Получение аминов в лаборатории. Химические свойства аминов

Реферат

Синтез аминов из спиртов

Введение 3

1. Характеристика процессов алкилирования 4

2. Химия и теоретические основы процесса 10

3. Технология процесса 13

Список литературы 16

Введение

Алкилированием называют процессы введения алкильных групп в молекулы органических и некоторых неорганических веществ. Эти реакции имеют очень большое практическое значение для синтеза алкилированных в ядро ароматических соединений, изопарафинов, многих меркаптанов и сульфидов, аминов, веществ с простой эфирной связью, элемент - и металлорганических соединений, продуктов переработки -оксидов и ацетилена. Процессы алкилирования часто являются промежуточными стадиями в производстве мономеров, моющих веществ и т. д.

Многие из продуктов алкилирования производятся в очень крупных масштабах. Так, в США синтезируют ежегодно около 4 млн. т этилбензола, 1,6 млн. т изопропилбензола, 0,4 млн. т высших алкилбензолов, свыше 4 млн. т гликолей и других продуктов переработки алкиленоксидов, около 30 млн. т изопарафинового алкилата, около 1 млн. т трет-бутилметилового эфира и т. д.

1. Характеристика процессов алкилирования

1. Классификация реакций алкилирования

Наиболее рациональная классификация процессов алкилирования основана на типе вновь образующейся связи.

Алкилирование по атому углерода (C-алкилирование) состоит в замещении на алкильную группу атома водорода , находившегося при атоме углерода. К этому замещению способны парафины, но наиболее характерно алкилирование для ароматических соединений (реакция Фриделя – Крафтса):

https://pandia.ru/text/78/129/images/image003_92.gif" width="221" height="23 src=">

Алкилирование по атомам кислорода и серы (O - и S-алкилирование) представляет собой реакцию, в результате которой алкильная группа связывается с атомом кислорода или серы:

ArOH + RCI ArOH + NaCI + H2O

NaSH + RCI → RSH + NaCI

В данном случае под слишком общее определение алкилирования подпадают и такие процессы, как гидролиз хлорпроизводных или гидратация олефинов, и это показывает, что алкилированием следует называть только такие реакции введения алкильной группы, которые не имеют других, более существенных и определяющих классификационных признаков.

Алкилирование по атому азота (N-алкилирование) состоит в замещении атомов водорода в аммиаке или в аминах на алкильные группы. Это - важнейший из методов синтеза аминов:

ROH + NH3 → RNH2 + H2O

Как и в случае реакций гидролиза и гидратации, N-алкилирование нередко классифицируют как аммонолиз (или аминолиз) органических соединений).

Алкилирование по атомам других элементов (Si-, Pb-, AI-алкилирование) представляет собой важнейший путь получения элемент - и металлорганических соединений, когда алкильная группа непосредственно связывается с гетероатомом:

2RCI + Si R2SiCI2

4C2H5CI + 4PbNa → Pb(C2H5)4 + 4NaCI + 3Pb

3C3H6 + AI + 1,5H2 → Al(C3H7)3

Другая классификация реакций алкилирования основана на различиях в строении алкильной группы, вводимой в органическое или неорганическое соединение. Она может быть насыщенной алифатической (этильной и изопропильной) или циклической. В последнем случае реакцию иногда называют циклоалкилированием:

https://pandia.ru/text/78/129/images/image007_43.gif" width="61" height="26">ROCH=CH2

CH3-COOH + CH≡CH CH3-COO-CH=CH2

Наконец, алкильные группы могут содержать различные заместители, например атомы хлора, гидрокси-, карбокси-, сульфокислотные группы:

C6H5ONa + CICH2-COONa → C6H5O-CH2-COONa + NaCI

ROH + HOCH2-CH2SO2ONa → ROCH2–CH2SO2ONa + H2O

Важнейшей из реакций введения замещенных алкильных групп является процесс https://pandia.ru/text/78/129/images/image010_34.gif" width="563" height="53 src=">

2. Алкилирующие агенты и катализаторы

Все алкилирующие агенты по типу связи, разрывающейся в них при алкилировании, целесообразно разделить на следующие группы:

1..gif" width="260" height="38 src=">

Это означает, что удлинение и разветвление цепи углеродных атомов в олефине значительно повышает его способность к алкилированию:

CH2=CH2 < CH3-CH=CH2 < CH3-CH2-CH=CH2 < (CH3)2C=CH2

В ряде случаев алкилирование олефинами протекает под влиянием инициаторов радикально-цепных реакций, освещения или высокой температуры. Здесь промежуточными активными частицами являются свободные радикалы. Реакционная способность разных олефинов при таких реакциях значительно сближается.

Хлорпроизводные являются алкилирующими агентами наиболее широкого диапазона действия. Они пригодны для С-, О-, S - и N-алкилирования и для синтеза большинства элементо - и металлорганических соединений. Применение хлорпроизводных рационально для тех процессов, в которых их невозможно заменить олефинами или когда хлорпроизводные дешевле и доступнее олефинов.

Алкилирующее действие хлорпроизводных проявляется в трех различных типах взаимодействий: в электрофильных реакциях, при нуклеофильном замещении и в свободно-радикальных процессах. Механизм электрофильного замещения характерен для алкилирования по атому углерода, но, в отличие от олефинов, реакции катализируются только апротонными кислотами (хлориды алюминия , железа). В предельном случае процесс идет с промежуточным образованием карбокатиона:

https://pandia.ru/text/78/129/images/image014_29.gif" width="318" height="26 src=">

При другом типе реакций, характерном для алкилирования по атомам кислорода, серы и азота, процесс состоит в нуклеофильном замещении атома хлора. Механизм аналогичен гидролизу хлорпроизводных, причем реакция протекает в отсутствие катализаторов:

https://pandia.ru/text/78/129/images/image016_28.gif" height="25"> → 4NaCI + Pb(C2H5)4 + 3Pb

Спирты и простые эфиры способны к реакциям С-, О-, N - и S-алкилирования. К простым эфирам можно отнести и оксиды олефинов, являющиеся внутренними эфирами гликолей, причем из всех простых эфиров только оксиды олефинов практически используют в качестве алкилирующих агентов. Спирты применяют для О - и N-алкилирования в тех случаях, когда они дешевле и доступнее хлорпроизводных. Для разрыва их алкил-кислородной связи требуются катализаторы кислотного типа:

R-OH + H+ ↔ R-OH2 ↔ R+ + H2O

3. Энергетическая характеристика основных реакций алкилирования

В зависимости от алкилирующего агента и типа разрывающейся связи в алкилируемом веществе процессы алкилирования имеют сильно различающиеся энергетические характеристики. Значения тепловых эффектов для газообразного состояния всех веществ в некоторых важных процессах алкилирования по С-, О - и N-связям приведены в таблице 1. Так как они существенно зависят от строения алкилирующих веществ, то в таблице приводятся наиболее часто встречающиеся пределы изменения тепловых эффектов.

Таблица 1

Тепловой эффект важнейших реакций алкилирования

Алкилирующий агент

Разрываемая связь

Из сравнения приведенных данных видно, что при использовании одного и того же алкилирующего агента теплота реакции при алкилированием по разным атомам уменьшается в следующем порядке Сар > Салиф > N > O, а для разных алкилирующих агентов изменяется так:

https://pandia.ru/text/78/129/images/image020_18.gif" width="161" height="28 src=">, дающим высокое значение константы равновесия при всех допустимых температурах. В отличие от этого, взаимодействие фенолов с аммиаком и аминами обратимо:

ArOH + NH3 ↔ ArNH2 + H2O

В подавляющем большинстве случаев спирты реагируют с аммиаком и аминами только в присутствии катализаторов. Для получения метиланилинов из анилина и метанола используется серная кислота:

Аммоний" href="/text/category/ammonij/" rel="bookmark">аммония . Действие гетерогенных катализаторов состоит в активировании С – О-связи в спирте за счет хемосорбции на их кислотных центрах:

https://pandia.ru/text/78/129/images/image024_17.gif" width="206" height="30 src=">

https://pandia.ru/text/78/129/images/image026_14.gif" width="390" height="53 src=">

В этом случае соотношение констант скоростей последовательных стадий реакции неблагоприятно для получения первичного амина, так как аммиак является более слабым основанием и нуклеофильным реагентом. Те же катализаторы кислотного типа вызывают межмолекулярную миграцию алкильных групп, аналогичную ранее встречавшейся реакции переалкилирования ароматических соединений под влиянием AICI3. Таким образом, происходят обратимые реакции переалкилирования аминов:

2RNH2 ↔ R2NH + NH3

2R2NH ↔ RNH2 + R3N

сильно влияющие на состав продуктов алкилирования. При этом равновесные соотношения значительно более чем кинетические, выгодны для получения первичного амина.

Хотя в практических условиях равновесие полностью не достигается, можно все же применять сравнительно небольшой избыток аммиака, что уменьшает затраты на его регенерацию. Если целевым продуктом процесса является вторичный амин, то, возвращая на реакцию первичный и третичный амины, можно вообще исключить их образование, направив процесс только в желаемую сторону. При этом в реакционной массе устанавливаются стационарные концентрации побочных продуктов, соответствующие условиям равенства скоростей их образования и расходования.

Для осуществления реакции между аммиаком и спиртами можно применять и дегидрирующие катализаторы (медь, никель, кобальт, нанесенные на оксид алюминия). В этом случае механизм реакции совершенно иной – вначале происходит дегидрирование спирта в альдегид, а затем конденсация альдегида с аммиаком и гидрирование образующегося имина:

Смесители" href="/text/category/smesiteli/" rel="bookmark">смесителе 1 и подают в теплообменник 2, где они испаряются и подогреваютя горячими реакционными газами. В реакторе 3 протекают описанные выше реакции и образуются амины при почти полной конверсии метанола. Горячие газы отдают свое тепло исходной смеси в теплообменнике 2 и направляются на дальнейшую переработку.

Получаемые продукты разделяют многоступенчатой ректификацией; на каждой стадии создают давление, обеспечивающее получение флегмы путем охлаждения водой. В первую очередь в колонне 4 отгоняют наиболее летучий аммиак, который идет на рециркуляцию. Кубовая жидкость поступает в колонну 5 экстрактивной дистилляции с водой (в присутствии воды относительная летучесть триметиламина становится наиболее высокой по сравнению с другими) метиламинами. Отгоняющийся при этом триметиламин (ТМА) можно частично отбирать в виде товарного продукта, но основное его количество направляют на рециркуляцию. У двух остальных аминов температуры кипения различаются больше (6,8 и 7,40С), и их можно разделить обычной ректификацией в колонных 6 (монометиламин, ММА) и 7 (диметиламин, ДМА). Каждый из них с верха колонны можно отбирать как товарный продукт или же частично (либо полностью) направлять на рециркуляцию.

В заключение в колонне 8 от сточных вод отгоняется непревращенный метанол, возвращаемый на реакцию. Суммарный выход аминов с учетом всех потерь достигает 95%.

При синтезе этиламинов стадию подготовки исходной смеси и реакционный узел выполняют аналогично изображенным на рис. 1. Разделение аминов облегчается большей разницей в температурах кипения (16,5, 55,9 и 89,50) и достигается обычной ректификацией с последовательной отгонкой аммиака, моно-, ди - и триэтиламинов. В этом случае побочным продуктом является этилен, который выводят из системы при конденсации смеси еще дл отгонки аммиака.

Нефтехимия" href="/text/category/neftehimiya/" rel="bookmark">нефтехимического
синтеза. М., Химия. 1988. – 592 с.;

4. , Вишнякова нефтехимического синтеза. М., 1973. – 448 с.;

5. Юкельсон основного органического синтеза. М., «Химия», 1968.

Амины.

Амины - производные аммиака, у которых один, два или все три атома водорода замещены на радикалы.

Классификация аминов : амины классифицируются по двум признакам:

1) по числу радикалов, замещающих атом водорода в аммиаке амины подразделяются на:

-первичные :

-вторичные :

-третичные :

2) по характеру радикалов, связанных с атомом азота, амины подразделяются на :

- алифатические . Алифатическими аминами называются такие амины, радикалами в которых являются остатки алканов, алкенов, алкадиенов, но не аренов:

пропиламин 2-пропениламин 2-пропиниламин

К алифатическим относятся также амины, имеющие в своей структуре ароматические фрагменты, если они отделены от атома азота по крайней мере одной группой - СН 2 -, например, бензиламин:

- ароматические . Ароматическими считаются только такие амины, у которых атом азота непосредственно связан с ароматическим ядром, например:

- жирноароматические : в этих аминах, если они третичные, атом азота соединён с одним алифатическим и с двумя ароматическими радикалами или, наоборот, с одним ароматическим и двумя алифатическими радикалами, например:

Если жирноароматический амин вторичный, то у него один радикал алифатический, а другой ароматический, например:

Изомерия и номенклатура алифатических аминов

Чтобы назвать алифатический амин по номенклатуре ИЮПАК нужно выбрать самую длинную цепь из атомов углерода, контактирующую с аминогруппой. Пронумеровать цепь с той стороны, к которой ближе находится аминогруппа. Затем указать номер атома, связанного с атомом азота, и через дефис написать «амино». После этого указать номера атомов главной цепи и названия углеводордных радикалов, связанных с ними. В конце слитно с названием последнего из радикалов дать название алкана, соответствующего главной цепи.

По рациональной номенклатуре называют сначала по мере усложнения радикалы, связанные с азотом, а затем приписывают слитно слово «амин». Ниже в таблице представлены примеры названий для аминов с формулой С 5 Н 13 N



ИЮПАК Рациональная
1-аминопентан амиламин
2-аминопентан 1-метилбутиламин
3-аминопентан 1-этилпропиламин
1-амино-2-метилбутан 2-метилбутиламин
2-амино-2метилбутан Трет -амиламин
2-амино-3-метилбутан 1,2-диметилпропиламин
1-амино-3-метилбутан Изоамиламин
1-амино-2,2-диметилпропан Неопентиламин
1-(N-метил)аминобутан Метилбутиламин
2-(N-метил)аминобутан Метил-втор -бутиламин
1-(N-метил)амино-2-метилпропан Метилизобутиламин
2-(N-метил)амино-2-метилпропан Метил-трет.-бутиламин
1-(N-метил- N -этил)аминоэтан Метилдиэтиламин
1-(N,N-диметил)аминопропан Диметилпропиламин
2-(N,N-диметил)аминопропан Диметилизопропиламин

Способы получения аминов.

Получение аминов из других азотсодержащих соединений.

Из нитросоединений амины могут быть получены путём их гидрирования водородом на катализаторе – никеле Ренея. Этот катализатор получают выщелачиванием алюминия из его сплава с никелем по реакции:

1-нитропропан 1-аминопропан

Аналогичным образом первичные амины могут быть получены из нитрозосоединений:

2-нитрозобутан 2-аминобутан

Амины могут быть получены также из оксимов . Сами оксимы легко получаются из альдегидов или кетонов путём их реакции с гидроксиламином:

пропаналь гидроксиламин оксим пропаналя

При гидрировании оксимов происходит разрыв связи N – O и получаются амин (всегда первичный) и вода:

оксим пропаналя пропиламин

Первичные амины могут быть получены также из гидразонов , которые в свою очередь получаются при действии гидразина на альдегиды или кетоны

бутанон гидразин гидразон бутанона

При гидрированиигидразонов происходит разрыв связи N – N и получаются амин (всегда первичный) и аммиак:

2-аминобутан

Из амидов карбоновых кислот такжеможно получитьамины, причём не только первичные, но из алкиламидов – вторичные и из диалкиламидов – третичные амины.

Сначала из карбоновых кислот действием аммиака получают аммонийые соли ,например:

пропионовая кислота пропионат аммония

При нагревании аммонийной соли выше 100 о С выделяется вода в виде пара и образуется амид:

пропионат аммония амид пропионовой кислоты

Гидрирование амидов на катализаторах платиновой группы приводит к получению первичных аминов и воды:

пропиоамид пропиламин

Если вместо аммиака в первую из приведённых выше реакций взять первичный амин , то после гидрирования амида получится вторичный амин :

уксусная кислота 1-аминопропан ацетат пропиламмония

пропиламид уксусной кислоты

Этилпропиламин – вторичный амин

Если же вместо аммиака в первую из трёх этих реакций взять вторичный амин , то после гидрирования амида получится третичный амин :

3-метилбутановая кислота метилизобутиламин

Для получения аминов сегодня открыто огромное количество самых разнообразных методов. Наиболее важные из них будут рассмотрены в отдельных главах:

  • Прямое алкилирование аммиака и аминов;
  • Непрямое алкилирование;
  • Восстановительные методы;
  • Получение первичных аминов из карбоновых кислот. Перегруппировки Гофмана, Курциуса и Шмидта.

Приведенные методы получения аминов различаются по областям своего применения, по своей доступности и по количеству побочных продуктов. В этой же главе кратко будут рассмотрены общие закономерности получения аминов и некоторые другие специфические пути их получения.

Общие методы получения аминов

Они происходят при реакциях расщепления: амидов (перегруппировка Гофмана), гидроксамовых кислот и их производных (перегруппировка Лоссена), азидов (перегруппировка Курциуса, Шмидта), оксимов, кетонов (перегруппировка Бекмана). Движущей силой этих перегруппировок является образование электронодефицитного атома азота.

Перегруппировка Лоссена

Эта реакция имеет принципиально тот же промежуточный продукт, что и в перегруппировках Гофмана и Курциуса. Для осущиствления такой перегруппировки используют гидроксамовые кислоты и их производные, которые под действием дегидратирующих агентов ($P_2O_5$, $SOCl_2$, полифосфорная кислота и др.) последовательно образуют ацилнитрен, затем - изоцианат и затем - амин.

Амины - это органические соединения, в которых атом водорода (может и не один) замещен на углеводородный радикал. Все амины делят на:

  • первичные амины ;
  • вторичные амины ;
  • третичные амины .

Есть еще аналоги солей аммония - четвертичные соли типа [R 4 N ] + Cl - .

В зависимости от типа радикала амины могут быть:

  • алифатические амины;
  • ароматические (смешанные) амины.

Алифатические предельные амины.

Общая формула C n H 2 n +3 N .

Строение аминов.

Атом азота находится в sp 3 -гибридизации. На 4-ой негибридной орбитали находится неподеленная пара электронов, которая обуславливает основные свойства аминов:

Элекронодонорные заместители повышают электронную плотность на атоме азота и усиливают основные свойства аминов, по этой причин вторичные амины являются более сильными основаниями, чем первичные, т.к. 2 радикала у атома азота создают большую электронную плотность, чем 1.

В третичных атомах играет важную роль пространственный фактор: т.к. 3 радикала заслоняют неподеленную пару азота, к которой сложно «подступиться» другим реагентам, основность таких аминов меньше, чем первичных или вторичных.

Изомерия аминов.

Для аминов свойственна изомерия углеродного скелета, изомерия положения аминогруппы:

Как называть амины?

В названии обычно перечисляют углеводородные радикалы (в алфавитном порядке) и добавляют окончание -амин:

Физические свойства аминов.

Первые 3 амина - газы, средние члены алифатического ряда - жидкости, а высшие - твердые вещества. Температура кипения у аминов выше, чем у соответствующих углеводородов, т.к. в жидкой фазе в молекуле образуются водородные связи.

Амины хорошо растворимы в воде, по мере роста углеводородного радикала растворимость падает.

Получение аминов.

1. Алкилирование аммиака (основной способ), который происходит при нагревании алкилгалогенида с аммиаком:

Если алкилгалогенид в избытке, то первичный амин может вступать в реакцию алкилирования, превращаясь во вторичный или третичный амин:

2. Восстановление нитросоединений:

Используют сульфид аммония (реакция Зинина ), цинк или железо в кислой среде, алюминий в щелочной среде или водород в газовой фазе.

3. Восстановление нитрилов. Используют LiAlH 4 :

4. Ферментатичное декарбоксилирование аминокислот:

Химические свойства аминов.

Все амины - сильные основания, причем алифатические более сильные, чем аммиак.

Водные растворы имеют щелочной характер.

Амины вошли в нашу жизнь совершенно неожиданно. Еще недавно это были ядовитые вещества, столкновение с которыми могло привести к смерти. И вот, спустя полтора столетия, мы активно пользуемся синтетическими волокнами, тканями, строительными материалами, красителями, в основе которых лежат амины. Нет, они не стали безопаснее, просто люди смогли их "приручить" и подчинить, извлекая для себя определенную пользу. О том, какую именно, и поговорим далее.

Определение

Для качественного и количественного определение анилина в растворах или соединениях используется реакция с в конце которой на дно пробирки выпадает белый осадок в виде 2,4,6-триброманилина.

Амины в природе

Амины встречаются в природе повсеместно в виде витаминов, гормонов, промежуточных продуктов обмена, есть они и в организме животных и в растениях. Кроме того, при гниении живых организмов также получаются средние амины, которые в жидком состоянии распространяют неприятный запах селедочного рассола. Широко описанный в литературе «трупный яд» появился именно благодаря специфическому амбре аминов.

Длительное время рассматриваемые нами вещества путали с аммиаком из-за похожего запаха. Но в середине девятнадцатого века французский химик Вюрц смог синтезировать метиламин и этиламин и доказать, что при сгорании они выделяют углеводород. Это было принципиальным отличием упомянутых соединений от аммиака.

Получение аминов в промышленных условиях

Так как атом азота в аминах находится в низшей степени окисления, то восстановление азотосодержащих соединений является наиболее простым и доступным способом их получения. Именно он широко распространен в промышленной практике из-за своей дешевизны.

Первый метод представляет собой восстановление нитросоединений. Реакция, во время которой образуется анилин, носит название ученого Зинина и была проведена в первый раз в середине девятнадцатого века. Второй способ заключается в восстановлении амидов при помощи алюмогидрида лития. Из нитрилов тоже можно восстановить первичные амины. Третий вариант - реакции алкилирования, то есть введение алкильных групп в молекулы аммиака.

Применение аминов

Сами по себе, в виде чистых веществ, амины используются мало. Один из редких примеров - полиэтиленполиамин (ПЭПА), который в бытовых условиях облегчает затвердение эпоксидной смолы. В основном первичный, третичный или вторичный амин - это промежуточный продукт в производстве различных органических веществ. Самым востребованным является анилин. Он - основа большой палитры анилиновых красителей. Цвет, который получится в конце, зависит непосредственно от выбранного сырья. Чистый анилин дает синий цвет, а смесь анилина, орто- и пара-толуидина будет красной.

Алифатические амины нужны для получения полиамидов, таких как нейлон и другие Они применяются в машиностроении, а также в производстве канатов, тканей и пленок. Кроме того, алифатические диизоцинаты используются в изготовлении полиуретанов. Из-за своих исключительных свойств (легкость, прочность, эластичность и способность прикрепляться к любым поверхностям) они востребованы в строительстве (монтажная пена, клей) и в обувной промышленности (противоскользящая подошва).

Медицина - еще одна сфера, где применяются амины. Химия помогает синтезировать из них антибиотики группы сульфаниламидов, которые успешно применяют в качестве препаратов второй линии, то есть резервной. На случай, если у бактерий разовьется устойчивость к основным лекарствам.

Вредное воздействие на организм человека

Известно, что амины - это весьма токсичные вещества. Вред здоровью может нанести любое взаимодействие с ними: вдыхание паров, контакт с открытой кожей или попадание соединений внутрь организма. Смерть наступает от нехватки кислорода, так как амины (в частности, анилин) связываются с гемоглобином крови и не дают ему захватывать молекулы кислорода. Тревожными симптомами являются одышка, посинение носогубного треугольника и кончиков пальцев, тахипноэ (учащенное дыхание), тахикардия, потеря сознания.

В случае попадания этих веществ на оголенные участки тела необходимо быстро убрать их ватой, предварительно смоченной в спирте. Делать это надо максимально аккуратно, чтобы не увеличить площадь загрязнения. Если появятся симптомы отравления - обязательно нужно обратиться к врачу.

Алифатические амины - это яд для нервной и сердечно-сосудистой систем. Они могут вызвать угнетение функций печени, ее дистрофию и даже онкологические заболевания мочевого пузыря.