с внезапными выбросами . Наиболее действенным способом борьбы с внезапными выбросами является разработка опасных и угрожаемых пластов после предварительной выемки защитных, т. е. залегающих выше или ниже выбросоопасных на таком расстоянии, при котором разработка их обеспечивает раз­грузку опасных и угрожаемых пластов. При пологом падении защит­ными являются пласты, залегающие выше опасных на расстоянии до 45 м по нормали и ниже опасных до 100 м. При крутом падении защитными считаются пласты, залегающие не более чем в 60 м по нормали выше или ниже опасного, если опытом не установлено защитное действие на большем расстоянии. Если имеются защитные пласты выше и ниже опасных, то в первую очередь разрабатывается вышележащий.

    Правилами безопасности регламентированы порядок проведения откаточного штрека и величина опережения им очистного забоя на крутых пластах, опасных по выбросам; восстающие выработки разре­шается проходить только сверху вниз по предварительно пробурен­ным опережающим скважинам; установлен также порядок вскрытия опасных пластов квершлагами. В последнем случае опасность внезап­ного выброса особенно велика, вследствие чего при подходе забоем квершлага к пласту на расстояние 10 м обязательны бурение двух передовых скважин длиной не менее 6 м, уменьшение площади попе­речного сечения квершлага до 5 м 2 , предварительное проведение вы­работки, соединяющей квершлаг с вентиляционным горизонтом, для отвода газа при внезапном выбросе.

    При проведении выработок по углю для предупреждения внезап­ных выбросов бурят опережающие скважины диаметром 250-300 мм; в некоторых случаях применяют опережающую крепь, предохрани­тельные щиты и другие меры защиты.

    В соответствии с Правилами безопасности, взрывные работы по углю на пластах, опасных по внезапным выбросам угля и газа, при очистных работах и проведении горизонтальных и наклонных выра­боток должны вестись только в режиме сотрясательного взрывания, т. е. взрывания усиленным зарядом ВВ с соблюдением целого ряда установленных мер безопасности.

    Поскольку сотрясательное взрывание может вызвать выброс большой интенсивности, нарушающий нормальную работу шахты, а иногда после него возникают запоздалые выбросы, в последние годы исследуется эффективность так называемого камуфлетного взрывания, которое лишь разрыхляет массив, увеличивает зону раз­грузки и предотвращает опасность развития внезапного выброса.

    Чтобы предупредить внезапные выбросы пород, которые, как указывалось, возникают обычно при ведении проходческих работ по пластам песчаника, рекомендуется располагать выработки ближе к почве или кровле пласта, так как наиболее выбросоопасной яв­ляется его средняя часть. Для уменьшения опасности выброса реко­мендуется: производить предварительное увлажнение породного массива, которое уменьшает напряжения в призабойной части; при­менять разгрузочные щели, предварительную отработку защитных пластов (когда это возможно), охлаждать призабойную часть мас­сива, проводить выработки уменьшенным сечением с последующим расширением их до проектного.

    Газовыделение – это процесс поступления газа в атмосферу шахты в результате ведения горных работ.

    В угольных шахтах источниками газовыделений являются разрабатываемые, а также смежные подрабатываемые или надрабатываемые пласты угля и пропластки, вмещающие породы. Выделяются газы в горные выработки через свободную поверхность разрабатываемого пласта из отбитого угля и трещины во вмещающих породах.

    Различают газовыделения:

    обыкновенное – происходящее из невидимых трещин и пор в угле и породах;

    суфлярное – местное концентрированное выделения газа из природных или эксплуатационных трещин с дебитом 1м 3 /мин и более на участке выработки протяженностью до 20м;

    внезапное – местное выделение больших объемов газа, сопровождающееся разрушением призабойной части угольного пласта.

    Обыкновенное выделение метана происходит с обнаженной поверхности угольного массива через мелкие, невидимые трещины. Величина этого газовыделения тем больше, чем выше газоносность и газопроницаемость угля, а также газовое давление.

    В первые моменты после вскрытия пласта газовыделение происходит весьма интенсивно. Затем быстро падает и, через 6÷10 месяцев, оно практически прекращается. Время после обнажения пласта, по истечении которого газовыделение с обнаженной поверхности практически прекращается, называется периодом дренирования. В результате выделения метана с обнаженной поверхности в массиве угля образуется зона дренирования, метаноносность угля в которой изменяется от минимальной величины на кромке обнажения пласта до природной метаноносности на некотором расстоянии от обнаженной поверхности пласта.

    Выделение метана с обнаженной поверхности пласта зависит также от производственных процессов, изменяющих условия выделения газа с поверхности пласта: зарубка, отбойка угля, управление кровлей.

    Суфлярное метановыделениепроисходитиз крупных, видимых на глаз трещин и пустот в угле и породах или из эксплуатационных трещин. Дебит их может быть до десятков тысяч кубических метров в сутки, продолжительность действия от нескольких часов до нескольких лет. Суфляры представляют опасность вследствие неожиданности их проявления и сопутствующего им увеличения концентрации газа в выработке. Суфляры бывают природного и эксплуатационного происхождения. Природные суфляры (первого рода) обычно встречаются в зонах геологических нарушений. Суфляры эксплуатационного происхождения (второго рода) появляются вследствие нарушения целостности боковых пород при выемке угля.

    Борьба с суфлярами ведется путем дегазации массива (для этого применяется передовое бурение скважин, опережающая отработка защитных пластов, соответствующий способ управления кровлей) и увеличением подачи воздуха в выработки.


    При внезапном выбросе из угольного пласта в выработку за короткий промежуток времени может выделиться большое количество газа вместе со значительным количеством угольной мелочи. В пласте угля образуются характерные пустоты, а выработка заполняется углем и газом на десятки и сотни метров от забоя.

    Количество метана, выделяющегося при выбросе, находится в пределах от нескольких сотен до 500 тыс.м 3 и более, горной массы – от 1÷2 до 15000 т.

    Внезапные выбросы обычно происходят в забоях подготовительных и очистных выработок, при вскрытии опасных пластов, при пересечении зон геологических нарушений.

    Внезапным выбросам обычно предшествуют предупредительные признаки: удары, толчки, гул в массиве угля, осыпание забоя, отскакивание кусочков угля (стреляние), выжимание угля, повышенное газовыделение.

    Основными факторами, влияющими на возникновение внезапного выброса, являются горное давление, энергия заключенного в угле газа, физико-механические свойства угольного пласта и вмещающих пород.

    Виды газовыделений в угольных шахтах и их возможные источники приведены в табл. 4.1.

    Фермерские хозяйства ежегодно сталкиваются с проблемой утилизации навоза. В никуда уходят немалые средства, которые требуются для организации его вывоза и захоронения. Но есть способ, позволяющий не только сэкономить свои деньги, но и заставить служить себе во благо этот природный продукт.

    Рачительные хозяева уже давно применяют на практике экотехнологию, позволяющую получить биогаз из навоза и использовать результат в качестве топлива.

    Поэтому в нашем материале речь пойдет о технологии получения биогаза, также мы расскажем о том, как соорудить биоэнергетическую установку.

    Механизм образования газа из органического сырья

    Биогаз – это летучее вещество без цвета и какого-либо запаха, в котором содержится до 70% метана. По своим качественным показателям он приближается к традиционному виду топлива – природному газу. Отличается хорошей теплотворной способностью, 1м 3 биогаза выделяет столько тепла, сколько получается при сгорании полутора килограмм угля.

    Образованию биогаза мы обязаны анаэробным бактериям, которые активно трудятся над разложением органического сырья, в качестве которого используются навоз сельскохозяйственных животных, птичий помет, отходы любых растений.

    В самостоятельном производстве биогаза может использоваться птичий помет и продукты жизнедеятельности мелкого и крупного домашнего скота. Сырье может применяться в чистом виде и в форме смеси с включением травы, листвы, старой бумаги

    Для активизации процесса необходимо создать благоприятные условия для жизнедеятельности бактерий. Они должны быть схожи с теми, в которых микроорганизмы развиваются в естественном резервуаре – в желудке животных, где тепло и отсутствует кислород.

    Собственно, это и есть два основных условия, способствующих чудесному превращению гниющей навозной массы в экологически чистое топливо и ценные удобрения.

    Для получения биогаза нужен герметичный реактор без доступа воздуха, где будет происходить процесс брожения навоза и разложения его на составляющие:

    Образовавшиеся газы поднимаются кверху емкости, откуда их затем выкачивают, а вниз оседает остаточный продукт – высококачественное органическое удобрение, сохранившее в результате обработки все ценные вещества, имеющиеся в навозе – азот и фосфор, и потерявшее значительную часть патогенных микроорганизмов.

    Реактор для получения биогаза должен иметь полностью герметичную конструкцию, в которой отсутствует кислород, в противном случае процесс разложения навоза будет проходить крайне медленно

    Второе важное условие для эффективного разложения навоза и образования биогаза – соблюдение температурного режима. Бактерии, принимающие участие в процессе, активизируются при температуре от +30 градусов.

    Причем в навозе содержится два вида бактерий:

    • мезофильные. Их жизнедеятельность происходит при температуре +30 – +40 градусов;
    • термофильные. Для их размножения необходимо соблюсти температурный режим +50 (+60) градусов.

    Время переработки сырья в установках первого типа зависит от состава смеси и составляет от 12 до 30 суток. При этом 1 литр полезной площади реактора дает 2 л биотоплива. При использовании установок второго типа время выработки конечного продукта сокращается до трех дней, а количество биогаза возрастает до 4,5 л.

    Эффективность термофильных установок видна невооруженным глазом, однако и цена их обслуживания очень высока, поэтому прежде чем выбрать тот или иной способ получения биогаза, необходимо очень тщательно все просчитать

    Несмотря на то, что эффективность термофильных установок в десятки раз выше, применяются они гораздо реже, поскольку поддержание высоких температур в реакторе связано с большими расходами.

    Обслуживание и содержание установок мезофильного типа дешевле, поэтому большинство фермерских хозяйств для получения биогаза используют именно их.

    Биогаз по критериям энергетического потенциала немногим уступает привычному газовому топливу. Однако в его составе есть сернокислые испарения, наличие которых следует учесть при выборе материалов для сооружения установки

    Расчеты эффективности применения биогаза

    Оценить все преимущества использования альтернативного биотоплива помогут несложные расчеты. Одна корова весом 500 кг производит в сутки примерно 35-40 кг навоза. Этого количества хватит для получения около 1.5 м 3 биогаза, из которого в свою очередь можно выработать 3 кВт/ч электроэнергии.

    Используя данные из таблицы, нетрудно рассчитать, сколько м 3 биогаза можно получить на выходе в соответствии с имеющимся в фермерском хозяйстве поголовьем скота

    Для получения биотоплива можно использовать как один вид органического сырья, так и смеси из нескольких компонентов, имеющих влажность 85-90%. Важно, чтобы они не содержали посторонние химические примеси, отрицательно влияющие на процесс переработки.

    Самый простой рецепт смеси придумал еще в 2000 году один русский мужик из Липецкой области, который построил своими руками простейшую установку для получения биогаза. Он смешивал 1500 кг коровьего навоза с 3500 кг отходов различных растений, добавлял воду (примерно 65% от веса всех ингредиентов) и разогревал смесь до 35 градусов.

    Через две недели бесплатное топливо готово. Эта небольшая установка вырабатывала 40 м 3 газа в день, что вполне хватало для обогрева дома и хозпостроек в течение полугода.

    Варианты установок для получения биотоплива

    После проведения расчетов необходимо определиться, как изготовить установку, чтобы получить биогаз в соответствии с потребностями своего хозяйства. Если поголовье скота небольшое, то подойдет простейший вариант, который нетрудно изготовить из подручных средств своими руками.

    Крупным фермерским хозяйствам, у которых есть постоянный источник большого количества сырья, целесообразно построить промышленную автоматизированную биогазовую систему. В этом случае вряд ли получится обойтись без привлечения специалистов, которые разработают проект и смонтируют установку на профессиональном уровне.

    На схеме наглядно показано, как работает промышленный автоматизированный комплекс по получению биогаза. Строительство таких масштабов можно организовать сразу нескольким фермерским хозяйствам, расположенным поблизости

    Сегодня существуют десятки компаний, которые могут предложить множество вариантов: от готовых решений, до разработки индивидуального проекта. Для удешевления строительства можно скооперироваться с соседними хозяйствами (если такие имеются поблизости) и построить одну на всех установку для получения биогаза.

    Следует учесть, что для постройки даже небольшой установки необходимо оформить соответствующие документы, сделать технологическую схему, план размещения оборудования и вентиляции (если оборудование устанавливается в помещении), пройти процедуры согласования с СЭС, пожарной и газовой инспекцией.

    Мини-завод по производству газа на покрытие нужд небольшого частного хозяйства можно сделать собственноручно, ориентируясь на конструкцию и специфику устройства установок, выпускаемых в промышленном масштабе.

    Конструкции установок для переработки навоза и растительной органики в биогаз не отличаются сложностью. Выпущенный промышленностью оригинал вполне подойдет в качестве шаблона для сооружения собственного мини-завода

    Самостоятельным мастерам, решившим заняться сооружением собственной установки, надо запастись емкостью для воды, водопроводными или канализационными пластиковыми трубами, угловыми отводами, уплотнителями и баллоном для хранения полученного в установке газа.

    Галерея изображений

    Особенности биогазовой системы

    Полноценная биогазовая установка представляет собой сложную систему, состоящую из:

    1. Биореактора, где протекает процесс разложения навоза;
    2. Автоматизированной системы подачи органических отходов;
    3. Устройства для перемешивания биомассы;
    4. Оборудования для поддержания оптимального температурного режима;
    5. Газгольдера – емкости для хранения газа;
    6. Приемника отработанных твердых отходов.

    Все вышеперечисленные элементы устанавливаются в промышленные установки, работающие в автоматическом режиме. Бытовые реакторы, как правило, имеют более упрощенную конструкцию.

    На схеме представлены основные составляющие автоматизированной биогазовой системы. Объем реактора зависит от суточного поступления органического сырья. Для полноценного функционирования установки реактор должен быть заполнен на две трети объема

    Принцип работы установки

    Основным элементом системы является биореактор. Существует несколько вариантов его исполнения, главное – обеспечить герметичность конструкции и исключить попадание кислорода. Он может быть выполнен в виде металлической емкости различной формы (чаще цилиндрической), расположенной на поверхности. Нередко для этих целей используются 50-ти кубовые пустые топливные цистерны.

    Можно приобрести готовые емкости разборной конструкции. Их преимущество – возможность быстрой разборки, и при необходимости – перевозки в другое место. Промышленные поверхностные установки целесообразно применять в крупных хозяйствах, где есть постоянный приток большого количества органического сырья.

    Для небольших подворий больше подходит вариант подземного размещения резервуара. Поземный бункер строится из кирпича или бетона. Можно закопать в землю готовые емкости, например, бочки из металла, нержавеющей стали или ПВХ. Возможно также их поверхностное размещение на улице или в специально отведенном помещении с хорошей вентиляцией.

    Для изготовления установки по производству биогаза можно приобрести готовые емкости из ПВХ и установить их в помещении, оборудованном системой вентиляции

    Независимо от того, где и как размещается реактор, он снабжается бункером для загрузки навоза. Прежде чем загрузить сырье, оно должно пройти предварительную подготовку: его измельчают на фракции не больше 0,7 мм и разбавляют водой. В идеале влажность субстрата должна быть около 90%.

    Автоматизированные установки промышленного типа оснащаются системой подачи сырья, включающей приемник, в котором смесь доводится до необходимого увлажнения, трубопровод для подачи воды и насосную установку для перекачки массы в биореактор.

    В домашних установках для подготовки субстрата используются отдельные емкости, где отходы измельчаются и перемешиваются с водой. Затем масса загружается в приемный отсек. В реакторах, расположенных под землей, бункер для приема субстрата выводится наружу, подготовленная смесь самотеком по трубопроводу поступает в камеру для брожения.

    Если реактор размещен на земле или в помещении, входная труба с приемным устройством могут располагаться в нижней боковой части емкости. Возможно также трубу вывести в верхнюю часть, а на ее горловину надеть раструб. В этом случае биомассу придется подавать при помощи насоса.

    В биореакторе также необходимо предусмотреть выходное отверстие, которое делают практически на дне емкости с противоположной стороны от входного бункера. При подземном размещении выходная труба устанавливается косо вверх и ведет в приемник для отходов, по форме напоминающий ящик прямоугольной формы. Его верхний край должен находиться ниже уровня входного отверстия.

    Входная и выходные трубы располагаются косо вверх на разных сторонах емкости, при этом компенсирующая емкость, в которую поступают отходы, должна быть ниже приемного бункера

    Процесс протекает следующим образом: входной бункер принимает новую партию субстрата, которая стекает в реактор, одновременно такое же количество отработанной массы по трубе поднимается в приемник для отходов, откуда он в дальнейшем вычерпывается и используется в качестве высококачественного биоудобрения.

    Хранение биогаза осуществляется в газгольдере. Чаще всего он находится прямо на крыше реактора и имеет форму купола или конуса. Он изготавливается из кровельного железа, а затем, чтобы предотвратить коррозийные процессы, окрашивается несколькими слоями масляной краски.

    В промышленных установках, рассчитанных на получение большого количества газа, газгольдер нередко выполняется в виде отдельно стоящего резервуара, соединенного с реактором трубопроводом.

    Газ, полученный в результате брожения, не подходит для использования, поскольку в нем содержится большое количество водяных паров, и в таком виде он не будет гореть. Чтобы очистить его от фракций воды, газ пропускают через гидрозатвор. Для этого из газгольдера выводится труба, по которой биогаз поступает в емкость с водой, а уже оттуда он по пластиковой или металлической трубе подается потребителям.

    Схема установки, расположенной под землей. Входное и выходное отверстия должны располагаться на противоположных сторонах емкости. Над реактором находится водяной затвор, через который для осушения пропускается полученный газ

    В некоторых случаях для хранения газа используются специальные мешки-газгольдеры, изготовленные из поливинилхлорида. Мешки помещаются рядом с установкой и постепенно заполняются газом. По мере наполнения, эластичный материал раздувается, и объем мешков увеличивается, позволяя при необходимости временно сохранить большее количество конечного продукта.

    Условия эффективной работы биореактора

    Для эффективной работы установки и интенсивного выделения биогаза необходимо равномерное брожение органического субстрата. Смесь должна находиться в постоянном движении. В противном случае на ней образуется корка, процесс разложения замедляется, в итоге газа получается меньше, чем изначально рассчитано.

    Чтобы обеспечить активное перемешивание биомассы, в верхней или боковой части типового реактора устанавливаются мешалки погружного или наклонного вида, оборудованные электроприводом. В установках кустарного вида перемешивание производится механическим способом при помощи устройства, напоминающего бытовой миксер. Им можно управлять вручную или снабдить электроприводом.

    При вертикальном расположении реактора рукоятка мешалки выводится в верхнюю часть установки. Если емкость установлена горизонтально, шнек также располагается в горизонтальной плоскости, и ручка находится сбоку биореактора

    Одним из самых главных условий для получения биогаза является поддержание в реакторе необходимого температурного режима. Обогрев может осуществляться несколькими способами. В стационарных установках применяются автоматизированные системы подогрева, которые включаются в работу при падении температуры ниже заданного уровня, и отключаются при наборе необходимого температурного режима.

    Для обогрева можно использовать , осуществлять прямой нагрев электрическими отопительными приборами или встроить в основание емкости нагревательный элемент.

    Чтобы обустроить систему обогрева биомассы, можно провести трубопровод от домового отопления, которое питается от реактора

    Определение требующегося объема

    Объем реактора определяется исходя из суточного количества навоза, производимого в хозяйстве. Также необходимо учитывать тип сырья, температурный режим и время брожения. Чтобы установка полноценно работала, емкость заполняется на 85-90% объема, как минимум 10% должно оставаться свободным для выхода газа.

    Процесс разложения органики в мезофильной установке при средней температуре 35 градусов длится от 12 суток, после чего ферментированные остатки извлекаются, и реактор заполняется новой порцией субстрата. Поскольку перед отправкой в реактор отходы разбавляются водой до 90%, то количество жидкости также нужно учитывать при определении суточной загрузки.

    Исходя из приведенных показателей, объем реактора будет равен суточному количеству подготовленного субстрата (навоза с водой) умноженному на 12 (время необходимое для разложения биомассы) и увеличенному на 10% (свободный объем емкости).

    Строительство подземного сооружения

    Теперь поговорим о простейшей установке, позволяющей получить с наименьшими затратами. Рассмотрим строительство подземной системы. Чтобы ее изготовить нужно вырыть яму, ее основание и стены заливаются армированным керамзитобетоном.

    С противоположных сторон камеры выводятся входное и выходное отверстия, куда монтируются наклонные трубы для подачи субстрата и откачки отработанной массы.

    Выходная труба диаметром примерно 7 см должна находиться практически у самого дна бункера, другой ее конец монтируется в компенсирующую емкость прямоугольной формы, в которую будут откачиваться отходы. Трубопровод для подачи субстрата располагается приблизительно на расстоянии 50 см от дна и имеет диаметр 25-35 см. Верхняя часть трубы входит в отсек для приема сырья.

    Реактор должен быть полностью герметичным. Чтобы исключить возможность попадания воздуха, емкость необходимо покрыть слоем битумной гидроизоляции

    Верхняя часть бункера – газгольдер, имеющий купольную или конусную форму. Он изготавливается из металлических листов или кровельного железа. Можно также конструкцию завершить кирпичной кладкой, которая затем оббивается стальной сеткой и штукатурится. Сверху газгольдера нужно сделать герметичный люк, вывести газовую трубу, проходящую через гидрозатвор и установить клапан для сброса давления газа.

    Для перемешивания субстрата можно оборудовать установку дренажной системой, действующей по принципу барботажа. Для этого внутри конструкции вертикально закрепите пластиковые трубы, чтобы их верхний край был выше слоя субстрата. Проделайте в них множество отверстий. Газ под давлением будет опускаться вниз, а поднимаясь вверх, пузырьки газа будут перемешивать находящуюся в емкости биомассу.

    Если вы не желаете заниматься строительством бетонного бункера, можно купить готовую емкость из ПВХ. Для сохранения тепла ее нужно обложить вокруг слоем теплоизоляции – пенополистиролом. Дно ямы заливается армированным бетоном слоем 10 см. Резервуары из поливинилхлорида допускается использовать, если объем реактора не превышает 3 м3.

    Выводы и полезное видео по теме

    Как сделать самую простейшую установку из обычной бочки, вы узнаете, если посмотрите видео:

    Как происходит строительство подземного реактора, вы можете посмотреть в видеосюжете:

    Установка по получению биогаза из навоза позволит существенно сэкономить на оплате тепла и электроэнергии, и пустить на благое дело органический материал, который в избытке имеется в каждом фермерском хозяйстве. Прежде чем начать строительство, необходимо все тщательно просчитать и подготовить.

    Простейший реактор можно сделать за несколько дней своими руками, используя подручные средства. Если хозяйство крупное, то лучше всего купить готовую установку или обратиться к специалистам.