Сток определенного участка суши измеряется показателями. Построение и проверка кривой обеспеченности годового стока

28.07.2015


Колебания речного стока и критерии его оценки. Речным стоком называют перемещение воды в процессе ее кругооборота в природе, когда она стекает по речному руслу. Речной сток определяется количеством воды, протекающим по речному руслу за определенный промежуток времени.
На режим стока оказывают влияние многочисленные факторы: климатические - осадки, испарение, влажность и температура воздуха; топографические - рельеф местности, форма и размеры речных бассейнов и почвенно-геологические, включая растительный покров.
Для любых бассейнов, чем больше осадков и меньше испарение, тем больше сток реки.
Установлено, что с возрастанием площади водосбора продолжительность весеннего половодья также увеличивается, гидрограф же имеет более вытянутую и «спокойную» форму. В легко проницаемых грунтах больше фильтрация и меньше сток.
При выполнении различных гидрологических расчетов, связанных с проектированием гидротехнических сооружений, мелиоративных систем, систем водоснабжения, мероприятий по борьбе с наводнениями, дорог и т. д., определяют следующие основные характеристики речного стока.
1. Расход воды - это объем воды, протекающий через рассматриваемый створ в единицу времени. Средний расход воды Qcp рассчитывают как среднее арифметическое из расходов за данный промежуток времени Т:

2. Объем стока V - это объем воды, который протекает через заданный створ за рассматриваемый промежуток времени T

3. Модуль стока M - это расход воды, приходящийся на 1 км2 площади водосбора F (или стекающей с единицы площади водосбора):

В отличие от расхода воды модуль стока не связан с конкретным створом реки и характеризует сток в целом с бассейна. Средний многолетний модуль стока M0 не зависит от водности отдельных лет, а определяется только географическим положением бассейна реки. Это позволило районировать нашу страну в гидрологическом отношении и построить карту изолиний среднемноголетних модулей стока. Эти карты приводятся в соответствующей нормативной литературе. Зная площадь водосбора какой-либо реки и определив для нее по карте изолиний величину M0, можно установить средний многолетний расход воды Q0 этой реки по формуле

Для близко расположенных створов реки модули стока можно принять постоянными, то есть

Отсюда по известному расходу воды в одном створе Q1 и известным площадям водосборов в этих створах F1 и F2, расход воды в другом створе Q2 может быть установлен по соотношению

4. Слой стока h - это высота слоя воды, которая бы получилась при равномерном распределении по всей площади бассейна F объема стока V за определенный промежуток времени:

Для среднего многолетнего слоя стока h0 весеннего половодья составлены карты изолиний.
5. Модульный коэффициент стока К - это отношение любой из выше приведенных характеристик стока к ее среднеарифметическому значению:

Эти коэффициенты могут быть установлены для любых гидрологических характеристик (расходов, уровней, осадков, испарения и т.д.) и для любых периодов стока.
6. Коэффициент стока η - это отношение слоя стока к слою выпавших на водосборную площадь осадков х:

Этот коэффициент может быть выражен также через отношение объема стока к объему осадков за один и тот же промежуток времени.
7. Норма стока - наиболее вероятная средняя многолетняя величина стока, выраженная любой из вышеприведенных характеристик стока за многолетний период. Для установления нормы стока ряд наблюдений должен быть не менее 40...60 лет.
Норма годового стока Q0 определяется по формуле

Так как на большинстве водомерных постов число лет наблюдений обычно менее 40, то необходимо проверить, достаточно ли этого числа лет для получения достоверных значений нормы стока Q0. Для этого вычисляют среднеквадратическую ошибку нормы стока по зависимости

Продолжительность периода наблюдений достаточна, если величина среднеквадратической ошибки σQ не превышает 5 %.
На изменение годового стока преимущественное влияние оказывают климатические факторы: осадки, испарение, температура воздуха и т. д. Все они взаимосвязаны и, в свою очередь, зависят от ряда причин, которые имеют случайный характер. Поэтому гидрологические параметры, характеризующие сток, определяются совокупностью случайных величин. При проектировании мероприятий по лесосплаву необходимо знать значения этих параметров с необходимой вероятностью их превышения. Например, при гидравлическом расчете лесосплавных плотин необходимо установить максимальный расход весеннего паводка, который может быть превышен пять раз за сто лет. Эту задачу решают, используя методы математической статистики и теории вероятности. Для характеристики величин гидрологических параметров - расходов, уровней и т. д. используют понятия: частота (повторяемость) и обеспеченность (продолжительность).
Частота показывает, во скольких случаях за рассматриваемый период времени величина гидрологического параметра находилась в определенном интервале. Например, если среднегодовой расход воды в заданном створе реки изменялся за ряд лет наблюдений от 150 до 350 м3/с, то можно установить, сколько раз значения этой величины находились в интервалах 150...200, 200...250, 250...300 м3/с и т. д.
Обеспеченность показывает, во скольких случаях величина гидрологического элемента имела значения, равные и большие определенной величины. В широком понимании обеспеченность - это вероятность превышения данной величины. Обеспеченность какого-либо гидрологического элемента равна сумме частот вышерасположенных интервалов.
Частота и обеспеченность могут выражаться числом случаев, но в гидрологических расчетах их чаще всего определяют в процентах от общего числа членов гидрологического ряда. Например, в гидрологическом ряду двадцать значений среднегодовых расходов воды, шесть из них имели величину, равную или большую 200 м3/с, это значит, что этот расход обеспечен на 30 %. Графически изменения частоты и обеспеченности изображаются кривыми частоты (рис. 8а) и обеспеченности (рис. 8б).

В гидрологических расчетах чаще используют кривую обеспеченности. Из этой кривой видно, что чем больше величина гидрологического параметра, тем меньше процент обеспеченности, и наоборот. Поэтому принято считать, что годы, для которых обеспеченность стока, то есть среднегодовой расход воды Qг, меньше 50 % являются многоводными, а годы с обеспеченностью Qг больше 50 % - маловодными. Год с обеспеченностью стока 50 % считают годом средней водности.
Обеспеченность водности года иногда характеризуют ее средней повторяемостью. Для многоводных лет повторяемость показывает, как часто встречаются в среднем годы данной или большей водности, для маловодных - данной или меньшей водности. Например, среднегодовой расход многоводного года 10%-ной обеспеченности имеет среднюю повторяемость 10 раз в 100 лет или 1 раз в 10 лет; средняя повторяемость маловодного года 90%-ной обеспеченности также имеет повторяемость 10 раз в 100 лет, так как в 10 % случаев среднегодовые расходы будут иметь меньшие значения.
Годы определенной водности имеют соответствующее наименование. В табл. 1 для них приведены обеспеченность и повторяемость.

Связь между повторяемостью у и обеспеченностью р может быть записана в таком виде:
для многоводных лет

для маловодных лет

Все гидротехнические сооружения для регулирования русла или стока рек рассчитываются по водности года определенной обеспеченности, гарантирующей надежность и безаварийность работы сооружений.
Расчетный процент обеспеченности гидрологических показателей регламентируется «Инструкцией по проектированию лесосплавных предприятий».
Кривые обеспеченности и способы их расчета. В практике гидрологических расчетов применяются два способа построения кривых обеспеченности: эмпирический и теоретический.
Обоснованный расчет эмпирической кривой обеспеченности можно выполнить только при числе наблюдений за стоком реки более 30...40 лет.
При расчете обеспеченности членов гидрологического ряда для годового, сезонного и минимального стоков можно использовать формулу Н.Н. Чегодаева:

Для определения обеспеченности максимальных расходов воды применяют зависимость С.Н. Крицкого и М.Ф. Менкеля:

Порядок построения эмпирической кривой обеспеченности:
1) все члены гидрологического ряда записываются в убывающем по абсолютной величине порядке;
2) каждому члену ряда присваивается порядковый номер, начиная с единицы;
3) определяется обеспеченность каждого члена убывающего ряда по формулам (23) или (24).
По результатам расчета строят кривую обеспеченности, подобную той, которая представлена на рис. 8б.
Ho эмпирические кривые обеспеченности обладают рядом недостатков. Даже при достаточно длительном периоде наблюдений нельзя гарантировать, что этот интервал охватывает все возможные максимальные и минимальные значения стока реки. Расчетные значения обеспеченности стока 1...2 % не надежны, так как достаточно обоснованные результаты можно получить только при числе наблюдений за 50...80 лет. В связи с этим, при ограниченном периоде наблюдений за гидрологическим режимом реки, когда число лет менее тридцати, или при полном их отсутствии, строят теоретические кривые обеспеченности.
Исследования показали, что распределение случайных гидрологических величин наиболее хорошо подчиняется уравнению кривой Пирсона III типа, интегральное выражение которой является кривой обеспеченности. Пирсоном получены таблицы для построения этой кривой. Кривая обеспеченности может быть построена с достаточной для практики точностью по трем параметрам: среднеарифметическому значению членов ряда, коэффициентам вариации и асимметрии.
Среднеарифметическое значение членов ряда вычисляется по формуле (19).
Если число лет наблюдений менее десяти или наблюдения вообще не проводились, то среднегодовой расход воды Qгcp принимают равным среднему многолетнему Q0, то есть Qгcp = Q0. Величина Q0 может быть установлена при помощи модульного коэффициента K0 или модуля стока M0, определенного по картам изолиний, так как Q0 = M0*F.
Коэффициент вариации Cv характеризует изменчивость стока или степень колебания его относительно среднего значения в данном ряду, он численно равен отношению среднеквадратической ошибки к среднеарифметическому значению членов ряда. На величину коэффициента Cv оказывают существенное влияние климатические условия, тип питания реки и гидрографические особенности ее бассейна.
При наличии данных наблюдений не менее чем за десять лет коэффициент вариации годового стока вычисляют по формуле

Величина Cv меняется в широких пределах: от 0,05 до 1,50; для лесосплавных рек Cv = 0,15...0,40.
При коротком периоде наблюдений за стоком реки или при их полном отсутствии коэффициент вариации можно установить по формуле Д.Л. Соколовского:

В гидрологических расчетах для бассейнов с F > 1000 км2 также используют карту изолиний коэффициента Cv, если суммарная площадь озер не более 3 % площади водосбора.
В нормативном документе СНиП 2.01.14-83 для определения коэффициента вариации неизученных рек рекомендуется обобщенная формула К.П. Воскресенского:

Коэффициент асимметрии Cs характеризует несимметричность ряда рассматриваемой случайной величины относительно ее среднего значения. Чем меньшая часть членов ряда превышает величину нормы стока, тем больше величина коэффициента асимметрии.
Коэффициент асимметрии может быть рассчитан по формуле

Однако эта зависимость дает удовлетворительные результаты только при числе лет наблюдений n > 100.
Коэффициент асимметрии неизученных рек устанавливается по соотношению Cs/Cv для рек-аналогов, а при отсутствии достаточно хороших аналогов принимаются средние отношения Cs/Cv по рекам данного района.
Если невозможно установить отношение Cs/Cv по группе рек-аналогов, то значения коэффициента Cs для неизученных рек принимаются по нормативным соображениям: для бассейнов рек с коэффициентом озерности более 40 %

для зон избыточного и переменного увлажнения - арктической, тундровой, лесной, лесостепной, степной

Для построения теоретической кривой обеспеченности по приведенным выше трем ее параметрам - Q0, Cv и Cs - пользуются методом, предложенным Фостером - Рыбкиным.
Из выше приведенного соотношения для модульного коэффициента (17) следует, что средняя многолетняя величина стока заданной обеспеченности - Qp%, Мр%, Vp%, hp% - может быть рассчитана по формуле

Модульный коэффициент стока года заданной обеспеченности определяется по зависимости

Определив ряд любых характеристик стока за многолетний период различной обеспеченности, можно по этим данным построить и кривую обеспеченности. При этом все расчеты целесообразно вести в табличной форме (табл. 3 и 4).

Способы расчета модульных коэффициентов. Для решения многих водохозяйственных задач необходимо знать распределение стока по сезонам или месяцам года. Внутригодовое распределение стока выражают в виде модульных коэффициентов месячного стока, представляющих отношения среднемесячных расходов Qм.ср к среднегодовому Qг.ср:

Внутригодовое распределение стока различно для лет разной водности, поэтому в практических расчетах определяют модульные коэффициенты месячного стока для трех характерных лет: многоводного года 10%-ной обеспеченности, среднего по водности - 50%-ной обеспеченности и маловодного - 90%-ной обеспеченности.
Модульные коэффициенты месячного стока можно установить по фактическим знаниям среднемесячных расходов воды при наличии данных наблюдений не менее чем за 30 лет, по реке-аналогу или по типовым таблицам распределения месячного стока, которые составлены для разных бассейнов рек.
Среднемесячные расходы воды определяют, исходя из формулы

(33): Qм.cp = KмQг.ср


Максимальные расходы воды. При проектировании плотин, мостов, запаней, мероприятий по укреплению берегов необходимо знать максимальные расходы воды. В зависимости от типа питания реки за расчетный максимальный расход может быть принят максимальный расход воды весеннего половодья или осеннего паводка. Расчетная обеспеченность этих расходов определяется классом капитальности гидросооружений и регламентируется соответствующими нормативными документами. Например, лесосплавные плотины Ill класса капитальности рассчитываются на пропуск максимального расхода воды 2%-ной обеспеченности, а IV класса - 5%-ной обеспеченности, берегоукрепительные сооружения не должны разрушаться при скоростях течения, соответствующих максимальному расходу воды 10%-ной обеспеченности.
Способ определения величины Qmax зависит от степени изученности реки и от различия между максимальными расходами весеннего половодья и паводка.
Если имеются данные наблюдений за период более 30...40 лет, то строят эмпирическую кривую обеспеченности Qmax, а при меньшем периоде - теоретическую кривую. В расчетах принимают: для весеннего половодья Cs = 2Сv, а для дождевых паводков Cs = (3...4)CV.
Поскольку наблюдения за режимом рек ведутся на водомерных постах, то обычно кривую обеспеченности строят для этих створов, а максимальные расходы воды в створах расположения сооружений рассчитывают по соотношению

Для равнинных рек максимальный расход воды весеннего половодья заданной обеспеченности р% вычисляют по формуле

Значения параметров n и K0 определяются в зависимости от природной зоны и категории рельефа по табл. 5.

I категория - реки, расположенные в пределах холмистых и платообразных возвышенностей - Среднерусская, Струго-Красненская, Судомская возвышенности, Среднесибирское плоскогорье и др.;
II категория - реки, в бассейнах которых холмистые возвышенности чередуются с понижениями между ними;
III категория - реки, большая часть бассейнов которых располагается в пределах плоских низменностей - Молого-Шекснинская, Мещерская, Белорусское полесье, Приднестровская, Васюганская и др.
Значение коэффициента μ устанавливается в зависимости от природной зоны и процента обеспеченности по табл. 6.

Параметр hp% вычисляют по зависимости

Коэффициент δ1 рассчитывают (при h0 > 100 мм) по формуле

Коэффициент δ2 определяют по соотношению

Расчет максимальных расходов воды весеннего половодья ведется в табличной форме (табл. 7).

Уровни высоких вод (УВВ) расчетной обеспеченности устанавливаются по кривым расходов воды для соответствующих значений Qmaxp% и расчетных створов.
При приближенных расчетах максимальный расход воды дождевого паводка может быть установлен по зависимости

В ответственных расчетах определение максимальных расходов воды следует проводить в соответствии с указаниями нормативных документов.

Расход воды - это объем воды, протекающий через поперечное сечение реки в единицу времени. Обычно расход воды измеряется в кубических метрах в секунду (м3/с). Средний многолетний расход воды самых больших рек республики, например Иртыша, составляет 960 мі/с, а Сырдарьи - 730 мі/сек.

Расход воды в реках за год называют годовым стоком. Например, годовой сток Иртыша - 28000 млн. мі. Сток воды определяет ресурсы поверхностных вод. Сток распространен по территории Казахстана неравномерно, объем поверхностного стока - 59 кмі. Величина годового стока рек зависит, прежде всего, от климата. В равнинных районах Казахстана годовой сток в основном зависит от характера распределения снежного покрова и запасов воды перед таянием снега. Дождевая вода почти полностью уходит на увлажнение верхнего слоя почвы и испарение.

Основным фактором, влияющим на течение горных рек, является рельеф. По мере увеличения абсолютной высоты количество годовых атмосферных осадков возрастает. Коэффициент увлажнения на севере Казахстана составляет около единицы, и годовой сток высокий, и больше воды в реке. Величина стока на квадратный километр на территории Казахстана составляет в среднем 20000 мі. Наша республика по величине стока рек опережает только Туркмению. Сток рек изменяется по сезонам года. Равнинные реки в зимние месяцы дают 1% годового стока.

Для регулирования речных стоков строят водохранилища. Водные ресурсы одинаково используются и зимой, и летом для нужд в народного хозяйства. В нашей стране имеется 168 водохранилищ, самые крупные из них - Бухтарминское и Капчагайское.

Весь переносимый рекой твердый материал называют твердым стоком. От его объема зависит мутность воды. Ее измеряют в граммах вещества, содержащегося в 1 мі воды. Мутность равнинных рек составляет 100 г/мі, а в среднем и нижнем течениях - 200 г/мі. Реки Западного Казахстана выносят большое количество рыхлых пород, мутность достигает 500-700 г/мі. Мутность горных рек увеличивается вниз по течению. Мутность в реке 650 г/мі, в нижнем течении Чу - 900 г/мі, в Сырдарье 1200 г/мі.

Питание и режим рек

Казахстанские реки имеют различное питание: снеговое, дождевое, ледниковое и подземными водами. Рек с одинаковым питанием не существует. Реки равнинной части республики по характеру питания делятся на два типа: снегово-дождевого и преимущественно снегового питания.

К рекам снегово-дождевого питания относятся реки, расположенные в лесостепной и степной зонах. Главные этого типа - Ишим и Тобол - весной выходят из берегов, на апрель-июль приходится 50% годового стока. Реки сначала питаются талыми водами, потом дождевыми. С низкий уровень воды наблюдается в январе, в это время питаются подземными водами.

Реки второго типа имеют исключительно весенний сток (85-95% годового стока). К этому типу питания относятся реки, расположенные в пустынной и полупустынной зонах, - это Нура, Урал, Сагыз, Тургай и Сарысу. Подъем воды в этих реках наблюдается первой половине весны. Основной источник питания это снег. Уровень воды весной резко поднимается во время таяния снегов. В странах СНГ такой режим рек называют казахстанским типом. Например, по реке Нура за короткое время весной протекает 98% ее годового стока. Самый низкий уровень воды бывает летом. Некоторые реки совсем пересыхают. После осенних дождей уровень воды в pеке немного повышается, а зимой снова понижается.

В высокогорных районах Казахстана реки имеют смешанный тип питания, но преобладает снегово-ледниковый. Это реки Сырдарья, Или, Каратал и Иртыш. Уровень в них поднимается в конце весны. Реки Алтайских гор весной выходят из своих берегов. Но уровень воды в них остается высоким до середины лета, в связи с неодновременным таянием снега.

Реки Тянь-Шаня, Жунгарского Алатау полноводны в теплое время года, т.е. весной и летом. Это объясняется тем, что в этих горах таяние снегов растягивается до осени. Весной таяние снега начинается с нижнего пояса, затем в течение лета тают снега средней высоты и ледники высокогорья. В стоке горных рек доля дождевых вод незначительна (5-15%), а в низкогорьях она повышается до 20-30%.

Равнинные реки Казахстана из-за маловодности и медленного течения с наступлением зимы быстро замерзают и в конце ноября покрываются ледовым покровом. Толщина льда доходит до 70-90 см. В морозную зиму толщина льда на севере республики достигает 190 см, а в южных реках 110 см. Ледовый покров рек сохраняется в течение 24 месяцев, начинает таять на юге в начале апреля, а на севере - во второй половине апреля.

Ледниковый режим высокогорных рек другой. В горных реках в связи с сильным течением и питанием грунтовыми водами не бывает устойчивого ледового покрова. Лишь в отдельных местах наблюдаются береговые льды.Казахстанские реки постепенно размывают горные породы. Реки текут, углубляя свое дно, разрушая свои берега, перекатывая мелкие и крупные камни. В равнинных частях Казахстана течение рек медленное, и оно переносит твердого материалов.

Для определения стока реки в зависимости от площади бассейна, высота слоя осадков и т.д. в гидрологии применяются следующие величины: сток реки, модуль стока и коэффициент стока.

Стоком реки называют расход воды за продолжительный период времени, например, за сутки, декаду, месяц, год.

Модулем стока называют выраженное в литрах (у) количество воды, стекающее в среднем в 1 секунду с площади бассейна реки в 1 км 2:

Коэффициентом стока называют отношение стока воды в реке (Qr)к количеству выпавших осадков (М) на площадь бассейна реки за одно и то же время, выраженное в процентах:

а - коэффициент стока в процентах, Qr - величина годового стока в кубических метрах; М - годовое количество выпавших осадков в миллиметрах.

Для определения модуля стока нужно знать расход воды и площадь бассейна выше створа, по которому определялся расход воды данной реки. Площадь бассейна реки можно измерить по карте. Для этого применяют следующие способы:

  • 1) планирование
  • 2) разбивку на элементарные фигуры и вычисление их площадей;
  • 3) измерение площади посредством палетки;
  • 4) вычисление площадей по геодезическим таблицам

Студентам легче всего использовать третий способ и проводить измерение площади посредством палетки, т.е. прозрачной бумаги (кальки) с нанесенными на нее квадратиками. Имея карту исследуемого района карты в определённом масштабе, можно изготовить палетку квадратами, соответствующими масштабу карты. Предварительно следует оконтурить бассейн данной реки выше определенного створа, а затем наложить карту на палетку, на которую перенести контур бассейна. Для определения площади требуется сосчитать сначала число полных квадратиков, расположенных внутри контура, а затем сложить данные квадратики, частично покрывающие бассейн данной реки. Сложив квадратики и умножив полученное число на площадь одного квадратика, узнаем площадь бассейна реки выше данного створа.

Q - расход воды, л. Для перевода кубических метров в литры умножаем расход на 1000, S площадь бассейна, км 2.

Для определения коэффициента стока реки нужно знать годовой сток реки и объем воды, выпавшей на площади данного бассейна реки. Объем воды, выпавшей на площади данного бассейна легко определить. Для этого нужно площадь бассейна, выраженную в квадратных километрах, умножить на толщину слоя выпавших осадков (тоже в километрах). Например, толщина будет равна р если осадков на данной площади выпало за год 600 мм, то 0" 0006 км и коэффициент стока будет равен:

Qr - годовой сток реки, а М- площадь бассейна; умножаем дробь на 100 для определения коэффициента стока в процентах.

Определение режима стока реки. Для характеристики режима стока реки нужно установить:

a) каким изменениям по сезонам подвергается уровень воды (река с постоянным уровнем, сильно мелеющая летом пересыхающая, теряющая воду в понорах и исчезающая с поверхности);

b) время половодья, если оно бывает;

c) высоту воды во время половодья (если нет самостоятельны наблюдений, то по опросным сведениям);

d) продолжительность замерзания реки, если это бывает (по своим личным наблюдениям или же по сведениям, полученным путем опроса).

Определение качества воды. Для определения качества воды нужно узнать, мутная она или прозрачная, годная для питья или нет. Прозрачность воды определяется белым диском (диск Секки) диаметром приблизительно 30 см, подведенным на размеченном лине или приделанным к размеченному шесту. Если диск опускается на лине, то внизу, под диском, прикрепляется груз, чтобы диск не сносило течением. Глубина, на которой этот диск становится невидимым, и является показателем прозрачности воды. Можно диск сделать из фанеры и окрасить его в белый цвет, но тогда груз нужно подвесить достаточно тяжелый, чтобы он вертикально опускался в воду, а сам диск сохранял горизонтальное положение; или фанерный лист можно заменить тарелкой.

Определение температуры воды в реке. Температуру воды в реке определяют родниковым термометром, как на поверхности воды, так и на разных глубинах. Держать термометр в воде нужно в течение 5 минут. Родниковый термометр можно заменить обычным ванновым термометром в деревянной оправе, но, для того чтобы он опускался в воду на разные глубины, следует привязать к нему груз.

Можно определить температуру воды в реке при помощи батометров: батометра-тахиметра и бутылочного батометра. Батометр-тахиметр состоит из гибкого резинового баллона объемом около 900 см 3; в него вставлена трубочка диаметром б мм. Батометр-тахиметр закрепляют на штанге и опускают на разные глубины для взятия воды.

Полученную воду выливают в стакан и определяют ее температуру.

Батометр-тахиметр нетрудно сделать самому студенту. Для этого нужно купить небольшую резиновую камеру, на нее надеть и привязать резиновую трубочку диаметром б мм. Штангу можно заменить деревянным шестом, разделив его на сантиметры. Штангу с батометром-тахиметром нужно опускать вертикально в воду до определенной глубины, так чтобы отверстие батометра-тахиметра было направлено по течению. Опустив на определённую глубину, штангу необходимо повернуть на 180 и держать примерно 100 секунд для того чтобы набрать воды после чего опять повернуть штангу на 180°. сток вода режим река

Вынимать ее следует так, чтобы из батометра вода не вылилась. Перелив воду в стакан, определяют термометром температуру воды на данной глубине.

Полезно одновременно измерить термометром-пращом температуру воздуха и сравнить её с температурой речной воды, записав обязательно время наблюдения. Иногда разность температуры достигает нескольких градусов. Например, в 13 часов температура воздуха 20, температура воды в реке 18°.

Исследование на определенных участках на определенных характера русла реки. При исследовании участках характера русла реки необходимо:

a) отметить главнейшие плесы и перекаты, определить их глубины;

b) при обнаружении порогов и водопадов определить высоту падения;

c) зарисовать и по возможности измерить острова, отмели, осередки, побочные протоки;

d) собрать сведения, в каких местах река размывает и на местах, особенно сильно размываемых, определить характер размываемых пород;

e) изучить характер дельты, если исследуется приустьевой участок реки, и нанести ее на глазомерный план; посмотреть, соответствуют ли отдельные рукава изображенным на карте.

Общая характеристика реки и ее и с пользование. При общей характеристике реки нужно выяснить:

a) в какой части река является главным образом эродирующей и в какой аккумулирующей;

b) степень меандрирования.

Для определения степени меандрирования нужно узнать коэффициент извилистости, т.е. отношение длины реки на изучаемом участке к кратчайшему расстоянию между определенными пунктами исследуемой части реки; например, река А имеет длину 502 км, а кратчайшее расстояние между истоком и устьем всего 233 км, следовательно, коэффициент извилистости:

К - коэффициент извилистости, L - длина реки, 1 - кратчайшее расстояние между истоком и устьем

Изучение меандров имеет большое значение для лесосплава и судоходства;

c) Не отжимания реки конусы выноса, образуемые в устьях притоков реки или производят временные потоки.

Узнать, как используется река для судоходства и сплава леса; если рука несудоходная, то выяснить почему, служит препятствием (мелководная, порожистая, есть ли водопады), есть ли на реке плотины и другие искусственные сооружения; не используется ли река для полива; какие преобразования нужно сделать для использования реки в народном хозяйстве.

Определение питания реки. Нужно выяснить виды питания реки: грунтовое, дождевое, от таяния снега озерное или болотное. Например, р. Клязьма имеет питание, грунтовое, снеговое и дождевое, из них грунтовое питание составляет 19 %, снеговое - 55 % и дождевое - 26 %.

Река изображена на рисунке 2.

м 3

Вывод: В ходе данного практического занятия, в результате расчетов были получены следующие значения, характеризующие сток реки:

Модуль стока?= 177239 л/с*км 2

Коэффициент стока б=34,5 %.

Водные ресурсы - одно из самых главных богатств Земли. Но они очень ограничены. Ведь хотя ¾ поверхности планеты заняты водой, большая ее часть - это соленый Мировой океан. Человеку же нужна пресная вода.

Ее ресурсы также большей частью недоступны людям, так как сосредоточены в ледниках полярных и горных областей, в болотах, под землей. Лишь незначительная часть воды удобна для использования человеком. Это пресные озера и реки. И если в первых вода задерживается на десятки лет, то во вторых она обновляется примерно раз в две недели.

Речной сток: что означает это понятие?

Этот термин имеет два главных значения. Во-первых, под ним подразумевается весь объем воды, стекающий в море или океан в течение года. В этом состоит его различие с другим термином «расход реки», когда расчет ведется на сутки, часы или секунды.

Второе значение - количество воды, растворенных и взвешенных частиц, выносимого всеми реками, протекающими в данном регионе: материке, стране, районе.

Выделяется поверхностный и подземный речной сток. В первом случае имеются в виду воды, стекающие в реку по А подземный - это родники и ключи, бьющие под руслом. Они также пополняют запасы воды в реке, а иногда (во время летней межени или когда поверхность скована льдом) являются ее единственным источником питания. Вместе эти два вида составляют полный речной сток. Когда говорят о водных ресурсах, имеют в виду именно его.

Факторы, влияющие на речной сток

Этот вопрос достаточно уже изучен. Можно назвать два основных фактора: рельеф местности и ее климатические условия. Кроме них, выделяется еще несколько дополнительных, в том числе деятельность человека.

Главная причина формирования речного стока - это климат. Именно от соотношения температур воздуха и осадков зависит, какова испаряемость в данной местности. Образование рек возможно только при избыточном увлажнении. Если же испаряемость превышает количество выпавших осадков, поверхностного стока не будет.

От климата зависит питание рек, их водный и ледовый режим. обеспечивают пополнение запасов влаги. Низкие температуры снижают испарение, а при промерзании грунтов сокращается поступление воды из подземных источников.

Рельеф оказывает влияние на величину водосборного бассейна реки. От формы земной поверхности зависит, в какую сторону и с какой скоростью будет стекать влага. Если же в рельефе будут замкнутые впадины, образуются не реки, а озера. Наклон местности и водопроницаемость пород влияют на соотношение между стекающей в водоемы и просачивающейся под землю частями выпавших осадков.

Значение рек для человека

Нил, Инд с Гангом, Тигр и Евфрат, Хуанхэ и Янцзы, Тибр, Днепр… Эти реки стали колыбелью для разных цивилизаций. С момента зарождения человечества они служили для него не только источником воды, но и каналами проникновения в новые неизведанные земли.

Благодаря речному стоку возможно орошаемое земледелие, которое кормит почти половину населения Земли. Большой расход воды означает и богатый гидроэнергетический потенциал. Ресурсы рек используются в промышленном производстве. Особенно водоемкими являются производство синтетических волокон и изготовление целлюлозы и бумаги.

Речной транспорт - не самый быстрый, но зато дешевый. Он лучше всего подходит для перевозки массовых грузов: леса, руды, нефтепродуктов и др.

Много воды забирается на коммунально-бытовые нужды. Наконец, реки имеют большое рекреационное значение. Это места отдыха, восстановления здоровья, источник вдохновения.

Самые полноводные реки мира

Самый большой объем речного стока - у Амазонки. Он составляет почти 7000 км 3 в год. И это неудивительно, ведь Амазонка полноводна весь год из-за того, что ее левые и правые притоки разливаются в разное время. К тому же, она собирает воды с территории размером почти с целый материк Австралия (более 7000 км 2)!

На втором месте африканская река Конго со стоком в 1445 км 3 . Расположенная в экваториальном поясе с каждодневными ливнями, она никогда не мелеет.

Следующие по ресурсам полного речного стока: Янцзы - самая длинная в Азии (1080 км 3), Ориноко (Южная Америка, 914 км 3), Миссисипи (Северная Америка, 599 км 3). Все три сильно разливаются во время дождей и представляют немалую угрозу для населения.

На 6 и 8 местах в этом списке великие сибирские реки - Енисей и Лена (624 и 536 км 3 соответственно), а между ними - южноамериканская Парана (551 км 3). Замыкают десятку еще одна южноамериканская река Токантинс (513 км 3) и африканская Замбези (504 км 3).

Водные ресурсы стран мира

Вода - источник жизни. Поэтому очень важно обладать ее запасами. Но они распределены по планете крайне неравномерно.

Обеспеченность стран ресурсами речного стока такова. В первой десятке наиболее богатых водой стран находятся Бразилия (8 233 км 3), Россия (4,5 тыс. км 3), США (более 3 тыс. км 3), Канада, Индонезия, Китай, Колумбия, Перу, Индия, Конго.

Слабо обеспечены территории, расположенные в тропическом сухом климате: Северная и Южная Африка, страны Аравийского полуострова, Австралия. Мало рек во внутриконтинентальных районах Евразии, поэтому среди малообеспеченных стран Монголия, Казахстан, среднеазиатские государства.

Если учитывается численность населения, пользующегося этой водой, показатели несколько меняются.

Обеспеченность ресурсами речного стока
Наибольшая Наименьшая
Страны

Обеспеченность

Страны

Обеспеченность

Французская Гвиана 609 тыс. Кувейт Менее 7
Исландия 540 тыс. Объединенные Арабские Эмираты 33,5
Гайана 316 тыс. Катар 45,3
Суринам 237 тыс. Багамы 59,2
Конго 230 тыс. Оман 91,6
Папуа Новая Гвинея 122 тыс. Саудовская Аравия 95,2
Канада 87 тыс. Ливия 95,3
Россия 32 тыс. Алжир 109,1

Густонаселенные страны Европы при полноводных реках оказываются уже не столь богаты пресной водой: Германия - 1326, Франция - 3106, Италия - 3052 м 3 на душу населения при среднем значении для всего мира - 25 тыс. м 3 .

Трансграничный сток и проблемы, связанные с ним

Многие реки пересекают территорию нескольких стран. В связи с этим возникают трудности в совместном использовании водных ресурсов. Особенно остра эта проблема в районах В них почти вся вода забирается на поля. А соседу ниже по течению может ничего и не достаться.

Например, принадлежащая в своем верхнем течении Таджикистану и Афганистану, а в среднем и нижнем - Узбекистану и Туркменистану, в последние десятилетия не доносит свои воды до Аральского моря. Только при добрососедских отношениях между соседними государствами ее ресурсы можно использовать с выгодой для всех.

Египет 100% речной воды получает из-за границы, и сокращение стока Нила из-за забора воды выше по течению может крайне отрицательно сказаться на состоянии сельского хозяйства страны.

К тому же, вместе с водой через границы стран «путешествуют» и различные загрязнители: мусор, стоки заводов, удобрения и пестициды, смытые с полей. Эти проблемы актуальны для стран, лежащих в бассейне Дуная.

Реки России

Наша страна богата крупными реками. Особенно много их в Сибири и на Дальнем Востоке: Обь, Енисей, Лена, Амур, Индигирка, Колыма и др. И речной сток самый большой именно в восточной части страны. К сожалению, пока используется лишь незначительная их доля. Часть идет для бытовых нужд, для работы промышленных предприятий.

Эти реки обладают огромным энергетическим потенциалом. Поэтому самые крупные гидроэлектростанции построены на сибирских реках. И незаменимы они как транспортные пути и для сплава леса.

Европейская часть России также богата реками. Крупнейшая из них - Волга, ее сток - 243 км 3 . Но здесь сосредоточено 80% населения и экономического потенциала страны. Поэтому нехватка водных ресурсов чувствительна, особенно в южной части. Сток Волги и некоторых ее притоков зарегулирован водохранилищами, на ней построен каскад ГЭС. Река со своими притоками является главной частью Единой глубоководной системы России.

В условиях нарастающего во всем мире водного кризиса Россия находится в выгодных условиях. Главное - не допускать загрязнения наших рек. Ведь, по мнению экономистов, чистая вода может стать более ценным товаром, чем нефть и другие полезные ископаемые.

Сток определенного участка суши измеряется показателями:

  • расходом воды - объемом воды, протекающим в единицу времени через живое сечение реки. Он обычно выражается в м3/с Среднесуточные расходы воды позволяют определить максимальные и минимальные расходы, а также объем стока воды за год с площади бассейна. Годовой сток - 3787 км а - 270 км3;
  • модулем стока. Им называется количество воды в литрах, стекающее в секунду с 1 км2 площади. Вычисляется он путем деления величины стока на площадь речного бассейна. Самый большой модуль имеют реки тундровой и ;
  • коэффициентом стока. Он показывает, какая доля осадков (в процентах) стекает в реки. Наиболее высокий коэффициент имеют реки тундровой и лесной зон (60-80%), в реках же районов он очень низок ( - 4%).

Стоком в реки сносятся рыхлые породы - продукты . Кроме того, (разрушительная) работа рек также делает их поставщиком рыхлых . При этом образуется твердый сток - масса взвешенных, влекомых по дну и растворенных веществ. Количество их зависит от энергии движущейся воды и от сопротивляемости пород размыву. Твердый сток делится на взвешенный и донный, но это понятие условно, так как при изменении скорости течения одна категория может быстро переходить в другую. При большой скорости донный твердый сток может передвигаться слоем мощностью до нескольких десятков сантиметров. Передвижения их происходят очень неравномерно, так как скорость у дна резко изменяется. Поэтому на дне реки могут образовываться песчаные и перекаты, затрудняющие судоходство. От величины зависит мутность реки, что, в свою очередь, характеризует интенсивность эрозионной деятельности в речном бассейне. В крупных системах рек твердый сток измеряется десятками миллионов тонн в год. Например, сток возвышенных наносов Амударьи - 94 млн. тонн в год, реки Волги - 25 млн. тонн в год, - 15 млн. тонн в год, - 6 млн. тонн в год, - 1500 млн. тонн в год, - 450 млн. тонн в год, Нила - 62 млн. тонн в год.

Величина стока зависит от целого ряда факторов:

  • прежде всего от . Чем больше осадков и меньше испаряемость, тем больше сток, и наоборот. Величина стока зависит от формы осадков и распределения их во времени. Дожди жаркого летнего периода дадут меньший сток, чем прохладного осеннего, так как очень велико испарение. Зимние осадки в форме снега не дадут поверхностного стока в холодные месяцы, он сосредоточен в короткий период весеннего половодья. При равномерном распределении осадков в году и сток является равномерным, а резкие сезонные изменения количества осадков и величины испаряемости обуславливают неравномерный сток. При затяжных дождях просачивание осадков в грунт больше, чем при ливневых дождях;
  • от местности. При подъеме масс по склонам гор они охлаждаются, так как встречаются с более холодными слоями , и водяной пар , поэтому здесь количество осадков увеличивается. Уже с незначительных возвышенностей сток больше, чем с прилегающих к ним . Так, на Валдайской возвышенности модуль стока равен 12, а на соседних низменностях - только 6. Еще больший объем стока в горах, модуль стока здесь от 25 до 75. На водоносность горных рек, кроме увеличения осадков с высотой, влияют еще уменьшение испарения в горах в связи с понижением и крутизна склонов. С возвышенных и горных территорий вода стекает быстро, а с равнинных медленно. По этим причинам равнинные реки имеют более равномерный режим (см. Реки), тогда как горные чутко и бурно реагируют на ;
  • от покрова. В зонах избыточного увлажнения почвы большую часть года насыщены водой и отдают ее рекам. В зонах недостаточного увлажнения в сезон таяния снега почвы способны впитать всю талую воду, поэтому сток в этих зонах слабый;
  • от растительного покрова. Исследования последних лет, проводимые в связи с насаждением лесных полос в , указывают на положительное влияние их на сток, так как он в лесных зонах значительнее, чем в степных;
  • от влияния . Оно различно в зонах избыточного и недостаточного увлажнения. В болота являются регуляторами стока, а в зоне их влияние отрицательное: они всасывают поверхностные и воды и испаряют их в атмосферу, тем самым нарушая как поверхностный, так и подземный сток;
  • от крупных проточных озер. Они являются мощным регулятором стока, правда, действие их локально.

Из приведенного выше краткого обзора факторов, влияющих на сток, следует, что величина его исторически изменчива.

Зоной самого обильного стока являются , максимальная величина его модуля здесь 1500 мм в год, а минимальная - около 500 мм в год. Здесь же сток распределен равномерно во времени. Самый большой годовой сток в .

Зоной минимального стока являются субполярные широты Северного полушария, охватывающие . Максимальная величина модуля стока здесь 200 мм в год и менее, причем наибольшее количество его приходится на весну и лето.

В полярных областях сток осуществляется , толщина слоя в переводе на воду приблизительно 80 мм в и 180 мм в .

На каждом материке есть площади, с которых сток осуществляется не в океан, а во внутренние водоемы - озера. Такие территории называются областями внутреннего стока или бессточными. Формирование этих областей связано с выпадением , а также с удаленностью внутриматериковых территорий от океана. Самые крупные площади бессточных областей приходятся на (40% от общей территории материка) и (29% от общей территории).