Теория вероятности вероятность произведения событий. Сложение вероятностей

При оценки вероятности наступления какого-либо случайного события очень важно предварительно хорошо представлять, зависит ли вероятность (вероятность события) наступления интересующего нас события от того, как развиваются остальные события. В случае классической схемы, когда все исходы равновероятны, мы уже можем оценить значения вероятности интересующего нас отдельного события самостоятельно. Мы можем сделать это даже в том случае, если событие является сложной совокупностью нескольких элементарных исходов. А если несколько случайных событий происходит одновременно или последовательно? Как это влияет на вероятность реализации интересующего нас события? Если я несколько раз кидаю игральную кость, и хочу, чтобы выпала "шестерка", а мне все время не везет, значит ли это, что надо увеличивать ставку, потому что, согласно теории вероятностей, мне вот-вот должно повезти? Увы, теория вероятности не утверждает ничего подобного. Ни кости, ни карты, ни монетки не умеют запоминать, что они продемонстрировали нам в прошлый раз. Им совершенно не важно, в первый раз или в десятый раз сегодня я испытываю свою судьбу. Каждый раз, когда я повторяю бросок, я знаю только одно: и на этот раз вероятность выпадения "шестерки" снова равна одной шестой. Конечно, это не значит, что нужная мне цифра не выпадет никогда. Это означает лишь то, что мой проигрыш после первого броска и после любого другого броска - независимые события. События А и В называются независимыми, если реализация одного из них никак не влияет на вероятность другого события. Например, вероятности поражения цели первым из двух орудий не зависят от того, поразило ли цель другое орудие, поэтому события "первое орудие поразило цель" и "второе орудие поразило цель" независимы. Если два события А и В независимы, и вероятность каждого из них известна, то вероятность одновременного наступления и события А, и события В (обозначается АВ) можно посчитать, воспользовавшись следующей теоремой.

Теорема умножения вероятностей для независимых событий

P(AB) = P(A)*P(B) вероятность одновременного наступления двух независимых событий равна произведению вероятностей этих событий.

Пример 1 . Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны: р 1 = 0,7; р 2 = 0,8. Найти вероятность попадания при одном залпе обоими орудиями одновременно.

как мы уже видели события А (попадание первого орудия) и В (попадание второго орудия) независимы, т.е. Р(АВ)=Р(А)*Р(В)=р1*р2=0,56. Что произойдет с нашими оценками, если исходные события не являются независимыми? Давайте немного изменим предыдущий пример.

Пример 2. Два стрелка на соревнованиях стреляют по мишеням, причем, если один из них стреляет метко, то соперник начинает нервничать, и его результаты ухудшаются. Как превратить эту житейскую ситуацию в математическую задачу и наметить пути ее решения? Интуитивно понятно, что надо каким-то образом разделить два варианта развития событий, составить по сути дела два сценария, две разные задачи. В первом случае, если соперник промахнулся, сценарий будет благоприятный для нервного спортсмена и его меткость будет выше. Во втором случае, если соперник прилично реализовал свой шанс, вероятность поразить мишень для второго спортсмена снижается. Для разделения возможных сценариев (их часто называют гипотезами) развития событий мы будем часто использовать схему "дерева вероятностей". Эта схема похожа по смыслу на дерево решений, с которым Вам, наверное, уже приходилось иметь дело. Каждая ветка представляет собой отдельный сценарий развития событий, только теперь она имеет собственное значение так называемой условной вероятности (q 1 , q 2 , q 1 -1, q 2 -1).

Эта схема очень удобна для анализа последовательных случайных событий. Остается выяснить еще один немаловажный вопрос: откуда берутся исходные значения вероятностей в реальных ситуациях? Ведь не с одними же монетами и игральными костями работает теория вероятностей? Обычно эти оценки берутся из статистики, а когда статистические сведения отсутствуют, мы проводим собственное исследование. И начинать его нам часто приходится не со сбора данных, а с вопроса, какие сведения нам вообще нужны.

Пример 3. Допустим, нам надо оценить в городе с населением в сто тысяч жителей объем рынка для нового товара, который не является предметом первой необходимости, например, для бальзама по уходу за окрашенными волосами. Рассмотрим схему "дерева вероятностей". При этом значение вероятности на каждой "ветке" нам надо приблизительно оценить. Итак, наши оценки емкости рынка:

1) из всех жителей города женщин 50%,

2) из всех женщин только 30% красят волосы часто,

3) из них только 10% пользуются бальзамами для окрашенных волос,

4) из них только 10% могут набраться смелости попробовать новый товар,

5) из них 70% обычно покупает все не у нас, а у наших конкурентов.


По закону перемножения вероятностей, определяем вероятность интересующего нас события А ={житель города покупает у нас этот новый бальзам}=0,00045. Умножим это значение вероятности на число жителей города. В результате имеем всего 45 потенциальных покупательниц, а если учесть, что одного пузырька этого средства хватает на несколько месяцев, не слишком оживленная получается торговля. И все-таки польза от наших оценок есть. Во-первых, мы можем сравнивать прогнозы разных бизнес-идей, на схемах у них будут разные "развилки", и, конечно, значения вероятности тоже будут разные. Во-вторых, как мы уже говорили, случайная величина не потому называется случайной, что она совсем ни от чего не зависит. Просто ее точное значение заранее не известно. Мы знаем, что среднее количество покупателей может быть увеличено (например, с помощью рекламы нового товара). Так что имеет смысл сосредоточить усилия на тех "развилках", где распределение вероятностей нас особенно не устраивает, на тех факторах, на которые мы в состоянии повлиять. Рассмотрим еще один количественный пример исследования покупательского поведения.

Пример 3. За день продовольственный рынок посещает в среднем 10000 человек. Вероятность того, что посетитель рынка заходит в павильон молочных продуктов, равна 1/2. Известно, что в этом павильоне в среднем продается в день 500 кг различных продуктов. Можно ли утверждать, что средняя покупка в павильоне весит всего 100 г?

Обсуждение.

Конечно, нельзя. Понятно, что не каждый, кто заходил в павильон, в результате что-то там купил.


Как показано на схеме, чтобы ответить на вопрос о среднем весе покупки, мы должны найти ответ на вопрос, какова вероятность того, что человек, зашедший в павильон, что-нибудь там купит. Если таких данных в нашем распоряжении не имеется, а нам они нужны, придется их получить самим, понаблюдав некоторое время за посетителями павильона. Допустим, наши наблюдения показали, что только пятая часть посетителей павильона что-то покупает. Как только эти оценки нами получены, задача становится уже простой. Из 10000 человек, пришедших на рынок, 5000 зайдут в павильон молочных продуктов, покупок будет только 1000. Средний вес покупки равен 500 грамм. Интересно отметить, что для построения полной картины происходящего, логика условных "ветвлений" должна быть определена на каждом этапе нашего рассуждения так же четко, как если бы мы работали с "конкретной" ситуацией, а не с вероятностями.

Задачи для самопроверки.

1. Пусть есть электрическая цепь, состоящая из n последовательно соединенных элементов, каждый из которых работает независимо от остальных. Известна вероятность p невыхода из строя каждого элемента. Определите вероятность исправной работы всего участка цепи (событие А).


2. Студент знает 20 из 25 экзаменационных вопросов. Найдите вероятность того, что студент знает предложенные ему экзаменатором три вопроса.

3. Производство состоит из четырех последовательных этапов, на каждом из которых работает оборудование, для которого вероятности выхода из строя в течение ближайшего месяца равны соответственно р 1 , р 2 , р 3 и р 4 . Найдите вероятность того, что за месяц не случится ни одной остановки производства из-за неисправности оборудования.

Начнем с задачи.

Предположим, что вероятность получения вами пятерки за контрольную равна 0,5, а четверки - 0,3. Какова вероятность того, что за контрольную вы получите 4 или 5?

Некоторые сразу выпалят: «0,8», но почему именно так? Почему, например, не 0,15 (перемножили, а не сложили)? Разберемся.

Предположим, есть некоторый опыт, у которого есть исходов. Из них наступлению события благоприятны , а событию - . Нетрудно по формуле найти вероятности наступления каждого из событий - это соответственно и . Но какова вероятность того, что наступит либо первое событие, либо второе? Иначе говоря, мы ищем вероятность объединения этих событий. Для этого надо выяснить, сколько у нас благоприятных исходов. ? Не совсем. Ведь может случиться так, что эти события выполнятся одновременно.

Тогда предположим, что события непересекающиеся, то есть не могут выполняться одновременно. Вот тогда получаем, что благоприятных исходов для объединения - . Значит, вероятность объединения будет равна:

Вероятность объединения несовместных событий равна сумме их вероятностей.

Обратим внимание: здесь речь идет об ОДНОМ эксперименте, в результате которого может наступить либо первое событие, либо второе, но не оба сразу.

В частности, в примере с контрольной мы понимаем, что ученик не может одновременно получить за контрольную и 5, и 4 (речь идет об одной оценке за одну и ту же контрольную), значит, вероятность того, что он получит 4 или 5, равна сумме вероятностей, то есть, все-таки, 0,8.

Ответ: 0,8.

А что делать, если события пересекаются, то есть существуют исходы, благоприятные для них обоих? Такая ситуация будет рассмотрена в конце урока.

2. Математический форум Math Help Planet ()

3. Интернет-сайт "Математика, которая мне нравится" ()

Домашнее задание

1. Два стрелка стреляют по мишени. Первый стрелок поражает мишень с вероятностью 0,9. Второй стрелок поражает мишень с вероятностью 0,8. Найти вероятность того, что мишень будет поражена.

2. Случайный эксперимент состоит в подбрасывании двух игральных костей. Одна из игральных костей окрашена в синий цвет, другая - в красный. Найти вероятность того, что на синей игральной кости выпадет число 3, а на красной игральной кости выпадет число 4.

  • Теорема. Вероятность суммы несовместных событий иравна сумме вероятностей этих событий:

  • Следствие 1. С помощью метода математической индукции формулу (3.10) можно обобщить на любое число попарно несовместных событий:

  • Следствие 2. Поскольку противоположные события являются несовместными, а их сумма – достоверным событием, то, используя (3.10), имеем:

  • Часто при решении задач формулу (3.12) используют в виде:

    (3.13)

    Пример 3.29. В опыте с бросанием игральной кости найти вероятности выпадения на верхней грани числа очков более 3 и менее 6.

    Обозначим события, связанные с выпадением на верхней грани игральной кости одного очка, через U 1 , двух очков через U 2 ,…, шести очков через U 6 .

    Пусть событие U – выпадение на верхней грани кости числа очков более 3 и менее 6. Это событие произойдет, если произойдет хотя бы одно из событий U 4 или U 5 , следовательно, его можно представить в виде суммы этих событий: . Т. к. событияU 4 и U 5 являются несовместными, то для нахождения вероятности их суммы используем формулу (3.11). Учитывая, что вероятности событий U 1 , U 2 ,…,U 6 равны , получим:

  • Замечание. Ранее задачи такого типа решали с помощью подсчета числа благоприятствующих исходов. Действительно, событию U благоприятствуют два исхода, а всего шесть элементарных исходов, следовательно, используя классический подход к понятию вероятности, получим:

    Однако классический поход к понятию вероятности, в отличие от теоремы о вероятности суммы несовместных событий, применим только для равновозможных исходов.

    Пример 3.30. Вероятность попадания в цель стрелком равна 0,7. Какова вероятность того, что стрелок не попадет в цель?

    Пусть событие − попадание стрелком в цель, тогда событие, состоящее в том, что стрелок не попадет в цель, является противоположным событиемсобытию, т. к. в результате каждого испытания всегда происходит одно и только одно из этих событий. Используя формулу (3.13), получим:

  • 3.2.10. Вероятность произведения событий

  • Определение. Событие называетсязависимым от события если вероятность события зависит от того, произошло событиеили нет.

    Определение. Вероятность события вычисленная при условии, что событиепроизошло, называетсяусловной вероятностью события и обозначается

    Теорема. Вероятность произведения событий иравна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое имело место:

  • Условие независимости события от события можно записать в виде Из этого утверждения следует, что для независимых событий выполняется соотношение:

  • т. е. вероятность произведения независимых событий и, равна произведению их вероятностей.

    Замечание. Вероятность произведения нескольких событий равна произведению вероятностей этих событий, причем вероятность каждого следующего по порядку события вычисляется при условии, что все предыдущие имели место:

  • Если события независимые, то имеем:

  • Пример 3.31. В ящике 5 белых и 3 черных шара. Из него наугад последовательно без возвращения вытаскивают два шара. Найти вероятность того, что оба шара белые.

    Пусть событие − появление белого шара при первом вынимании,− появление белого шара при втором вынимании. Учитывая, что,(вероятность появления второго белого шара при условии, что первый вынутый шар был белым и его не возвратили в ящик). Так как событияизависимые, то вероятность их произведения найдем по формуле (3.15):

  • Пример 3.32. Вероятность попадания в цель первым стрелком 0,8; вторым – 0,7. Каждый стрелок выстрелил по мишени. Какова вероятность того, что хотя бы один стрелок попадет в цель? Какова вероятность того, что один стрелок попадет в цель?

    Пусть событие – попадание в цель первым стрелком,– вторым. Все возможные варианты можно представить в видетаблицы 3.5 , где «+» обозначает, что событие произошло, а «−» − не произошло.

    Таблица 3.5

  • Пусть событие – попадание хотя бы одним стрелком в цель, Тогда событиеявляется суммой независимых событийиследовательно, применить теорему о вероятности суммы несовместных событий в данной ситуации нельзя.

    Рассмотрим событие противоположное событиюкоторое произойдет тогда, когда ни один стрелок не попадет в цель, т. е. является произведением независимых событийИспользуя формулы (3.13) и (3.15), получим:

  • Пусть событие – попадание одним стрелком в цель. Это событие можно представить следующим образом:

    События и– независимые, событияитакже являются независимыми. События, являющиеся произведениями событийи– несовместными. Используя формулы (3.10) и (3.15) получим:

  • Свойства операций сложения и умножения событий:

  • 3.2.11. Формула полной вероятности. Формула Байеса

  • Пусть событие может произойти только вместе с одним из попарно несовместных событий (гипотез),,…,, образующих полную группу, т. е.

    Вероятность события находится по формулеполной вероятности:

  • Если событие уже произошло, то вероятности гипотез могут быть переоценены по формулеБайеса :

    (3.17)

    Пример 3.33. Имеются две одинаковых урны с шарами. В первой урне 5 белых и 10 черных шаров, во второй − 3 белых и 7 черных шаров. Выбирают наугад одну урну и вытаскивают из нее один шар.

      Найти вероятность того, что этот шар белый.

      Из наугад выбранной урны вытащили белый шар. Найти вероятность того, что шар вытащили из первой урны.

    Учреждение образования «Белорусская государственная

    сельскохозяйственная академия»

    Кафедра высшей математики

    СЛОЖЕНИЕ И УМНОЖЕНИЕ ВЕРОЯТНОСТЕЙ. ПОВТОРНЫЕ НЕЗАВИСИМЫЕ ИСПЫТАНИЯ

    Лекция для студентов землеустроительного факультета

    заочной формы обучения

    Горки, 2012

    Сложение и умножение вероятностей. Повторные

    независимые испытания

    1. Сложение вероятностей

    Суммой двух совместных событий А и В называется событие С , состоящее в наступлении хотя бы одного из событий А или В . Аналогично суммой нескольких совместных событий называется событие, состоящее в наступлении хотя бы одного из этих событий.

    Суммой двух несовместных событий А и В называется событие С , состоящее в наступлении или события А , или события В . Аналогично суммой нескольких несовместных событий называется событие, состоящее в наступлении какого-либо одного из этих событий.

    Справедлива теорема сложения вероятностей несовместных событий: вероятность суммы двух несовместных событий равна сумме вероятностей этих событий , т.е. . Эту теорему можно распространить на любое конечное число несовместных событий.

    Из данной теоремы следует:

    сумма вероятностей событий, образующих полную группу, равна единице;

    сумма вероятностей противоположных событий равна единице, т.е.
    .

    Пример 1 . В ящике находятся 2 белых, 3 красных и 5 синих шара. Шары перемешивают и наугад извлекают один. Какова вероятность того, что шар окажется цветным?

    Решение . Обозначим события:

    A ={извлечён цветной шар};

    B ={извлечён белый шар};

    C ={извлечён красный шар};

    D ={извлечён синий шар}.

    Тогда A = C + D . Так как события C , D несовместны, то воспользуемся теоремой сложения вероятностей несовместных событий: .

    Пример 2 . В урне находятся 4 белых шара и 6 – чёрных. Из урны наугад вынимают 3 шара. Какова вероятность того, что все они одного цвета?

    Решение . Обозначим события:

    A ={вынуты шары одного цвета};

    B ={вынуты шары белого цвета};

    C ={вынуты шары чёрного цвета}.

    Так как A = B + C и события В и С несовместны, то по теореме сложения вероятностей несовместных событий
    . Вероятность события В равна
    , где
    4,

    . Подставим k и n в формулу и получим
    Аналогично найдём вероятность события С :
    , где
    ,
    , т.е.
    . Тогда
    .

    Пример 3 . Из колоды в 36 карт наугад вынимают 4 карты. Найти вероятность того, что среди них окажется не менее трёх тузов.

    Решение . Обозначим события:

    A ={среди вынутых карт не менее трёх тузов};

    B ={среди вынутых карт три туза};

    C ={среди вынутых карт четыре туза}.

    Так как A = B + C , а события В и С несовместны, то
    . Найдём вероятности событий В и С :


    ,
    . Следовательно, вероятность того, что среди вынутых карт не менее трёх тузов, равна

    0.0022.

    1. Умножение вероятностей

    Произведением двух событий А и В называется событие С , состоящее в совместном наступлении этих событий:
    . Это определение распространяется на любое конечное число событий.

    Два события называются независимыми , если вероятность наступления одного из них не зависит от того, произошло другое событие или нет. События , , … , называются независимыми в совокупности , если вероятность наступления каждого из них не зависит от того, произошли или не произошли другие события.

    Пример 4 . Два стрелка стреляют по цели. Обозначим события:

    A ={первый стрелок попал в цель};

    B ={второй стрелок попал в цель}.

    Очевидно, что вероятность попадания в цель первым стрелком не зависит от того, попал или не попал второй стрелок, и наоборот. Следовательно, события А и В независимы.

    Справедлива теорема умножения вероятностей независимых событий: вероятность произведения двух независимых событий равна произведению вероятностей этих событий : .

    Эта теорема справедлива и для n независимых в совокупности событий: .

    Пример 5 . Два стрелка стреляют по одной цели. Вероятность попадания первого стрелка равна 0.9, а второго – 0.7. Оба стрелка одновременно делают по одному выстрелу. Определить вероятность того, что будут иметь место два попадания в цель.

    Решение . Обозначим события:

    A

    B

    C ={оба стрелка попадут в цель}.

    Так как
    , а события А и В независимы, то
    , т.е. .

    События А и В называются зависимыми , если вероятность наступления одного из них зависит от того, произошло другое событие или нет. Вероятность наступления события А при условии, что событие В уже наступило, называется условной вероятностью и обозначается
    или
    .

    Пример 6 . В урне находятся 4 белых и 7 чёрных шаров. Из урны извлекаются шары. Обозначим события:

    A ={извлечён белый шар} ;

    B ={извлечён чёрный шар}.

    Перед началом извлечения шаров из урны
    . Из урны извлекли один шар и он оказался чёрным. Тогда вероятность события А после наступления события В будет уже другой, равной . Это означает, что вероятность события А зависит от события В , т.е. эти события будут зависимыми.

    Справедлива теорема умножения вероятностей зависимых событий: вероятность произведения двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило , т.е. или .

    Пример 7 . В урне находятся 4 белых шара и 8 красных. Из неё наугад последовательно извлекают два шара. Найти вероятность того, что оба шара будут чёрными.

    Решение . Обозначим события:

    A ={первым извлечён чёрный шар};

    B ={вторым извлечён чёрный шар}.

    События А и В зависимы, так как
    , а
    . Тогда
    .

    Пример 8 . Три стрелка стреляют по цели независимо друг от друга. Вероятность попадания в цель для первого стрелка равна 0.5, для второго – 0.6 и для третьего – 0.8. Найти вероятность того, что произойдут два попадания в цель, если каждый стрелок сделает по одному выстрелу.

    Решение . Обозначим события:

    A ={произойдут два попадания в цель};

    B ={первый стрелок попадёт в цель};

    C ={второй стрелок попадёт в цель};

    D ={третий стрелок попадёт в цель};

    ={первый стрелок не попадёт в цель};

    ={второй стрелок не попадёт в цель};

    ={третий стрелок не попадёт в цель}.

    По условию примера
    ,
    ,
    ,

    ,
    ,
    . Так как , то используя теорему сложения вероятностей несовместных событий и теорему умножения вероятностей независимых событий, получим:

    Пусть события
    образуют полную группу событий некоторого испытания, а событии А может наступить только с одним из этих событий. Если известны вероятности и условные вероятности события А , то вероятность события А вычисляется по формуле:

    Или
    . Эта формула называется формулой полной вероятности , а события
    гипотезами .

    Пример 9 . На сборочный конвейер поступает 700 деталей с первого станка и 300 деталей со второго. Первый станок даёт 0.5% брака, а второй – 0.7%. Найти вероятность того, что взятая деталь будет бракованной.

    Решение . Обозначим события:

    A ={взятая деталь будет бракованной};

    ={деталь изготовлена на первом станке};

    ={деталь изготовлена на втором станке}.

    Вероятность того, что деталь изготовлена на первом станке, равна
    . Для второго станка
    . По условию вероятность получения бракованной детали, изготовленной на первом станке, равна
    . Для второго станка эта вероятность равна
    . Тогда вероятность того, что взятая деталь будет бракованной, вычисляется по формуле полной вероятности

    Если известно, что в результате испытания наступило некоторое событие А , то вероятность того, что это событие наступило с гипотезой
    , равна
    , где
    - полная вероятность события А . Эта формула называется формулой Байеса и позволяет вычислять вероятности событий
    после того, как стало известно, что событие А уже наступило.

    Пример 10 . Однотипные детали к автомобилям производятся на двух заводах и поступают в магазин. Первый завод производит 80% общего количества деталей, а второй – 20%. Продукция первого завода содержит 90% стандартных деталей, а второго – 95%. Покупатель купил одну деталь и она оказалась стандартной. Найти вероятность того, что эта деталь изготовлена на втором заводе.

    Решение . Обозначим события:

    A ={куплена стандартная деталь};

    ={деталь изготовлена на первом заводе};

    ={деталь изготовлена на втором заводе}.

    По условию примера
    ,
    ,
    и
    . Вычислим полную вероятность события А : 0.91. Вероятность того, что деталь изготовлена на втором заводе, вычислим по формуле Байеса:

    .

    Задания для самостоятельной работы

      Вероятность попадания в цель для первого стрелка равна 0.8, для второго – 0.7 и для третьего – 0.9. Стрелки произвели по одному выстрелу. Найти вероятность того, что имеет место не менее двух попаданий в цель.

      В ремонтную мастерскую поступило 15 тракторов. Известно, что 6 из них нуждаются в замене двигателя, а остальные – в замене отдельных узлов. Случайным образом отбираются три трактора. Найти вероятность того, что замена двигателя необходима не более, чем двум отобранным тракторам.

      На железобетонном заводе изготавливают панели, 80% из которых – высшего качества. Найти вероятность того, что из трёх наугад выбранных панелей не менее двух будут высшего сорта.

      Три рабочих собирают подшипники. Вероятность того, что подшипник, собранный первым рабочим, высшего качества, равна 0.7, вторым – 0.8 и третьим – 0.6. Для контроля наугад взято по одному подшипнику из собранных каждым рабочим. Найти вероятность того, что не менее двух из них будут высшего качества.

      Вероятность выигрыша по лотерейному билету первого выпуска равна 0.2, второго – 0.3 и третьего – 0.25. Имеются по одному билету каждого выпуска. Найти вероятность того, что выиграет не менее двух билетов.

      Бухгалтер выполняет расчёты, пользуясь тремя справочниками. Вероятность того, что интересующие его данные находятся в первом справочнике, равна 0.6, во втором – 0.7 ив третьем – 0.8. Найти вероятность того, что интересующие бухгалтера данные содержатся не более, чем в двух справочниках.

      Три автомата изготавливают детали. Первый автомат изготавливает деталь высшего качества с вероятностью 0.9, второй – с вероятностью 0.7 и третий – с вероятностью 0.6. Наугад берут по одной детали с каждого автомата. Найти вероятность того, что среди них не менее двух высшего качества.

      На двух станках обрабатываются однотипные детали. Вероятность изготовления нестандартной детали для первого станка равна 0.03, в для второго – 0.02. Обработанные детали складываются в одном месте. Среди них 67% с первого станка, а остальные – со второго. Наугад взятая деталь оказалась стандартной. Найти вероятность того, что она изготовлена на первом станке.

      В мастерскую поступили две коробки однотипных конденсаторов. В первой коробке было 20 конденсаторов, из которых 2 неисправных. Во второй коробки 10 конденсаторов, из которых 3 неисправных. Конденсаторы были переложены в один ящик. Найти вероятность того, что наугад взятый из ящика конденсатор окажется исправным.

      На трёх станках изготавливают однотипные детали, которые поступают на общий конвейер. Среди всех деталей 20% с первого автомата, 30% - со второго и 505 – с третьего. Вероятность изготовления стандартной детали на первом станке равна 0.8, на втором – 0.6 и на третьем – 0.7. Взятая деталь оказалась стандартной. Найти вероятность того, эта деталь изготовлена на третьем станке.

      Комплектовщик получает для сборки 40% деталей с завода А , а остальные – с завода В . Вероятность того, что деталь с завода А – высшего качества, равна 0.8, а с завода В – 0.9. Комплектовщик наугад взял одну деталь и она оказалась не высшего качества. Найти вероятность того, что эта деталь с завода В .

      Для участия в студенческих спортивных соревнованиях выделено 10 студентов из первой группы и 8 – из второй. Вероятность того, что студент из первой группы попадёт в сборную академии, равна 0.8, а со второй – 0.7. Наугад выбранный студент попал в сборную. Найти вероятность того, что он из первой группы.

    Событие A называется независимым от события B, если вероятность события A не зависит от того, произошло событие B или нет. Событие A называется зависимым от события B, если вероятность события A меняется в зависимости от того, произошло событие B или нет.

    Вероятность события A, вычисленная при условии, что событие B уже произошло, называется условной вероятностью события A и обозначается .

    Условие независимости события A от события B можно записать в виде
    .

    Теорема умножения вероятностей. Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое имело место:

    Если событие A не зависит от события B, то событие B не зависит от события A. При этом вероятность произведения событий равна произведению их вероятностей:

    .

    Пример 14. Имеется 3 ящика, содержащих по 10 деталей. В первом ящике 8, во втором - 7 и в третьем 9 стандартных деталей. Из каждого ящика наудачу вынимают по одной детали. Найти вероятность того, что все три вынутые детали окажутся стандартными.

    Вероятность того, что из первого ящика вынута стандартная деталь (событие A) равна
    . Вероятность того, что из второго ящика вынута стандартная деталь (событиеB) равна
    . Вероятность того, что из третьего ящика вынута стандартная деталь (событиеC) равна
    .

    Так как события A, B и C независимые в совокупности, то по теореме умножения искомая вероятность равна

    Приведем пример совместного использования теорем сложения и умножения.

    Пример 15. Вероятности появления независимых событий A 1 и A 2 равны соответственно p 1 и p 2 . Найти вероятность появления только одного из этих событий (событие A). Найти вероятность появления хотя бы одного из этих событий (событие B).

    Обозначим вероятности противоположных событий ичерезq 1 =1-p 1 и q 2 =1-p 2 соответственно.

    Событие A произойдет, если произойдет событие A 1 и не произойдет событие A 2 , или если произойдет событие A 2 и не произойдет событие A 1 . Следовательно,

    Событие B произойдет, если произойдет событие A, или произойдут события A 1 и A 2 одновременно. Следовательно,

    Вероятность события B можно определить иначе. Событие , противоположное событиюB состоит в том, что оба события A 1 и A 2 не произойдут. Поэтому по теореме умножения вероятностей для независимых событий получим

    что совпадает с выражением, полученным ранее, так как имеет место тождество

    7. Формула полной вероятности. Формула Байеса.

    Теорема 1 . Предположим, что события
    образуют полную группу попарно несовместных событий (такие события называются гипотезами). ПустьA - произвольное событие. Тогда вероятность события A может быть вычислена по формуле

    Доказательство. Так как гипотезы образуют полную группу, то , и, следовательно,.

    В силу того, что гипотезы являются попарно несовместными событиями, то события также попарно несовместны. По теореме сложения вероятностей

    Применяя теперь теорему умножения вероятностей, получим

    Формула (1) называется формулой полной вероятности. В сокращенном виде ее можно записать следующим образом

    .

    Формула полезна, если условные вероятности события A вычисляются легче, чем безусловная вероятность.

    Пример 16 . Имеется 3 колоды по 36 карт и 2 колоды по 52 карты. Наудачу выбираем одну колоду и из нее наудачу одну карту. Найти вероятность того, что вынутая карта - туз.

    Пусть A - событие, состоящее в том, что вынутая карта - туз. Введем в рассмотрение две гипотезы:

    - карта вынута из колоды в 36 карт,

    - карта вынута из колоды в 52 карты.

    Для вычисления вероятности события A воспользуемся формулой полной вероятности:

    Теорема 2 . Предположим, что события
    образуют полную группу попарно несовместных событий. ПустьA - произвольное событие. Условная вероятность гипотезы в предположении, что произошло событиеA, может быть вычислена по формуле Байеса:

    Доказательство. Из теоремы умножения вероятностей для зависимых событий следует, что .

    .

    Применяя формулу полной вероятности, получим (2).

    Вероятности гипотез
    называются априорными, а вероятности гипотез
    при условии, что событие A имело место, называются апостериорными. Сами формулы Байеса называются еще формулами вероятностей гипотез.

    Пример 17 . Имеются 2 урны. Первая урна содержит 2 белых и 4 черных шара, а вторая урна содержит 7 белых и 5 черных шаров. Наудачу выбираем урну и из нее наудачу извлекаем один шар. Он оказался черным (событие A произошло). Найти вероятность того, что шар был извлечен из первой урны (гипотеза
    ). Найти вероятность того, что шар был извлечен из второй урны (гипотеза
    ).

    Применим формулы Байеса:

    ,

    .

    Пример 18 . На заводе болты выпускаются тремя машинами, которые выпускают соответственно 25%, 35% и 40% всех болтов. Брак продукции этих машин составляет соответственно 5%, 4%, 2%. Из продукции всех трех машин был выбран один болт. Он оказался дефектным (событие A). Найти вероятность того, что болт был выпущен первой, второй, третьей машиной.

    Пусть
    - событие, состоящее в том, что болт был выпущен первой машиной,
    - второй машиной,
    - третьей машиной. Эти события попарно несовместны и образуют полную группу. Воспользуемся формулами Байеса

    В результате получим

    ,

    ,

    .