Рентгеновская микроскопия. Сканирующие зондовые микроскопы

Рентгеновский микроскоп содержит протяженный рентгеновский источник, а также средство для размещения исследуемого объекта 3 и средство для регистрации и расположенную между ними рентгеновскую капиллярную линзу. Каналы последней расходятся в сторону средства для регистрации. Средство для размещения исследуемого объекта установлено между протяженным рентгеновским источником и меньшим торцом рентгеновской капиллярной линзы. Особенностью устройства является то, что стенки каналов (14, 16) транспортировки излучения имеют покрытие или выполнены из материала, поглощающего или рассеивающего рентгеновское излучение, и имеют форму боковой поверхности либо усеченных конуса или пирамиды, либо цилиндра или призмы. При указанном выборе материала исключено явление полного внешнего отражения, а прямолинейность продольных осей каналов обеспечивает их работу как коллиматоров. Поэтому каналы захватывают излучение только тех фрагментов исследуемого объекта 3, которые находятся точно напротив их входов. По сравнению с известным устройством исключается возможность захвата излучения, входящего в канал 18 под углами от нулевого до критического угла с полного внешнего отражения. Благодаря этому разрешающая способность полностью определяется технологическими возможностями уменьшения входных размеров каналов. Возможность использования протяженного рентгеновского источника позволяет существенно уменьшить время экспозиции при одновременном уменьшении мощности рентгеновской трубки. 6 ил.

Область техники

Изобретение относится к проекционной микроскопии с использованием радиационных методов, более конкретно к средствам для получения увеличенной теневой проекции объекта, включая его внутреннюю структуру, с использованием рентгеновского излучения.

Предшествующий уровень техники

Известен рентгеновский микроскоп, позволяющий получать изображение внутреннего строения объектов. Действие такого микроскопа основано на принципе теневой проекции объекта в расходящемся пучке рентгеновских лучей, испускаемых точечным источником (Энциклопедический словарь “Электроника”, Москва, Советская энциклопедия, 1991, с.478. ). Данный микроскоп получил название теневого или проекционного. Проекционный микроскоп обычно содержит микрофокусную рентгеновскую трубку, камеру для размещения исследуемого объекта и регистрирующее средство. Разрешение проекционного рентгеновского микроскопа тем выше, чем меньше размер источника излучения и расстояние от него до объекта. Известно, в частности, применение в таких микроскопах рентгеновских трубок фокусным пятном 0,1-1 мкм в диаметре . Для дальнейшего уменьшения эффективного размера источника применяют диафрагмирование (Физический энциклопедический словарь, Москва, Советская энциклопедия, 1984, с.639 ).

Однако с уменьшением размера источника либо при диафрагмировании его интенсивность становится недостаточной для получения приемлемой контрастности увеличенного изображения. Преодоление этого недостатка требует существенного увеличения времени экспозиции. Увеличение размера источника для повышения его эффективной интенсивности приводит к размытости получаемого изображения и снижению разрешающей способности.

С созданием рентгеновской капиллярной оптики полного внешнего отражения появилась возможность использования в рентгеновских микроскопах протяженных (соизмеримых с исследуемым объектом) рентгеновских источников. В таких микроскопах камера с исследуемым объектом размещается между протяженным рентгеновским источником и входным торцом рентгеновской линзы с каналами, расходящимися в сторону средства для регистрации изображения (международная заявка PCT/RU 94/00189, международная публикация WO 96/01991 от 25.01.96 ). Конкретно в указанном источнике описано использование конических рентгеновских линз и линз в форме раструба, причем отмечена более высокая эффективность последних. Увеличение размера источника не сказывается на разрешающей способности этих микроскопов, так как она соответствует размеру фрагмента объекта, попадающего в поле зрения отдельного канала рентгеновской капиллярной линзы. Рентгеновский микроскоп указанной конструкции является наиболее близким к предлагаемому.

Однако с уменьшением диаметра отдельных каналов до уровня, достигнутого при современных технологиях в монолитных и, в особенности, в интегральных линзах (патент США №6271534, опубл. 07.08.2001 ), размер входного отверстия отдельного канала рентгеновской линзы перестает быть определяющим фактором. Это объясняется тем, что размер упомянутого поля зрения отдельного канала линзы имеет порядок

где d - входной диаметр отдельного канала,

L - расстояние между исследуемым объектом и входом канала рентгеновской линзы,

С - критический угол полного внешнего отражения от материала стенок каналов.

При малых диаметрах d и невысоких энергиях излучения, используемых, в частности, при исследовании биологических объектов, когда угол c может достигать 10 -2 радиана, второе слагаемое в приведенном выше выражении (1) становится преобладающим. Так, например, при L=1 мм и d=0,1 микрона имеем

d=0,1 микрона = 10 -7 м << 2·10 -5 м = 2·l·10 -3 м·10 -2 = 2L c .

В результате совершенствование технологии изготовления рентгеновских линз не позволяет повысить точностные показатели рентгеновских микроскопов описанной известной конструкции, использующих протяженные источники.

Раскрытие изобретения

Предлагаемое изобретение направлено на получение технического результата, заключающегося в повышении разрешающей способности проекционного микроскопа, использующего рентгеновское излучение, путем уменьшения диаметра каналов используемой капиллярной линзы при сохранении возможности использования протяженного (в том числе и превосходящего размеры исследуемого объекта) источника с одновременным исключением зависимости разрешающей способности от энергии используемого излучения. Указанные виды технического результата сочетаются с малым временем экспозиции.

Для достижения данного технического результата предлагаемый рентгеновский микроскоп, как и указанный выше, наиболее близкий к нему, известный из патента , содержит протяженный рентгеновский источник, а также средство для размещения исследуемого объекта и средство для регистрации и расположенную между ними рентгеновскую капиллярную линзу, имеющую каналы транспортировки излучения, расходящиеся в сторону средства для регистрации. При этом средство для размещения исследуемого объекта установлено между протяженным рентгеновским источником и входным (меньшим) торцом рентгеновской капиллярной линзы.

В отличие от наиболее близкого известного устройства в предлагаемом рентгеновском микроскопе стенки каналов рентгеновской капиллярной линзы имеют изнутри покрытие или выполнены из материала, поглощающего или рассеивающего рентгеновское излучение, для исключения явления полного внешнего отражения и имеют форму либо боковой поверхности усеченного конуса или пирамиды, либо цилиндра или призмы.

При первых двух названных видах формы поверхности стенок каналов транспортировки излучения их поперечное сечение равномерно увеличивается в направлении от входа к выходу, а при двух последних остается постоянным по длине канала. Важно то, что во всех этих случаях оптические оси каналов прямолинейны. Выполнение стенок каналов транспортировки излучения из материала, поглощающего или рассеивающего рентгеновское излучение, либо покрытие их изнутри таким материалом обеспечивает отсутствие отражения излучения при прохождении его по каналам. Вследствие этого каналы работают по принципу коллиматоров и оказывается невозможным захват ими излучения, которое при дальнейшем распространении в канале встретится со стенкой. В итоге каждым каналом может быть захвачено только излучение, прошедшее через фрагмент исследуемого объекта, находящийся точно напротив входа этого канала. Поэтому размер поля зрения отдельного канала определяется формулой (1) без второго слагаемого в правой части.

Краткое описание чертежей

Предлагаемое и изобретение иллюстрируется чертежами, на которых показаны:

на фиг.1 - общая схема компоновки узлов рентгеновского микроскопа;

на фиг.2 - выполнение входящей в состав рентгеновского микроскопа линзы с расходящимися каналами транспортировки излучения, имеющими увеличивающееся в сторону выхода поперечное сечение;

на фиг.3 - выполнение входящей в состав рентгеновского микроскопа линзы с расходящимися каналами транспортировки излучения, имеющими постоянное по длине поперечное сечение;

на фиг.4 - вид поперечного сечения линзы в случае, соответствующем фиг.2, при двух формах стенок каналов транспортировки излучения;

на фиг.5 - вид поперечного сечения линзы в случае, соответствующем фиг.3, при двух формах стенок каналов транспортировки излучения;

на фиг.6 - поля зрения отдельных каналов линзы и траектории распространения квантов рентгеновского излучения в каналах предлагаемого и известного устройств.

Варианты осуществления изобретения

Предлагаемый рентгеновский микроскоп содержит (фиг.1) рентгеновский источник 1 с протяженной апертурой 2, имеющей размеры не менее исследуемого объекта 3. Последний находится в средстве (камере 4) для размещения исследуемого объекта. В максимальной близости от этого средства расположен входной (меньший) торец 5 рентгеновской капиллярной линзы 6. Возле выходного (большего) торца 7 расположено чувствительное к рентгеновскому излучению средство 8 для регистрации. Зарегистрированная этим средством картина 9 распределения плотности рентгеновского излучения, прошедшего через исследуемый объект 3 и перенесенного линзой 6 от ее входного торца 5 к выходному 7, воспроизводится монитором 10. При этом происходит увеличение линейных размеров изображения объекта 3 пропорционально соотношению линейных размеров выходного 7 и входного 5 торцов линзы 6.

Предварительно выходные сигналы средства 8 для регистрации могут быть подвергнуты обработке в персональном компьютере или специализированном вычислительном средстве 11, снабженном блоком управления 11а. Так, например, в средстве 11 может быть зафиксирована картина при отсутствии исследуемого объекта 3, отражающая неравномерность интенсивности излучения по апертуре 2 и неравномерность ее потерь при прохождении через стенки камеры 4, линзу 6, а также неравномерность чувствительности детектирующих элементов по площади средства 8 для регистрации 9. В дальнейшем при наблюдении исследуемого объекта эта предварительно зафиксированная картина может быть использована для коррекции получаемого изображения с тем, чтобы оно отражало только собственную неравномерность плотности исследуемого объекта. Благодаря этому в картине 9 на экране монитора 10 правильно представлены изображения 12 неоднородностей 13 внутренней структуры объекта 3.

Фактическая функция линзы 6 заключается в разделении теневого изображения объекта 3 на входном торце линзы 6 на элементы по числу каналов линзы и транспортировании каждого из таких элементов (в виде соответствующей ему интенсивности рентгеновского излучения, прошедшего через тот или иной фрагмент объекта 3) к соответствующему детектирующему элементу средства 8 для регистрации. Разрешающая способность, равная входному диаметру каналов линзы, может быть реализована, если выходной сигнал каждого из каналов линзы может быть зафиксирован отдельно, без “перемешивания” с выходными сигналами других каналов. Поэтому упомянутая выше степень увеличения должна соответствовать размеру элемента разрешения (отдельного детектирующего элемента) средства 8 для регистрации.

Обеспечение такого соответствия необязательно требует фактического увеличения размера элемента изображения на выходе линзы 7 по сравнению с размером на входе. Достаточно реализовать упомянутую возможность раздельного приема сигналов, соответствующих каждому из элементов изображения. Это условие может быть выполнено в любой из показанных на фиг.2 и 3 конструкций линзы.

В первой из них (фиг.2) каналы 14 заполняют практически весь объем линзы, изменяя свое поперечное сечение по длине по такому же закону, как и поперечное сечение линзы в целом. Каналы в конструкции линзы по фиг.2 могут иметь вид, в частности, кругового конуса или шестигранной пирамиды. Их поперечное сечение показано на фиг.4. Такая форма наиболее технологична. Соотношение выходного D и входного d диаметров (при круглой форме поперечного сечения) определяет упомянутую степень увеличения. Для того чтобы была реализована потенциально возможная разрешающая способность, размеры чувствительных детектирующих элементов средства 8 для регистрации должны быть не более D, а расположены они должны быть напротив выходов каналов линзы. На фиг.2 показано несколько из таких элементов 15. Такое же условие должно быть выполнено и при использовании линзы, показанной на фиг.3, в которой поперечное сечение каналов 16 постоянно по длине и их выходной диаметр равен входному диаметру d. Несколько детектирующих элементов 17, удовлетворяющих этому условию, также показано на фиг.3. Наиболее технологичными формами каналов в конструкции линзы по фиг.3 являются круговой цилиндр и шестригранная призма. Их поперечное сечение показано на фиг.5.

Промежутки между каналами транспортировки излучения должны быть непрозрачными для рентгеновского излучения (в противном случае и они должны были бы рассматриваться как “каналы”).

Конструкция по фиг.2 энергетически несколько более выгодна. Воспринимая излучение от такого же по размерам фрагмента объекта, как и в конструкции по фиг.3, и обеспечивая примерно такую же разрешающую способность, она позволяет захватить большую часть излучения этого фрагмента благодаря расширяющемуся характеру каналов.

В обеих конструкциях может быть захвачено излучение только от точек фрагментов объекта, находящихся строго в зонах, ограниченных продолжениями каналов (см. фиг.6а и 6в). Благодаря предлагаемому выбору материала стенок каналов или материала их покрытия излучение, входящее в канал под углом к его стенке, поглощается или рассеивается и не проходит на выход. На фиг.6а и 6в штриховыми линиями показаны траектории распространения квантов рентгеновского излучения, проходящих на выход канала, которые могут быть только прямолинейными. В отличие от этого в известном устройстве , использующем принцип полного внешнего отражения, распространяться по каналам 18 может и излучение, попавшее на входы каналов от фрагментов объекта, находящихся и вне пределов зон, показанных на фиг.6а и 6в (см. фиг.6с). Это может иметь место, если направление распространения излучения при входе в канал образует с его стенками угол менее критического с. Поэтому, как показано на фиг.6с, на выход канала проходят кванты, распространяющиеся как по прямолинейным (показанным штриховыми линиями), так и по ломаным (показанным сплошными линиями) траекториям.

В проведенных экспериментах изображение объекта было получено с разрешением порядка 1 микрона при источнике с линейными размерами порядка 0,1 мм, т.е. площадь апертуры источника превосходила элемент разрешения примерно в 10000 раз. Имеются все предпосылки для получения в будущем разрешения на уровне 0,1 микрона и лучше.

Существенным фактором, определяющим перспективы практического применения предлагаемого микроскопа, является скорость получения информации. Согласно сделанным оценкам она может быть в (10-100) тысяч раз выше, чем при использовании обычного метода проекционной рентгеновской микроскопии.

Такой выигрыш достигается благодаря снятию ограничения на интенсивность используемого источника. Поскольку он не должен быть микрофокусным и может иметь конечные размеры, высокая эффективная интенсивность достижима даже при небольших мощностях рентгеновской трубки.

Приведенные выше примеры относятся к трубке с мощностью менее 10 Вт и конической рентгеновской линзе с количеством каналов порядка 10 6 .

Промышленная применимость

Предлагаемое устройство может быть реализовано на практике в любом из описанных многочисленных возможных вариантов, допускающих выбор как конструкции линзы, так и конкретной формы каналов в зависимости от технологических возможностей и других оснований для тех или иных предпочтений.

Подтвержденные в эксперименте показатели позволяют рассчитывать на широкое применение предлагаемого рентгеновского микроскопа как непосредственно в промышленности, в частности, в микротехнологиях, так и в научных исследованиях, в первую очередь в биологии и медицине.

Все изложенное выше, касающееся принципов построения и достигаемого результата, в равной степени применимо к микроскопам, использующим иные виды излучения в виде потока нейтральных частиц, в частности нейтронов, гамма-квантов, ультрафиолетовое и инфракрасное излучения, видимый свет, а также излучение в виде потока заряженных частиц, например ионов.

Формула изобретения

Рентгеновский микроскоп, содержащий протяженный рентгеновский источник (1), а также средство (4) для размещения исследуемого объекта (3) и средство (8) для регистрации и расположенную между ними рентгеновскую капиллярную линзу (7), имеющую каналы транспортировки излучения, расходящиеся в сторону средства (8) для регистрации, при этом средство (4) для размещения исследуемого объекта установлено между протяженным рентгеновским источником (1) и меньшим торцом (5) рентгеновской капиллярной линзы (7), отличающийся тем, что стенки каналов (14, 16) транспортировки излучения рентгеновской капиллярной линзы (1) выполнены с покрытием или из материала, обеспечивающего исключение явления полного внешнего отражения, и имеют форму боковой поверхности либо усеченных конуса или пирамиды, либо цилиндра или призмы.

Рентгеновский микроскоп - прибор, исследующий микроскопическую структуру и строение объекта при использовании рентгеновского излучения. Рентгеновский микроскоп имеет больший предел разрешения, чем световой микроскоп, потому что рентгеновское излучение имеет меньшую длину волны, чем световая волна. Рентгеновский микроскоп отличается от оптического светового микроскопа прежде всего оптической системой. Для фокусировки рентгеновских лучей нельзя использовать оптические световые линзы и призмы. Для отражения рентгеновских лучей в рентгеновском микроскопе используют изогнутые зеркальные или кристаллографические плоскости.

Рентгеновские лучи имеют большую проникающую способность и линейную структуру спектра. Рентгеновские микроскопы различаются по способу действия и бывают отражательными и проекционными.

Конструкция отражательного микроскопа включает источник рентгеновского излучения, изогнутые зеркала-отражатели, сделанные из кварца с золотым слоем, или отражателем может быть
изогнутый монокристалл, детектор изображения - фотопленка или электронно-оптический преобразователь. Но отражательные рентгеновские микроскопы не обладают большим разрешением, его ограничивают малый угол полного внешнего отражения, большое фокусное расстояние и трудоемкость качественной обработки зеркальной отражательной поверхности. Отражательные рентгеновские микроскопы создают сильно искаженные изображения. Если для фокусировки применяются изогнутые монокристаллы, изображение тоже получается искаженным из-за структуры самого монокристалла. Поэтому рентгеновские отражательные микроскопы не имеют широкого применения. Более эффективными оказываются проекционные рентгеновские микроскопы. Принцип действия проекционных рентгеновских микроскопов заключается в образовании теневой проекции исследуемого объекта в пучке расходящихся рентгеновских лучей, идущих от точечного источника рентгеновского излучения.

Конструкция проекционного рентгеновского микроскопа включает источник рентгеновских лучей - микрофокусную рентгеновскую трубку, камеру, в которой находится регистрирующее устройство, и камеру, в которой располагается объект исследования. Объект в таком микроскопе находится близко к источнику рентгеновского излучения, потому что в методе рентгеновской микроскопии отношение расстояний от источника излучений до детектора и до объекта дает увеличение изображения. В проекционных рентгеновских микроскопах фокус трубки находится на окне трубки, и их разрешение составляет до
0,5 мкм. Различные области объекта, имеющие разную плотность или состав, по-разному поглощают рентгеновское излучение. И чем больше разница коэффициентов этого поглощения, тем точнее результат и тем чувствительнее рентгеновский микроскоп. Поэтому проекционные рентгеновские микроскопы исследуют микроскопическое строение, структуру и свойства веществ и объектов и используются в различных областях производства и науки: в минералогии, биологии, металлургии, для определения качества отделки поверхностей, внутреннего строения, концентрации составов различных материалов. И при этом исследование проекционным рентгеновским микроскопом осуществляется проще, быстрее и качественнее, чем оптическим световым.

Сканирующие зондовые микроскопы.

Сканирующие зондовые микроскопы (СЗМ) основаны на другом принципе получения изображения, который позволяет преодолеть дифракционный предел разрешения. Принцип действия таких микроскопов основан на сканировании объекта сверхмалым зондом. Современные СЗМ позволяют регистрировать взаимодействие зонда с отдельными атомами и молекулами, благодаря чему СЗМ по разрешающей способности сопоставимы с электронными микроскопами, а по некоторым параметрам превосходят их. Прошедший или отраженный сигнал регистрируется и используется для формирования трехмерной топографии поверхности образца с помощью компьютерной обработки.

СЗМ в зависимости от принципа взаимодействия зонда и образца разделяют на электронные, атомно-силовые и ближнепольные.

Наиболее интересен ближнепольный растровый сканирующий микроскоп (БРОМ), который работает в видимой области. Формирование контраста в БРОМ может происходить на основе явлений поглощения, поляризации, отражения, люминесценции и др. эти возможности отсутствуют в электронной и атомно-силовой микроскопии. Кроме того, световой микроскоп является сравнительно дешевым и неразрушающим инструментом исследования и позволяет работать с биологическими и медицинскими препаратами в естественных условиях.

Принцип действия ближнепольного растрового микроскопа заключается в сканировании объекта оптическим зондом на расстоянии меньше длины волны от объекта (в ближнем поле). Роль светового зонда в этом микроскопе выполняют светоизлучающие острия с выходными отверстиями, радиус которых в 10-20 раз меньше длины волны света. Таким образом, ближнепольный растровый сканирующий микроскоп обеспечивает получение изображения с разрешением в десятки раз выше, чем у обычного микроскопа.

Рентгеновский микроскоп – устройство для исследования очень малых объектов, размеры которых сопоставимы с длиной волны рентгеновского излучения. Принцип действия основан на использовании электромагнитного излучения с длиной волны от 0,01 до 1 нанометра.

Рентгеновские микроскопы по разрешающей способности находятся между электронными и оптическими микроскопами. Теоретическая разрешающая способность рентгеновского микроскопа достигает 2-20 нм, что на порядок больше разрешающей способности оптического микроскопа (до 150 нм). В настоящее время существуют рентгеновские микроскопы с разрешающей способностью около 5 нм.

Разработка и применение рентгеновских микроскопов сопровождаются рядом серьезных трудностей. Рентгеновские лучи практически невозможно фокусировать обычными линзами. Дело в том, что показатель преломления рентгеновских лучей в различных прозрачных для них средах примерно одинаков и очень мало отличается от единицы. Колебания составляют порядка . Кроме этого, рентгеновские лучи также не отклоняются электрическим и магнитным полями, что не позволяет использовать для фокусировки электрические и магнитные линзы. Однако, в современной рентгеновской оптике в последнее время появились и уже нашли широкое применение линзы, действующие на основе эффекта обратного лучепреломления (основано на различии коэффициентов преломления в конденсированном веществе по отношении к воздуху). Функцию линзы выполняет линзообразная полость внутри материала, получившая название линзы Снигирева.



Рентгеновские лучи напрямую не воспринимаются человеческим глазом. Поэтому для наблюдения и фиксации результатов приходится применять технические средства (фототехнику или электронно-оптические преобразователи).

Существуют два типа рентгеновских микроскопов – отражательные и проекционные. В отражательных микроскопах используется явление преломления рентгеновских лучей при скользящем падении. Проекционные микроскопы используют высокую проникающую способность рентгеновских лучей. В них изучаемый объект помещается перед источником излучения просвечивается рентгеновскими лучами. Благодаря тому, что коэффициент поглощения рентгеновских лучей зависит от размеров атомов, через которые они проходят, такой метод позволяет получать информацию не только о структуре, но и химическом составе изучаемого объекта.

Рентгеновские микроскопы получили широкое применение в различных сферах науки, включая медицину, минералогию, металловедение.

С помощью рентгеновского проекционного микроскопа можно:

  • оценить качество тонких покрытий;
  • получить микро рентгенографии биологических и ботанических срезов толщиной до 200 мкм;
  • применить для анализа смеси порошков легких и тяжелых металлов, при изучении внутреннего строения объектов, непрозрачных для световых лучей и электронов.

Важным достоинством рентгеновских микроскопов является то, что с их помощью можно наблюдать не препарированные живые клетки.

РЕНТГЕНОВСКИЙ МИКРОСКОП . Благодаря малой длине волны рентг. излучения Р. м. может достигать дифракц. разрешения порядка неск. десятков нм и по теоретич. величине разрешения занимает промежуточное положение между оптическим и электронным микроскопами. Он позволяет изучать не только распределение общей плотности вещества, но и распределение плотностей отд. хим. элементов по их характеристич. рентг. излучению (поглощению). В отличие от электронного микроскопа, Р. м. позволяет исследовать живые бпол. объекты.

По способу формирования изображения различают проекционный, контактный, отражательный и дифракционный Р. м.; по принципу регистрации Р. м. может быть изображающим, образующим действительное пли теневое изображение объекта, или сканирующим (растровым), к-рый регистрирует излучение от одного элемента объекта, находящегося на оптич. оси микроскопа, а полное изображение (растр) создаётся при последоват. перемещении объекта относительно оси микроскопа с помощью прецизионного механизма. Преимущества последнего способа регистрации - независимость разрешения от полевых аберраций оптич. системы и, следовательно, отсутствие ограничений на величину поля зрения, а также меньшая радиац. нагрузка на объект исследования.

Р. м. работает в широком диапазоне энергий рентг. квантов - от десятков эВ до десятков кэВ. В ДВ-части спектра наиб. важен участок длин волн 2,3-4,4 нм, соответствующий т. н. «водяному окну», в к-ром достигается наиб. контраст между содержащим углерод органич. веществом живых клеток и жидкой цитоплазмой. Р. м., работающие в КВ-части диапазона, применяют для исследований структуры разл. конструкц. материалов, содержащих элементы с большим ат. номером.

Проекционный рентгеновский микроскоп для наблюдения структуры самосветящихся объектов представляет собой камеру-обскуру (рис. 1,а), отверстие находится на малом расстоянии (S 1 ) от источника О и на большом (S 2) - от регистрирующего экрана Э или детектора. Увеличение такого проекционного Р. м. М = S 2 /S 1 , разрешение определяется диаметром отверстия d и условиями дифракции, дифракц. предел составляет

Рис. 1. Схемы проекционных рентгеновских микроскопов для исследования структуры самосветящихся (а) и просвечиваемых (б) объектов; О - объект; И - источник излучения; Э - экран .

В просвечивающем проекционном Р. м. (рис. 1,б) микрофокусный рентг. источник И создаёт теневое изображение объекта О на экране Э, регистрируемое на фотоплёнку или детектором телевиз. типа. Для источника конечного размера d разрешение такого Р. м. определяется суммой , где и в обычном случае составляет ~1 мкм. Недостатки проекционного Р. м.- малая апертура и большая радиац. нагрузка на просвечиваемый объект.

Контактный рентгеновский микроскоп является предельным случаем проекционного Р. м. при S 2 , равном толщине образца, к-рый устанавливается в непосредств. контакте с фотоплёнкой или экраном. Этот метод иногда называют микрорадиографией. Источник И устанавливается на значит. удалении от образца О, причём размер и соответственно мощность источника могут быть значительно больше, чем в случае проекционного Р. м. Разрешение зависит от толщины образца t и контраста между «тёмными» и «светлыми» деталями объекта, в дифракц. пределе . Напр., при = 3 нм и t = 3 мкм нм. Для регистрации изображений с таким разрешением используют фоторезисты ,применяемые в фотолитографии и имеющие существенно более высокое собств. разрешение (напр., для рсзиста ПММА - 5 нм). После проявления или травления изображение объекта увеличивается с помощью электронного или оптич. микроскопа.

Отражательный рентгеновский микроскоп может быть и изображающим, и сканирующим, с оптикой скользящего падения или нормального падения с многослойным покрытием (см. Рентгеновская оптика ).Р. м. этого типа работают в области < 4 кэВ, рассматривается возможность осуществить эту схему Р. м. для более «жёсткого» излучения (в области- 10 кэВ). Классич. тип отражательного Р. м. скользящего падения - микроскоп Киркпатрика - Баэза, состоящий из пары скрещенных сферич. или цилиндрич. зеркал (рис. 2). В этой схеме источник О и зеркала А и Б расположены таким образом, что меридиональное О" и сагиттальное астигматические промежуточные изображения источника (см. Изображение оптическое) , создаваемые зеркалом А , были бы соответственно сагиттальным и меридиональным изображениями для зеркала Б, к-рое благодаря обратимости объекта и изображения создаёт стигматическое увеличенное изображение источника в точке О 1 . Предельное дифракц. разрешение таких ( - критич. угол полного внеш. отражения). Для однородных покрытий , поэтому это отношение не зависит от и в области 0,1 < < 4 кэВ для наиб. плотных металлич. покрытий (напр., платины) составляет 5-7 нм. Реальное разрешение Р. м. Киркпатрпка - Баэза определяется сферич. аберрацией и комой и обычно составляет 1 мкм. Оно может быть повышено только за счёт уменьшения размеров зеркал и, следовательно, светосилы, к-рая в результате не намного превышает светосилу проекционного Р. м.

Рис. 2. Схема отражательного рентгеновского микроскопа скользящего падения Киркпатрика - Баэза; О - источник (излучающий объект); А и Б - сферические или цилиндрические зеркала; О" и - промежуточные астигматические изображения; O 1 - действительное изображение .

Значительно большей (на 2-3 порядка) светосилой обладают отражательные Р. м. скользящего падения с зеркальными системами Вольтера, из к-рых чаще используется система гиперболоид-эллипсоид (см. рис. 2 в ст. Рентгеновская оптика) . Теоретич. разрешение таких Р. м. на оптич. осп определяется соотношением , где М - увеличение,- угол скольжения, примерно равный % апертуры. Напр., для сканирующего Р. м., дающего уменьшенное изображение источника в плоскости просвечиваемого объекта с М = 0,3 и , при= 2,5 нм =5 нм. Реальное разрешение зависит от точности изготовления зеркал, имеющих глубоко асферическую форму, и составляет ~1 мкм; необходимая для получения теоретич. разрешения точность (-1 нм) пока недостижима для совр. технологии. Полевые аберрации отражат. Р. м. этого типа довольно велики и ограничивают поле зрения до угл. величины ~ 1°. Использование многослойных интерференц. покрытий позволяет увеличить угол q и тем самым повысить светосилу отражательного Р. м. скользящего падения.

Весьма перспективен отражательный Р. м. нормального падения по схеме Шварцшильда, в к-ром используются зеркала с многослойным покрытием (рис. 3).

Рис. 3. Схема отражающего рентгеновского микроскопа с зеркалами нормального падения по схеме Шварцшильда; И - источник; З 1 и З 2 - зеркала с многослойным покрытием; О - объект; П - приёмник излучения .

Сканирующий микроскоп этого типа даёт уменьшенное изображение источника с помощью зеркал сферич. формы, расположенных почти концентрически. Для заданных параметров: числовой апертуры А , коэф. уменьшения М и расстояния от источника до первого зеркала S - существуют такие оптим. значения радиусов кривизны зеркал r 1 и r 2 и расстояния между ними, при к-рых сферич. аберрация, кома и астигматизм практически отсутствуют. Дифракц. разрешение на оптич. оси определяется, как и для оптич. микроскопа, отношением, при типичном значении А = 0,3-0,4 в диапазоне = 10-20 пм оно составляет 30-50 нм. Достижение такого разрешения требует точного изготовления зеркал и их взаимной юстировки с точностью порядка

В дифракционном рентгеновском микроскопе осн. элементом является зонная пластинка Френеля, к-рая для монохроматич. излучения представляет собой линзу с фокусным расстоянием , где r 1 - радиус первой зоны Френеля, - длина волны, m - порядок спектра. Дифракц. разрешение зонной пластинки Френеля определяется шириной крайней зоны: = 1,22, где п - номер крайней зоны. Светосила определяется диаметром Эффективность дифракции для зонных пластинок Френеля с амплитудной модуляцией составляет ок. 10% в первом, 2%- во втором и 1%- в третьем порядках спектра. Дифракц. Р. м. обычно работает в области

< 1 кэВ, т. к. для более жёсткого излучения тонкоплёночные зонные пластинки Френеля становятся прозрачными.

Схема изображающего дифракц. Р. м. приведена на рис. 4. В качестве источника наиб. часто используются синхротроны, накопит. кольца или ондуляторы, излучение к-рых предварительно монохроматизуют до спектральной ширины и с помощью конденсора направляют на образец О, устанавливаемый в плоскости диафрагмы Д. Микрозонная пластинка (МЗП) даёт увеличенное изображение объекта в плоскости детектора. Доза облучения образца существенно снижается в сканирующем дифракц. Р. м., в к-ром используется только одна фокусирующая зонная пластинка. Дифракц. Р. м. обеспечивали (к 1991) наиб. высокое из всех Р. м. разрешение (~50 нм), к-рое определяется предельными возможностями технологии изготовления зонных пластинок.

Рис. 4. Схема дифракционного рентгеновского микроскопа с зонными пластинками Френеля; И - источник излучения; Д 1 и Д 2 - диафрагмы; М - монохроматор с дифракционной решёткой; К - зонная пластинка Френеля - конденсор; МЗП - микрозонная пластинка; О - объект; П - приёмник излучения .

Применение рентгеновских микроскопов. Р. м. наиб. перспективны для задач биологии и медицины (рис. 5, 6). Они позволяют исследовать влажные живые биол. объекты - одноклеточные организмы, срезы тканей, отд. клетки, их ядра (без дополнит. окрашивания). Использование «мягкого» рентг. излучения вблизи полос поглощения лёгких элементов даёт возможность исследовать распределение этих элементов в структуре объекта. Биополимеры, состоящие из макромолекул (белки, нуклеиновые кислоты п т. д.), эффективно изучаются высокоразрешающим методом контактной рентг. микроскопии. Использование импульсных источников даёт возможность исследовать динамику процессов в нестационарных объектах (напр., живых клетках). Для получения трёхмерных изображений тканей в медицине разрабатываются методы компьютерной рентгеновской томографии микрообъектов.

Р. м. успешно применяется в материаловедении при изучении особенностей структуры поликристаллических, полимерных и композитных материалов (рис. 7).

Рис. 5. Контактное микрографическое изображение живого тромбоцита человека, полученное с использованием импульсного рентгеновского источника (плазма пробоя в газе). На изображении различимы детали размером менее 10 нм .

Рис. 6. Изображение диатомовых водорослей, полученное с помощью дифракционного рентгеновского микроскопа. Длина волны излучения 4,5 нм. Масштаб соответствует 1 мкм .

Рис. 7. Контактное микрографическое изображение образца композитного материала (стеклопластик). Светлые участки - стеклянные волокна (диаметр ок. 10 мкм), тёмные - полимер. Изображение характеризует плотность, однородность, направленность и распределение волокон. Толщина образца 400 мкм, энергия рентгеновских квантов < 30 кэВ .

Для развития методов рентг. микроскопии важное значение имеет создание высокоинтенсивных источников рентг. излучения. Один из перспективных источников - высокотемпературная лазерная плазма. С помощью изображающих зеркальных Р. м. изучается структура и динамика процессов, происходящих в такой плазме.

Лит.: Рентгеновская оптика и микроскопия, под ред. Г. Шмаля и Д. Рудольфа, пер. с англ., М., 1987. В. А. Слемзин .

Рентгеновский микроскоп

Рентгеновский микроскоп – прибор, исследующий микроскопическую структуру и строение объекта при использовании рентгеновского излучения. Рентгеновский микроскоп имеет больший предел разрешения, чем световой микроскоп, потому что рентгеновское излучение имеет меньшую длину волны, чем световая волна. Рентгеновский микроскоп отличается от оптического светового микроскопа прежде всего оптической системой. Для фокусировки рентгеновских лучей нельзя использовать оптические световые линзы и призмы. Для отражения рентгеновских лучей в рентгеновском микроскопе используют изогнутые зеркальные или кристаллографические плоскости.

Рентгеновские лучи имеют большую проникающую способность и линейную структуру спектра. Рентгеновские микроскопы различаются по способу действия и бывают отражательными и проекционными.

Конструкция отражательного микроскопа включает источник рентгеновского излучения, изогнутые зеркала-отражатели, сделанные из кварца с золотым слоем, или отражателем может быть изогнутый монокристалл, детектор изображения – фотопленка или электронно-оптический преобразователь. Но отражательные рентгеновские микроскопы не обладают большим разрешением, его ограничивают малый угол полного внешнего отражения, большое фокусное расстояние и трудоемкость качественной обработки зеркальной отражательной поверхности. Отражательные рентгеновские микроскопы создают сильно искаженные изображения. Если для фокусировки применяются изогнутые монокристаллы, изображение тоже получается искаженным из-за структуры самого монокристалла. Поэтому рентгеновские отражательные микроскопы не имеют широкого применения. Более эффективными оказываются проекционные рентгеновские микроскопы. Принцип действия проекционных рентгеновских микроскопов заключается в образовании теневой проекции исследуемого объекта в пучке расходящихся рентгеновских лучей, идущих от точечного источника рентгеновского излучения. Конструкция проекционного рентгеновского микроскопа включает источник рентгеновских лучей – микрофокусную рентгеновскую трубку, камеру, в которой находит

Данный текст является ознакомительным фрагментом. Из книги 100 великих изобретений автора Рыжов Константин Владиславович

28. МИКРОСКОП Приблизительно в то же время, когда началось исследование космоса с помощью телескопов, были сделаны первые попытки раскрыть с помощью линз тайны микромира.Известно, что мелкие предметы, даже если они хорошо освещены, посылают глазу слишком слабый пучок

автора Коллектив авторов

Микроскоп Микроскоп – это оптический прибор, предназначенный для получения увеличенных изображений каких-либо объектов или деталей структуры этих объектов, которые не видимы невооруженным глазом.Вообще микроскоп представляет собой систему, состоящую из двух линз, но

Из книги Большая энциклопедия техники автора Коллектив авторов

Рентгеновский аппарат Рентгеновский аппарат – это прибор, предназначенный для исследования (рентгенодиагностика) и лечения болезней (рентгенотерапия) при помощи рентгеновских лучей.Дисциплина, которая занимается рентгенодиагностикой и рентгенотерапией, называется

Из книги Большая энциклопедия техники автора Коллектив авторов

Рентгеновский гониометр (см. «Рентгеновская камера», «Рентгеновский дифрактометр»)Рентгеновский гониометр – прибор, регистрирующий на фотопленке дифракционную картину, при помощи положения наблюдаемого образца и детектора он вызывает дифракцию рентгеновских лучей.

Из книги Большая энциклопедия техники автора Коллектив авторов

Рентгеновский дифрактометр (см. «Рентгеновский гониометр»)Рентгеновский дифрактометр – прибор, определяющий интенсивность и направление рентгеновского излучения, которое дифрагирует на исследуемом объекте, имеющем кристаллическую структуру. Он измеряет

Из книги Большая энциклопедия техники автора Коллектив авторов

Микроскоп Микроскоп – оптический прибор, позволяющий получать изображения объектов, не видимых вооруженным глазом. Применяется для наблюдения микроорганизмов, клеток, кристаллов, структур сплавов с точностью до 0,20 мкм. Это разрешение микроскопа – наименьшее

Из книги 100 знаменитых изобретений автора Пристинский Владислав Леонидович