Гущин уравнения с параметрами. "методы решения задач с параметрами"

1. Задача.
При каких значениях параметра a уравнение (a - 1)x 2 + 2x + a - 1 = 0 имеет ровно один корень?

1. Решение.
При a = 1 уравнение имеет вид 2x = 0 и, очевидно, имеет единственный корень x = 0. Если a № 1, то данное уравнение является квадратным и имеет единственный корень при тех значениях параметра, при которых дискриминант квадратного трехчлена равен нулю. Приравнивая дискриминант к нулю, получаем уравнение относительно параметра a 4a 2 - 8a = 0, откуда a = 0 или a = 2.

1. Ответ: уравнение имеет единственный корень при a О {0; 1; 2}.

2. Задача.
Найти все значения параметра a , при которых имеет два различных корня уравнение x 2 +4ax +8a +3 = 0.
2. Решение.
Уравнение x 2 +4ax +8a +3 = 0 имеет два различных корня тогда и только тогда, когда D = 16a 2 -4(8a +3) > 0. Получаем (после сокращения на общий множитель 4) 4a 2 -8a -3 > 0, откуда

2. Ответ:

a О (-Ґ ; 1 – Ц 7 2
) И (1 + Ц 7 2
; Ґ ).

3. Задача.
Известно, что
f 2 (x ) = 6x -x 2 -6.
а) Постройте график функции f 1 (x ) при a = 1.
б) При каком значении a графики функций f 1 (x ) и f 2 (x ) имеют единственную общую точку?

3. Решение.
3.а. Преобразуем f 1 (x ) следующим образом
График этой функции при a = 1 изображен на рисунке справа.
3.б. Сразу отметим, что графики функций y = kx +b и y = ax 2 +bx +c (a № 0) пересекаются в единственной точке тогда и только тогда, когда квадратное уравнение kx +b = ax 2 +bx +c имеет единственный корень. Используя представление f 1 из 3.а , приравняем дискриминант уравнения a = 6x -x 2 -6 к нулю. Из уравнения 36-24-4a = 0 получаем a = 3. Проделав то же самое с уравнением 2x -a = 6x -x 2 -6 найдем a = 2. Нетрудно убедиться, что эти значения параметра удовлетворяют условиям задачи. Ответ: a = 2 или a = 3.

4. Задача.
Найти все значения a , при которых множество решений неравенства x 2 -2ax -3a і 0 содержит отрезок .

4. Решение.
Первая координата вершины параболы f (x ) = x 2 -2ax -3a равна x 0 = a . Из свойств квадратичной функции условие f (x ) і 0 на отрезке равносильно совокупности трех систем
имеет ровно два решения?

5. Решение.
Перепишем это уравнение в виде x 2 + (2a -2)x - 3a +7 = 0. Это квадратное уравнение, оно имеет ровно два решения, если его дискриминант строго больше нуля. Вычисляя дискриминант, получаем, что условием наличия ровно двух корней является выполнение неравенства a 2 +a -6 > 0. Решая неравенство, находим a < -3 или a > 2. Первое из неравенств, очевидно, решений в натуральных числах не имеет, а наименьшим натуральным решением второго является число 3.

5. Ответ: 3.

6. Задача (10 кл.)
Найти все значения a , при которых график функции или, после очевидных преобразований, a -2 = | 2-a | . Последнее уравнение равносильно неравенству a і 2.

6. Ответ: a О .

Подводим итоги. Ограничение на параметр даёт только второе условие из ОДЗ: a ∈[−4; 4], а требование о несовпадении корней выполняется, если исключить из этого промежктка a = ±3.

Ответ: a ∈[−4;−3)∪(−3; 3)∪(3; 4]

Как видите, коэффициенты здесь подобраны так, что алгебраические операции не сложны и не занимают много времени. Но, если вы забыли об особенностях квадратных корней и упустили из виду именно условие 2) из ОДЗ, то решения не получите вообще.
Надеюсь, что многие выпускники всё-таки справились с этой задачей, и желаю им дальнейших успехов на экзаменах по выбору.

Задача 2

Найдите все значения а , при каждом из которых уравнение

x − 2a _____ x + 2 + x − 1 ____ x a = 1

Имеет единственный корень.

Решение.

Начинаем, конечно, с ОДЗ: x ≠ −2 и x a .
Преобразуем:

Привели дроби к общему знаменателю и сразу отбросили знаменатель. Новое уравнение будет равносильно заданному только с учётом ограничений ОДЗ.

Почему можно так делать?
- Потому что дроби с равными знаменателями равны тогда, когда равны их числители.
Когда нельзя так делать?
- Когда не проверено неравенство знаменателя нулю или забыли предварительно записать ОДЗ.
Кому можно, а кому нельзя так делать?
- Аккуратным и вдумчивым ученикам можно, невнимательным нельзя. Последним надо переносить всё в левую часть равенства, упрощать выражение в виде полной дроби, затем переходить к совокупности условий: "дробь равна нулю, если её числитель равен нулю, а знаменатель не равен нулю".

После раскрытия скобок и приведения подобных членов получим

x 2 − 2ax + 2a 2 − x − 2 = −2a .

Окончательно приведём к виду, характерному для квадратного уравнения:

x 2 − (2a + 1)·x + (2a 2 + 2a − 2) = 0.

Дискриминант этого уравнения

D = (2a + 1) 2 − 4·(2a 2 + 2a − 2) = −4a 2 − 4a + 9.

Заданное в условии задачи уравнение может иметь единственное решение в двух случаях. Во-первых, когда дискриминант полученного квадратного уравнения равен нулю, а его единственный корень не совпадает с ограничениями ОДЗ. Иначе его нужно будет отбросить и решений не останется совсем. Во-вторых, когда квадратное уравнение имеет два разных корня (дискриминант больше нуля), но один и только один из них не удовлетворяет ОДЗ.

Случай I. D = 0.

−4a 2 − 4a + 9 = 0 при a = (−1 ± √10__ )/2.

При этом корень уравнения x = (2a + 1)/2 = a + 0,5 . Очевидно, что при полученных значениях a он не совпадает ни с a , ни с −2.
Таким образом, получены два искомых значения параметра.

Случай II.

Определим те значения a x = а .

a 2 − (2a + 1)·a + (2a 2 + 2a − 2) = 0.
a 2 + a − 2 = 0.
a = 1 и a = −2.

Определим те значения a , при которых корнем квадратного уравнения является x = −2.

(−2) 2 − (2a + 1)·(−2) + (2a 2 + 2a − 2) = 0.
a 2 + 3a + 2 = 0.
a = −1 и a = −2.

При этих значениях параметра а можно продолжить исследование дискриминанта и второго корня квадратного уравнения. Но проще проверить их подстановкой в исходное уравнения условия задачи.

a = 1

x − 2·1 _______ x + 2 + x − 1 ____ x − 1 = 1; x − 2 _____ x + 2 + 1 = 1; x − 2 _____ x + 2 = 0; x = 2.

a = −1

x − 2·(−1) _________ x + 2 + x − 1 _______ x − (−1) = 1; x + 2 ____ x + 2 + x − 1 ____ x + 1 = 1; 1 + x − 1 ____ x + 1 = 1; x − 1 ____ x + 1 = 0; x = 1.

a = −2

x − 2·(−2) _________ x + 2 + x − 1 _______ x − (−2) = 1; x + 4 ____ x + 2 + x − 1 ____ x + 2 = 1; x + 4 + x − 1 = x + 2; x = −1.

Таким образом все три значения удовлетворяют условию задачи.

Ответ: a ∈{(−1 − √10__ )/2; −2; −1; 1; (−1 + √10__ )/2.}

Внимание: Если вы нашли ошибку или опечатку, пожалуйста, сообщите о ней на email.