Линейные неравенства и системы неравенств. Неравенство

называется любая совокупность двух или более линейных неравенств, содержащих одну и туже неизвестную величину

Вот образцы подобных систем:

Промежуток пересечения двух лучей и есть наше решение. Следовательно решением данного неравенства выступают все х расположенные между двойкой и восьмеркой.

Ответ: х

Применение такого типа отображения решения системы неравенств иногда именуют методом крыш .

Определение: Пересечением двух множеств А и В называется такое третье множество, которое включает все элементы, входящих и в А и в В . Это смысл пересечения множеств произвольной природы. Нами сейчас детально рассматриваются числовые множества, поэтому при нахождении линейных неравенств такими множествами являются лучи - сонаправленные, противонаправленные и так далее.

Выясним на реальных примерах нахождение линейных систем неравенств, как определить пересечения множеств решений отдельных неравенств, входящих в систему.

Вычислим систему неравенств :

Поместим одну под другой две силовые прямые. На верхней нанесем те значения х, которые выполняют первое неравенство x >7 , а на нижней - которые выступают решением второго неравенства x >10 Соотнесем результаты числовых прямых, выясним, что оба неравенства будут удовлетворятся при x >10.

Ответ: (10;+∞).

Делаем по аналогии с первым образцом. На заданной числовой оси наносим все те значения х при которых существует первое неравенство системы , а на второй числовой оси, размещенной под первой, - все те значения х , при которых выполняется второе неравенство системы. Соотнесем эти два результата и определим, что оба неравенства одновременно будут выполнятся при всех значениях х расположенных между 7 и 10 с учетом знаков получаем 7<х≤10

Ответ: (7; 10].

Подобным образом решаются и нижеследующие системы неравенств.


В этой статье собрана начальная информация о системах неравенств. Здесь дано определение системы неравенств и определение решения системы неравенств. А также перечислены основные виды систем, с которыми наиболее часто приходится работать на уроках алгебры в школе, и приведены примеры.

Навигация по странице.

Что такое система неравенств?

Системы неравенств удобно определить аналогично тому, как мы вводили определение системы уравнений , то есть, по виду записи и смыслу, вложенному в нее.

Определение.

Система неравенств – это запись, представляющая собой некоторое число записанных друг под другом неравенств, объединенных слева фигурной скобкой, и обозначающая множество всех решений, являющихся одновременно решениями каждого неравенства системы.

Приведем пример системы неравенств. Возьмем два произвольных , например, 2·x−3>0 и 5−x≥4·x−11 , запишем их одно под другим
2·x−3>0 ,
5−x≥4·x−11
и объединим знаком системы – фигурной скобкой, в результате получим систему неравенств такого вида:

Аналогично дается представление о системах неравенств в школьных учебниках. Стоит отметить, что в них определения даются более узко: для неравенств с одной переменной или с двумя переменными .

Основные виды систем неравенств

Понятно, что можно составить бесконечно много различных систем неравенств. Чтобы не заблудиться в этом многообразии, их целесообразно рассматривать по группам, имеющим свои отличительные признаки. Все системы неравенств можно разбить на группы по следующим критериям:

  • по числу неравенств в системе;
  • по числу переменных, участвующих в записи;
  • по виду самих неравенств.

По числу неравенств, входящих в запись, различают системы двух, трех, четырех и т.д. неравенств. В предыдущем пункте мы привели пример системы , которая является системой двух неравенств. Покажем еще пример системы четырех неравенств .

Отдельно скажем, что нет смысла говорить о системе одного неравенства, в этом случае по сути речь идет о самом неравенстве, а не о системе.

Если смотреть на число переменных, то имеют место системы неравенств с одной, двумя, тремя и т.д. переменными (или, как еще говорят, неизвестными). Посмотрите на последнюю систему неравенств, записанную двумя абзацами выше. Это система с тремя переменными x , y и z . Обратите внимание, что ее два первых неравенства содержат не все три переменные, а лишь по одной из них. В контексте этой системы их стоит понимать как неравенства с тремя переменными вида x+0·y+0·z≥−2 и 0·x+y+0·z≤5 соответственно. Заметим, что в школе основное внимание уделяется неравенствам с одной переменной.

Осталось обговорить, какие виды неравенств участвуют в записи систем. В школе в основном рассматривают системы двух неравенств (реже – трех, еще реже - четырех и более) с одной или двумя переменными, причем сами неравенства обычно являются целыми неравенствами первой или второй степени (реже – более высоких степеней или дробно рациональными). Но не удивляйтесь, если в материалах по подготовке к ОГЭ столкнетесь с системами неравенств, содержащими иррациональные, логарифмические, показательные и другие неравенства. В качестве примера приведем систему неравенств , она взята из .

Что называется решением системы неравенств?

Введем еще одно определение, связанное с системами неравенств, - определение решения системы неравенств :

Определение.

Решением системы неравенств с одной переменной называется такое значение переменной, обращающее каждое из неравенств системы в верное , другими словами, являющееся решением каждого неравенства системы.

Поясним на примере. Возьмем систему двух неравенств с одной переменной . Возьмем значение переменной x , равное 8 , оно является решением нашей системы неравенств по определению, так как его подстановка в неравенства системы дает два верных числовых неравенства 8>7 и 2−3·8≤0 . Напротив, единица не является решением системы, так как при ее подстановке вместо переменной x первое неравенство обратится в неверное числовое неравенство 1>7 .

Аналогично можно ввести определение решения системы неравенств с двумя, тремя и большим числом переменных:

Определение.

Решением системы неравенств с двумя, тремя и т.д. переменными называется пара, тройка и т.д. значений этих переменных, которая одновременно является решением каждого неравенства системы, то есть, обращает каждое неравенство системы в верное числовое неравенство.

К примеру, пара значений x=1 , y=2 или в другой записи (1, 2) является решением системы неравенств с двумя переменными , так как 1+2<7 и 1−2<0 - верные числовые неравенства. А пара (3,5, 3) не является решением этой системы, так как второе неравенство при этих значениях переменных дает неверное числовое неравенство 3,5−3<0 .

Системы неравенств могут не иметь решений, могут иметь конечное число решений, а могут иметь и бесконечно много решений. Часто говорят о множестве решений системы неравенств. Когда система не имеет решений, то имеет место пустое множество ее решений. Когда решений конечное число, то множество решений содержит конечное число элементов, а когда решений бесконечно много, то и множество решений состоит из бесконечного числа элементов.

В некоторых источниках вводятся определения частного и общего решения системы неравенств, как, например, в учебниках Мордковича . Под частным решением системы неравенств понимают ее одно отдельно взятое решение. В свою очередь общее решение системы неравенств - это все ее частные решения. Однако в этих терминах есть смысл лишь тогда, когда требуется особо подчеркнуть, о каком решении идет речь, но обычно это и так понятно из контекста, поэтому намного чаще говорят просто «решение системы неравенств».

Из введенных в этой статье определений системы неравенств и ее решений следует, что решение системы неравенств представляет собой пересечение множеств решений всех неравенств этой системы.

Список литературы.

  1. Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  2. Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  3. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
  4. Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.
  5. ЕГЭ -2013. Математика: типовые экзаменационные варианты: 30 вариантов / под ред. А. Л. Семенова, И. В. Ященко. – М.: Издательство «Национальное образование», 2012. – 192 с. – (ЕГЭ-2013. ФИПИ – школе).

Решение неравенства с двумя переменными , а тем более системы неравенств с двумя переменными , представляется достаточно сложной задачей. Однако есть простой алгоритм, который помогает легко и без особых усилий решать на первый взгляд очень сложные задачи такого рода. Попробуем в нем разобраться.

Пусть мы имеем неравенство с двумя переменными одного из следующих видов:

y > f(x); y ≥ f(x); y < f(x); y ≤ f(x).

Для изображения множества решений такого неравенства на координатной плоскости поступают следующим образом:

1. Строим график функции y = f(x), который разбивает плоскость на две области.

2. Выбираем любую из полученных областей и рассматриваем в ней произвольную точку. Проверяем выполнимость исходного неравенства для этой точки. Если в результате проверки получается верное числовое неравенство, то заключаем, что исходное неравенство выполняется во всей области, которой принадлежит выбранная точка. Таким образом, множеством решений неравенства – область, которой принадлежит выбранная точка. Если в результате проверки получается неверное числовое неравенство, то множеством решений неравенства будет вторая область, которой выбранная точка не принадлежит.

3. Если неравенство строгое, то границы области, то есть точки графика функции y = f(x), не включают в множество решений и границу изображают пунктиром. Если неравенство нестрогое, то границы области, то есть точки графика функции y = f(x), включают в множество решений данного неравенства и границу в таком случае изображают сплошной линией.
А теперь рассмотрим несколько задач на эту тему.

Задача 1.

Какое множество точек задается неравенством x · y ≤ 4?

Решение.

1) Строим график уравнения x · y = 4. Для этого сначала преобразуем его. Очевидно, что x в данном случае не обращается в 0, так как иначе мы бы имели 0 · y = 4, что неверно. Значит, можем разделить наше уравнение на x. Получим: y = 4/x. Графиком данной функции является гипербола. Она разбивает всю плоскость на две области: ту, что между двумя ветвями гиперболы и ту, что снаружи их.

2) Выберем из первой области произвольную точку, пусть это будет точка (4; 2).
Проверяем неравенство: 4 · 2 ≤ 4 – неверно.

Значит, точки данной области не удовлетворяют исходному неравенству. Тогда можем сделать вывод о том, что множеством решений неравенства будет вторая область, которой выбранная точка не принадлежит.

3) Так как неравенство нестрогое, то граничные точки, то есть точки графика функции y = 4/x, рисуем сплошной линией.

Закрасим множество точек, которое задает исходное неравенство, желтым цветом (рис. 1).

Задача 2.

Изобразить область, заданную на координатной плоскости системой
{ y > x 2 + 2;
{y + x > 1;
{ x 2 + y 2 ≤ 9.

Решение.

Строим для начала графики следующих функций (рис. 2) :

y = x 2 + 2 – парабола,

y + x = 1 – прямая

x 2 + y 2 = 9 – окружность.

1) y > x 2 + 2.

Берем точку (0; 5), которая лежит выше графика функции.
Проверяем неравенство: 5 > 0 2 + 2 – верно.

Следовательно, все точки, лежащие выше данной параболы y = x 2 + 2, удовлетворяют первому неравенству системы. Закрасим их желтым цветом.

2) y + x > 1.

Берем точку (0; 3), которая лежит выше графика функции.
Проверяем неравенство: 3 + 0 > 1 – верно.

Следовательно, все точки, лежащие выше прямой y + x = 1, удовлетворяют второму неравенству системы. Закрасим их зеленой штриховкой.

3) x 2 + y 2 ≤ 9.

Берем точку (0; -4), которая лежит вне окружности x 2 + y 2 = 9.
Проверяем неравенство: 0 2 + (-4) 2 ≤ 9 – неверно.

Следовательно, все точки, лежащие вне окружности x 2 + y 2 = 9, не удовлетворяют третьему неравенству системы. Тогда можем сделать вывод о том, что все точки, лежащие внутри окружности x 2 + y 2 = 9, удовлетворяют третьему неравенству системы. Закрасим их фиолетовой штриховкой.

Не забываем о том, что если неравенство строгое, то соответствующую граничную линию следует рисовать пунктиром. Получаем следующую картинку (рис. 3) .

(рис. 4) .

Задача 3.

Изобразить область, заданную на координатной плоскости системой:
{x 2 + y 2 ≤ 16;
{x ≥ -y;
{x 2 + y 2 ≥ 4.

Решение.

Строим для начала графики следующих функций:

x 2 + y 2 = 16 – окружность,

x = -y – прямая

x 2 + y 2 = 4 – окружность (рис. 5) .

Теперь разбираемся с каждым неравенством в отдельности.

1) x 2 + y 2 ≤ 16.

Берем точку (0; 0), которая лежит внутри окружности x 2 + y 2 = 16.
Проверяем неравенство: 0 2 + (0) 2 ≤ 16 – верно.

Следовательно, все точки, лежащие внутри окружности x 2 + y 2 = 16, удовлетворяют первому неравенству системы.
Закрасим их красной штриховкой.

Берем точку (1; 1), которая лежит выше графика функции.
Проверяем неравенство: 1 ≥ -1 – верно.

Следовательно, все точки, лежащие выше прямой x = -y, удовлетворяют второму неравенству системы. Закрасим их синей штриховкой.

3) x 2 + y 2 ≥ 4.

Берем точку (0; 5), которая лежит вне окружности x 2 + y 2 = 4.
Проверяем неравенство: 0 2 + 5 2 ≥ 4 – верно.

Следовательно, все точки, лежащие вне окружности x 2 + y 2 = 4, удовлетворяют третьему неравенству системы. Закрасим их голубым цветом.

В данной задаче все неравенства нестрогие, значит, все границы рисуем сплошной линией. Получаем следующую картинку (рис. 6) .

Искомая область – это область, где все три раскрашенных области пересекаются друг с другом (рис 7) .

Остались вопросы? Не знаете, как решить систему неравенств с двумя переменными?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Системе неравенств.
Пример 1 . Найти область определения выражения
Решение. Под знаком квадратного корня должно находиться неотрицательное число, значит, должны одновременно выполняться два неравенства: В таких случаях говорят, что задача сводится к решению системы неравенств

Но с такой математической моделью (системой неравенств) мы еще не встречались. Значит, решение примера мы пока не в состоянии довести до конца.

Неравенства, образующие систему, объединяются фигурной скобкой (так же обстоит дело и в системах уравнений). Например, запись

означает, что неравенства 2х - 1 > 3 и Зх - 2 < 11 образуют систему неравенств.

Иногда используется запись системы неравенств в виде двойного неравенства. Например, систему неравенств

можно записать в виде двойного неравенства 3<2х-1<11.

В курсе алгебры 9-го класса мы будем рассматривать только системы из двух неравенств.

Рассмотрим систему неравенств

Можно подобрать несколько ее частных решений, например х = 3, х = 4, х = 3,5. В самом деле, при х = 3 первое неравенство принимает вид 5 > 3, а второе - вид 7 < 11. Получились два верных числовых неравенства, значит, х = 3 - решение системы неравенств. Точно так же можно убедиться в том, что х = 4, х = 3,5 - решения системы неравенств.

В то же время значение х = 5 не является решением системы неравенств. При х = 5 первое неравенство принимает вид 9 > 3 - верное числовое неравенство, а второе - вид 13 < 11- неверное числовое неравенство .
Решить систему неравенств - значит найти все ее частные решения. Ясно, что такое угадывание, которое продемонстрировано выше, - не метод решения системы неравенств. В следующем примере мы покажем, как обычно рассуждают при решении системы неравенств.

Пример 3. Решить систему неравенств:

Р е ш е н и е.

а) Решая первое неравенство системы, находим 2х > 4, х > 2; решая второе неравенство системы, находим Зх < 13 Отметим эти промежутки на одной координатной прямой , использовав для выделения первого промежутка верхнюю штриховку, а для второго - нижнюю штриховку (рис. 22). Решением системы неравенств будет пересечение решений неравенств системы, т.е. промежуток, на котором обе штриховки совпали. В рассматриваемом примере получаем интервал
б) Решая первое неравенство системы, находим х > 2; решая второе неравенство системы, находим Отметим эти промежутки на одной координатной прямой, использовав для первого промежутка верхнюю штриховку, а для второго - нижнюю штриховку (рис. 23). Решением системы неравенств будет пересечение решений неравенств системы, т.е. промежуток, на котором обе штриховки совпали. В рассматриваемом примере получаем луч


в) Решая первое неравенство системы, находим х < 2; решая второе неравенство системы, находим Отметим эти промежутки на одной координатной прямой, использовав для первого промежутка верхнюю штриховку, а для второго - нижнюю штриховку (рис. 24). Решением системы неравенств будет пересечение решений неравенств системы, т.е. промежуток, на котором обе штриховки совпали. Здесь такого промежутка нет, значит, система неравенств не имеет решений.



Обобщим рассуждения, проведенные в рассмотренном примере. Предположим, что нам нужно решить систему неравенств


Пусть, например, интервал (а, b) является решением неравенства fх 2 > g(х), а интервал (с, d) - решением неравенства f 2 (х) > s 2 (х). Отметим эти промежутки на одной координатной прямой, использовав для первого промежутка верхнюю штриховку, а для второго - нижнюю штриховку (рис. 25). Решением системы неравенств является пересечение решений неравенств системы, т.е. промежуток, на котором обе штриховки совпали. На рис. 25 это интервал (с, b).


Теперь мы без особого труда сможем решить систему неравенств, которую получили выше, в примере 1:

Решая первое неравенство системы, находим х > 2; решая второе неравенство системы, находим х < 8. Отметим эти промежутки (лучи) на одной координатной прямой, использовав для первого -верхнюю, а для второго - нижнюю штриховку (рис. 26). Решением системы неравенств будет пересечение решений неравенств системы, т.е. промежуток, на котором обе штриховки совпали, - отрезок . Это - область определения того выражения, о котором шла речь в примере 1.


Разумеется, система неравенств не обязательно должна состоять из линейных неравенств, как было до сих пор; могут встретиться любые рациональные (и не только рациональные) неравенства. Технически работа с системой рациональных нелинейных неравенств, конечно, сложнее, но принципиально нового (по сравнению с системами линейных неравенств) здесь ничего нет.

Пример 4. Решить систему неравенств

Р е ш е н и е.

1) Решим неравенство Имеем
Отметим точки -3 и 3 на числовой прямой (рис. 27). Они разбивают прямую на три промежутка, причем на каждом промежутке выражение р(х) = (х- 3)(х + 3) сохраняет постоянный знак - эти знаки указаны на рис. 27. Нас интересуют промежутки, на которых выполняется неравенство р(х) > 0 (они заштрихованы на рис. 27), и точки, в которых выполняется равенство р(х) = 0, т.е. точки х = -3, х = 3 (они отмечены на рис. 2 7 темными кружочками). Таким образом, на рис. 27 представлена геометрическая модель решения первого неравенства.


2) Решим неравенство Имеем
Отметим точки 0 и 5 на числовой прямой (рис. 28). Они разбивают прямую на три промежутка, причем на каждом промежутке выражение <7(х) = х(5 - х) сохраняет постоянный знак - эти знаки указаны на рис. 28. Нас интересуют промежутки, на которых выполняется неравенство g(х) > О (заштриховано на рис. 28), и точки, в которых выполняется равенство g (х) - О, т.е. точки х = 0, х = 5 (они отмечены на рис. 28 темными кружочками). Таким образом, на рис. 28 представлена геометрическая модель решения второго неравенства системы.


3) Отметим найденные решения первого и второго неравенств системы на одной координатной прямой, использовав для решений первого неравенства верхнюю штриховку, а для решений второго - нижнюю штриховку (рис. 29). Решением системы неравенств будет пересечение решений неравенств системы, т.е. промежуток, на котором обе штриховки совпали. Таким промежутком является отрезок .


Пример 5. Решить систему неравенств:


Решение:

а) Из первого неравенства находим x >2. Рассмотрим второе неравенство. Квадратный трехчлен х 2 + х + 2 не имеет действительных корней, а его старший коэффициент (коэффициент при х 2) положителен. Значит, при всех х выполняется неравенство х 2 + х + 2>0,а потому второе неравенство системы не имеет решений. Что это значит для системы неравенств? Это значит, что система не имеет решений.

б) Из первого неравенства находим x > 2, а второе неравенство выполняется при любых значениях х. Что это значит для системы неравенств? Это значит, что ее решение имеет вид х>2, т.е. совпадает с решением первого неравенства.

О т в е т:

а) нет решений; б) x >2.

Этот пример является иллюстрацией для следующих полезных

1. Если в системе из нескольких неравенств с одной переменной одно неравенство не имеет решений, то и система не имеет решений.

2. Если в системе из двух неравенств с одной переменной одно неравенство выполняется при любых значениях переменной , то решением системы служит решение второго неравенства системы.

Завершая этот параграф, вернемся к приведенной в его начале задаче о задуманном числе и решим ее, как говорится, по всем правилам.

Пример 2 (см. с. 29). Задумано натуральное число. Известно, что если к квадрату задуманного числа прибавить 13, то сумма будет больше произведения задуманного числа и числа 14. Если же к квадрату задуманного числа прибавить 45, то сумма будет меньше произведения задуманного числа и числа 18. Какое число задумано?

Решение.

Первый этап. Составление математической модели.
Задуманное число х, как мы видели выше, должно удовлетворять системе неравенств


Второй этап. Работа с составленной математической моделью.Преобразуем первое неравенство системы к виду
х2- 14x+ 13 > 0.

Найдем корни трехчлена х 2 - 14x + 13: х 2 = 1, х 2 = 13. С помощью параболы у = х 2 - 14x + 13 (рис. 30) делаем вывод, что интересующее нас неравенство выполняется при x < 1 или x > 13.

Преобразуем второе неравенство системы к виду х2 - 18 2 + 45 < 0. Найдем корни трехчлена х 2 - 18x + 45: = 3, х 2 = 15.

Рассмотрим на примерах, как решить систему линейных неравенств.

4x - 19 \end{array} \right.\]" title="Rendered by QuickLaTeX.com">

Чтобы решить систему, нужно каждое из составляющих её неравенств. Только решение принято записывать не по отдельности, а вместе, объединяя их фигурной скобкой.

В каждом из неравенств системы неизвестные переносим в одну сторону, известные — в другую с противоположным знаком:

Title="Rendered by QuickLaTeX.com">

После упрощения обе части неравенства надо разделить на число, стоящее перед иксом. Первое неравенство делим на положительное число, поэтому знак неравенства не изменяется. Второе неравенство делим на отрицательное число, поэтому знак неравенства надо изменить на противоположный:

Title="Rendered by QuickLaTeX.com">

Решение неравенств отмечаем на числовых прямых:

В ответ записываем пересечение решений, то есть ту часть, где штриховка есть на обеих прямых.

Ответ: x∈[-2;1).

В первом неравенстве избавимся от дроби. Для этого обе части умножим почленно на наименьший общий знаменатель 2. При умножении на положительное число знак неравенства не изменяется.

Во втором неравенстве раскрываем скобки. Произведение суммы и разности двух выражений равно разности квадратов этих выражений. В правой части — квадрат разности двух выражений.

Title="Rendered by QuickLaTeX.com">

Неизвестные переносим в одну сторону, известные — в другую с противоположным знаком и упрощаем:

Обе части неравенства делим на число, стоящее перед иксом. В первом неравенстве делим на отрицательное число, поэтому знак неравенства изменяется на противоположный. Во втором — делим на положительное число, знак неравенства не изменяется:

Title="Rendered by QuickLaTeX.com">

Оба неравенства со знаком «меньше» (не существенно, что один знак — строго «меньше», другой — нестрогий, «меньше либо равно»). Можем не отмечать оба решения, а воспользоваться правилом « «. Меньшим является 1, следовательно, система сводится к неравенству

Отмечаем его решение на числовой прямой:

Ответ: x∈(-∞;1].

Раскрываем скобки. В первом неравенстве — . Оно равно сумме кубов этих выражений.

Во втором — произведение суммы и разности двух выражений, что равно разности квадратов. Поскольку здесь перед скобками стоит знак «минус», лучше их раскрытие провести в два этапа: сначала воспользоваться формулой, а уже потом раскрывать скобки, меняя знак каждого слагаемого на противоположный.

Переносим неизвестные в одну сторону, известные — в другую с противоположным знаком:

Title="Rendered by QuickLaTeX.com">

Оба знака «больше». Используя правило «больше большего», сводим систему неравенств к одному неравенству. Большее из двух чисел 5, следоветельно,

Title="Rendered by QuickLaTeX.com">

Решение неравенства отмечаем на числовой прямой и записываем ответ:

Ответ: x∈(5;∞).

Поскольку в алгебре системы линейных неравенств встречается не только в качестве самостоятельных заданий, но и в ходе решения разного рода уравнений, неравенств и т.д., важно вовремя усвоить эту тему.

В следующий раз мы рассмотрим примеры решения систем линейных неравенств в частных случаях, когда одно из неравенств не имеет решений либо его решением является любое число.

Рубрика: |