Сходство свойств галогенов и их соединений объясняется. Химические свойства галогенов

Химия Элементов

Неметаллы VIIА-подгруппы

Элементы VIIА-подгруппы являются типичными неметаллами с высокой

электротрицательностью, они имеют групповое название – «галогены».

Основные вопросы, рассматриваемые в лекции

Общая характеристика неметаллов VIIА-подгруппы. Электронное строение, важнейшие характеристики атомов. Наиболее характерные сте-

пени окисления. Особенности химии галогенов.

Простые вещества.

Природные соединения.

Соединения галогенов

Галогенводородные кислоты и их соли. Соляная и плавиковая ки-

слота, получение и применение.

Галогенидные комплексы.

Бинарные кислородные соединения галогенов. Неустойчивость ок-

Окислительно-восстановительные свойства простых веществ и со-

единений. Реакции диспропорционирования. Диаграммы Латимера.

Исполнитель:

Мероприятие №

Химия элементов VIIA-подгруппы

Общая характеристика

Марганец

Технеций

VIIА-группу образуют р-элементы: фтор F, хлор

Cl, бром Br, иод I и астат At.

Общая формула валентных электронов – ns 2 np 5 .

Все элементы VIIА-группы – типичные неметаллы.

Как видно из распреде-

ления валентных электронов

по орбиталям атомам

не хватает всего одного электрона

для формирования устойчивой восьмиэлектронной обо-

лочки, поэтому у них сильно выражена тенденция к

присоединению электрона.

Все элементы легко образуют простые однозаряд-

ные анионы Г – .

В форме простых анионов элементы VIIА-группы находятся в природной воде и в кристаллах природных солей, например, галита NaCl, сильвина KCl, флюорита

CaF2 .

Общее групповое название элементов VIIА-

группы «галогены» , т. е. «рождающие соли», связано с тем, что большинство их соединений с металлами пред-

ставляет собой типичные соли (CaF2 , NaCl, MgBr2 , KI), ко-

торые могут быть получены при непосредственном взаи-

модействии металла с галогеном. Свободные галогены получают из природных солей, поэтому название «галогены» также переводят, как «рожденные из солей».

Исполнитель:

Мероприятие №

Минимальная степень окисления (–1) является наиболее устойчивой

у всех галогенов.

Некоторые характеристики атомов элементов VIIА-группы приведены в

Важнейшие характеристики атомов элементов VIIА-группы

Относитель-

Сродство

ная электро-

отрицатель-

ионизации,

ность (по

Поллингу)

увеличение числа

электронных слоев;

увеличение размера

уменьшение элек-

троотрицательности

Галогены отличаются высоким сродством к электрону (максимальным у

Cl) и очень большой энергией ионизации (максимальной у F) и максимально

возможной в каждом из периодов электроотрицательностью. Фтор – самый

электроотрицательный из всех химических элементов.

Наличие одного неспаренного электрона в атомах галогенов обуславли-

вает объединение атомов в простых веществах в двухатомные молекулы Г2 .

Для простых веществ галогенов наиболее характерны окислитель-

ные свойства , наиболее сильные у F2 и ослабевающие при переходе к I2 .

Галогены характеризуются наибольшей реакционной способностью из всех неметаллических элементов. Фтор даже среди галогенов выделя-

ется чрезвычайно высокой активностью.

Элемент второго периода – фтор наиболее сильно отличается от дру-

гих элементов подгруппы . Это общая закономерность для всех неметаллов.

Исполнитель:

Мероприятие №

Фтор , как самый электроотрицательный элемент, не проявляет поло-

жительных степеней окисления . В любых соединениях, в том числе с ки-

слородом, фтор находится в степени окисления (-1).

Все остальные галогены проявляют положительные степени окис-

ления вплоть до максимальной +7.

Наиболее характерные степени окисления галогенов:

F : -1, 0;

Cl, Br, I: -1, 0, +1, +3, +5, +7.

У Cl известны оксиды, в которых он находится в степенях окисления: +4 и +6.

Наиболее важными соединениями галогенов, в положительных сте-

пенях окисления, являются кислородсодержащие кислоты и их соли.

Все соединения галогенов в положительных степенях окисления яв-

ляются сильными окислителями.

жуточную степень окисления. Диспропорционированию способствует щелочная среда.

Практическое применение простых веществ и кислородных соедине-

ний галогенов связано главным образом с их окислительным действием.

Самое широкое практическое применение находят простые вещества Cl2

и F2 . Наибольшее количество хлора и фтора расходуется в промышленном ор-

ганическом синтезе: в производстве пластмасс, хладоагентов, растворителей,

ядохимикатов, лекарств. Значительное количество хлора и йода используется для получения металлов и для их рафинирования. Хлор используется также

для отбеливания целлюлозы, для обеззараживания питьевой воды и в произ-

водстве хлорной извести и соляной кислоты. Соли оксокислот используются в производстве взрывчатых веществ.

Исполнитель:

Мероприятие №

Широкое практическое применение находят кислоты – соляная и плави-

Фтор и хлор принадлежат к двадцати самым распространенным элемен-

там, значительно меньше в природе брома и иода. Все галогены находятся в природе в степени окисления (–1). Лишь йод встречается в виде соли KIO3 ,

которая как примесь входит в чилийскую селитру (KNO3 ).

Астат – искусственно полученный радиоактивный элемент (его нет в природе). Неустойчивость At отражается в названии, которое происходит от греч. «астатос» – «неустойчивый». Астат является удобным –излучателем для радиотерапии раковых опухолей.

Простые вещества

Простые вещества галогенов образованы двухатомными молекулами Г2 .

В простых веществах при переходе от F2 к I2 с увеличением числа элек-

тронных слоев и возрастанием поляризуемости атомов происходит усиление

межмолекулярного взаимодействия, приводящее к изменению агрегатного со-

стояния при стандартных условиях.

Фтор (при обычных условиях) – желтый газ, при –181о С переходит в

жидкое состояние.

Хлор – желто-зеленый газ, переходит в жидкость при –34о С. С цветом га-

за связано название Cl, оно происходит от греческого «хлорос» – «желто–

зеленый». Резкое повышение температуры кипения у Cl2 по сравнению с F2 ,

указывает на усиление межмолекулярного взаимодействия.

Бром – темно-красная, очень летучая жидкость, кипит при 58,8о С. На-

звание элемента связано с резким неприятным запахом газа и образовано от

«бромос» – «зловонный».

Йод – темно-фиолетовые кристаллы, со слабым «металлическим» бле-

ском, которые при нагревании легко возгоняется, образуя фиолетовые пары;

при быстром охлаждении

паров до 114о С

образуется жидкость. Температура

Исполнитель:

Мероприятие №

кипения йода равна 183о С. От цвета паров йода происходит его название –

«иодос» – «фиолетовый».

Все простые вещества имеют резкий запах и являются ядовитыми.

Вдыхание их паров вызывает раздражение слизистых оболочек и дыхательных органов, а при больших концентрациях – удушье. Во время первой мировой войны хлор применяли в качестве отравляющего вещества.

Газообразный фтор и жидкий бром вызывают ожоги кожи. Работая с га-

логенами, следует соблюдать меры предосторожности.

Поскольку простые вещества галогенов образованы неполярными моле-

кулами, они хорошо растворяются в неполярных органических растворителях:

спирте, бензоле, четыреххлористом углероде и т. п. В воде хлор, бром и иод ограниченно растворимы, их водные растворы называют хлорной, бромной и иодной водой. Лучше других растворяется Br2 , концентрация брома в насы-

щенном растворе достигает 0,2 моль/л, а хлора – 0,1 моль/л.

Фтор разлагает воду:

2F2 + 2H2 O = O2 + 4HF

Галогены проявляют высокую окислительную активность и перехо-

дят в галогенидные анионы.

Г2 + 2e–  2Г–

Особенно высокой окислительной активностью обладает фтор. Фтор окисляет благородные металлы (Au, Pt).

Pt + 3F2 = PtF6

Взаимодействует даже с некоторыми инертными газами (криптоном,

ксеноном и радоном), например,

Xe + 2F2 = XeF4

В атмосфере F2 горят многие очень устойчивые соединения, например,

вода, кварц (SiO2 ).

SiO2 + 2F2 = SiF4 + O2

Исполнитель:

Мероприятие №

В реакциях с фтором даже такие сильные окислители, как азотная и сер-

ная кислота, выступают в роли восстановителей, при этом фтор окисляет вхо-

дящий в их состав О(–2).

2HNO3 + 4F2 = 2NF3 + 2HF + 3O2 H2 SO4 + 4F2 = SF6 + 2HF + 2O2

Высокая реакционная способность F2 создает трудности с выбором кон-

струкционных материалов для работы с ним. Обычно для этих целей использу-

ют никель и медь, которые, окисляясь, образуют на своей поверхности плотные защитные пленки фторидов. Название F связано с его агрессивным действи-

ем, оно происходит от греч. «фторос» – «разрушающий».

В ряду F2 , Cl2 , Br2 , I2 окислительная способность ослабевает из-за уве-

личения размера атомов и уменьшения электроотрицательности.

В водных растворах окислительные и восстановительные свойства ве-

ществ обычно характеризуют с помощью электродных потенциалов. В таблице приведены стандартные электродные потенциалы (Ео , В) для полуреакций вос-

становления галогенов. Для сравнения также приведено значение Ео для ки-

слорода – самого распространенного окислителя.

Стандартные электродные потенциалы для простых веществ галогенов

Ео , В, для реакции

O2 + 4e– + 4H+  2H2 O

Ео , В

для электродной

2Г– +2е – = Г2

Уменьшение окислительной активности

Как видно из таблицы, F2 – окислитель значительно более сильный,

чем О2 , поэтому F2 в водных растворах не существует, он окисляет воду,

восстанавливаясь до F– . Судя по значению Eо окислительная способность Cl2

Исполнитель:

Мероприятие №

также выше, чем у О2 . Действительно при длительном хранении хлорной воды происходит ее разложение с выделением кислорода и с образованием HCl. Но реакция идет медленно (молекула Cl2 заметно прочнее, чем молекула F2 и

энергия активации для реакций с хлором выше), быстрее происходит диспро-

порционирование:

Cl2 + H2 O  HCl + HOCl

В воде оно не доходит до конца (К = 3,9 . 10–4 ), поэтому Cl2 существует в водных растворах. Еще большей устойчивостью в воде характеризуются Br2 и I2 .

Диспропорционирование это очень характерная окислительно-

восстановительная реакция для галогенов. Диспропорционирование уси-

ливается в щелочной среде.

Диспропорционирование Cl2 в щелочи приводит к образованию анионов

Cl– и ClO– . Константа диспропорционирования равна 7,5 . 1015 .

Cl2 + 2NaOH = NaCl + NaClO + H2 O

При диспропорционировании йода в щелочи образуются I– и IO3 – . Ана-

логично йоду диспропорционирует Br2 . Изменение продукта диспропорцио-

нирования обусловлено тем, что анионы ГО– и ГО2 – у Br и I неустойчивы.

Реакция диспропорционирования хлора используется в промышленно-

сти для получения сильного и быстро действующего окислителя гипохлорита,

белильной извести, бертолетовой соли.

3Cl2 + 6 KOH = 5KCl + KClO3 + 3H2 O

Исполнитель:

Мероприятие №

Взаимодействие галогенов с металлами

Галогены энергично взаимодействуют со многими металлами, например:

Mg + Cl2 = MgCl2 Ti + 2I2  TiI4

ГалогенидыNa + , в которых металл имеет низкую степень окисления (+1, +2),

– это солеобразные соединения с преимущественно ионной связью. Как прави-

ло, ионные галогениды – это твердые вещества с высокой температурой плав-

Галогениды металлов, в которых металл имеет высокую степень окисле-

ния, – это соединения с преимущественно ковалентной связью.

Многие из них при обычных условиях являются газами, жидкостями или легкоплавкими твердыми веществами. Например, WF6 – газ, MoF6 – жидкость,

TiCl4 – жидкость.

Взаимодействие галогенов с неметаллами

Галогены непосредственно взаимодействуют со многими неметаллами:

водородом, фосфором, серой и др. Например:

H2 + Cl2 = 2HCl 2P + 3Br2 = 2PBr3 S + 3F2 = SF6

Связь в галогенидах неметаллов преимущественно ковалентная.

Обычно эти соединения имеют невысокие температуры плавления и кипения.

При переходе от фтора к йоду ковалентный характер галогенидов усиливается.

Ковалентные галогениды типичных неметаллов являются кислотными соединениями; при взаимодействии с водой они гидролизуются с образованием кислот. Например:

PBr3 + 3H2 O = 3HBr + H3 PO3

PI3 + 3H2 O = 3HI + H3 PO3

PCl5 + 4H2 O = 5HCl + H3 PO4

Исполнитель:

Мероприятие №

Две первые реакции используются для получения бромо- и иодоводород-

ной кислоты.

Интергалиды. Галогены, соединяясь друг с другом, образуют интерга-

лиды . В этих соединениях более легкий и более электроотрицательный галоген находится в степени окисления (–1), а более тяжелый – в положительной сте-

пени окисления.

За счет непосредственного взаимодействия галогенов при нагревании получаются: ClF, BrF, BrCl, ICl. Существуют и более сложные интергалиды:

ClF3 , BrF3 , BrF5 , IF5 , IF7 , ICl3 .

Все интергалиды при обычных условиях – жидкие вещества с низкими температурами кипения. Интергалиды имеют высокую окислительную ак-

тивность . Например, в парах ClF3 горят такие химически устойчивые вещества, как SiO2 , Al2 O3 , MgO и др.

2Al2 O3 + 4ClF3 = 4 AlF3 + 3O2 + 2Cl2

Фторид ClF 3 – агрессивный фторирующий реагент, действующий быст-

рее F2 . Его применяют в органических синтезах и для получения защитных пленок на поверхности никелевой аппаратуры для работы с фтором.

В воде интергалиды гидролизуются с образованием кислот. Например,

ClF5 + 3H2 O = HClO3 + 5HF

Галогены в природе. Получение простых веществ

В промышленности галогены получают из их природных соединений. Все

процессы получения свободных галогенов основаны на окислении галоге-

нид-ионов.

2Г –  Г2 + 2e–

Значительное количество галогенов находится в природных водах в виде анионов: Cl– , F– , Br – , I– . В морской воде может содержаться до 2,5 % NaCl.

Бром и иод получают из воды нефтяных скважин и морской воды.

Исполнитель:

Мероприятие №

Атом водорода имеет электронную формулу внешнего (и единственного) электронного уровня 1s 1 . С одной стороны, по наличию одного электрона на внешнем электронном уровне атом водорода похож на атомы щелочных металлов. Однако, ему, так же как и галогенам не хватает до заполнения внешнего электронного уровня всего одного электрона, поскольку на первом электронном уровне может располагаться не более 2-х электронов. Выходит, что водород можно поместить одновременно как в первую, так и в предпоследнюю (седьмую) группу таблицы Менделеева, что иногда и делается в различных вариантах периодической системы:

С точки зрения свойств водорода как простого вещества, он, все-таки, имеет больше общего с галогенами. Водород, также как и галогены, является неметаллом и образует аналогично им двухатомные молекулы (H 2).

В обычных условиях водород представляет собой газообразное, малоактивное вещество. Невысокая активность водорода объясняется высокой прочностью связи между атомами водорода в молекуле, для разрыва которой требуется либо сильное нагревание, либо применение катализаторов, либо и то и другое одновременно.

Взаимодействие водорода с простыми веществами

с металлами

Из металлов водород реагирует только с щелочными и щелочноземельными! К щелочным металлам относятся металлы главной подгруппы I-й группы (Li, Na, K, Rb, Cs, Fr), а к щелочно-земельным — металлы главной подгруппы II-й группы, кроме бериллия и магния (Ca, Sr, Ba, Ra)

При взаимодействии с активными металлами водород проявляет окислительные свойства, т.е. понижает свою степень окисления. При этом образуются гидриды щелочных и щелочноземельных металлов, которые имеют ионное строение. Реакция протекает при нагревании:

Следует отметить, что взаимодействие с активными металлами является единственным случаем, когда молекулярный водород Н 2 является окислителем.

с неметаллами

Из неметаллов водород реагирует только c углеродом, азотом, кислородом, серой, селеном и галогенами!

Под углеродом следует понимать графит или аморфный углерод, поскольку алмаз — крайне инертная аллотропная модификация углерода.

При взаимодействии с неметаллами водород может выполнять только функцию восстановителя, то есть только повышать свою степень окисления:

Взаимодействие водорода со сложными веществами

с оксидами металлов

Водород не реагирует с оксидами металлов, находящихся в ряду активности металлов до алюминия (включительно), однако, способен восстанавливать многие оксиды металлов правее алюминия при нагревании:

c оксидами неметаллов

Из оксидов неметаллов водород реагирует при нагревании с оксидами азота, галогенов и углерода. Из всех взаимодействий водорода с оксидами неметаллов особенно следует отметить его реакцию с угарным газом CO.

Смесь CO и H 2 даже имеет свое собственное название – «синтез-газ», поскольку из нее в зависимости от условий могут быть получены такие востребованные продукты промышленности как метанол, формальдегид и даже синтетические углеводороды:

c кислотами

С неорганическими кислотами водород не реагирует!

Из органических кислот водород реагирует только с непредельными, а также с кислотами, содержащими функциональные группы способные к восстановлению водородом, в частности альдегидные, кето- или нитрогруппы.

c солями

В случае водных растворов солей их взаимодействие с водородом не протекает. Однако при пропускании водорода над твердыми солями некоторых металлов средней и низкой активности возможно их частичное или полное восстановление, например:

Химические свойства галогенов

Галогенами называют химические элементы VIIA группы (F, Cl, Br, I, At), а также образуемые ими простые вещества. Здесь и далее по тексту, если не сказано иное, под галогенами будут пониматься именно простые вещества.

Все галогены имеют молекулярное строение, что обусловливает низкие температуры плавления и кипения данных веществ. Молекулы галогенов двухатомны, т.е. их формулу можно записать в общем виде как Hal 2 .

Следует отметить такое специфическое физическое свойство йода, как его способность к сублимации или, иначе говоря, возгонке . Возгонкой , называют явление, при котором вещество, находящееся в твердом состоянии, при нагревании не плавится, а, минуя жидкую фазу, сразу же переходит в газообразное состояние.

Электронное строение внешнего энергетического уровня атома любого галогена имеет вид ns 2 np 5 , где n – номер периода таблицы Менделеева, в котором расположен галоген. Как можно заметить, до восьмиэлектронной внешней оболочки атомам галогенов не хватает всего одного электрона. Из этого логично предположить преимущественно окисляющие свойства свободных галогенов, что подтверждается и на практике. Как известно, электроотрицательность неметаллов при движении вниз по подгруппе снижается, в связи с чем активность галогенов уменьшается в ряду:

F 2 > Cl 2 > Br 2 > I 2

Взаимодействие галогенов с простыми веществами

Все галогены являются высокоактивными веществами и реагируют с большинством простых веществ. Однако, следует отметить, что фтор из-за своей чрезвычайно высокой реакционной способности может реагировать даже с теми простыми веществами, с которыми не могут реагировать остальные галогены. К таким простым веществам относятся кислород, углерод (алмаз), азот, платина, золото и некоторые благородные газы (ксенон и криптон). Т.е. фактически, фтор не реагирует лишь с некоторыми благородными газами.

Остальные галогены, т.е. хлор, бром и йод, также являются активными веществами, однако менее активными, чем фтор. Они реагируют практически со всеми простыми веществами, кроме кислорода, азота, углерода в виде алмаза, платины, золота и благородных газов.

Взаимодействие галогенов с неметаллами

водородом

При взаимодействии всех галогенов с водородом образуются галогеноводороды с общей формулой HHal. При этом, реакция фтора с водородом начинается самопроизвольно даже в темноте и протекает со взрывом в соответствии с уравнением:

Реакция хлора с водородом может быть инициирована интенсивным ультрафиолетовым облучением или нагреванием. Также протекает со взрывом:

Бром и йод реагируют с водородом только при нагревании и при этом, реакция с йодом является обратимой:

фосфором

Взаимодействие фтора с фосфором приводит к окислению фосфора до высшей степени окисления (+5). При этом происходит образование пентафторида фосфора:

При взаимодействии хлора и брома с фосфором возможно получение галогенидов фосфора как в степени окисления + 3, так и в степени окисления +5, что зависит от пропорций реагирующих веществ:

При этом в случае белого фосфора в атмосфере фтора, хлора или жидком броме реакция начинается самопроизвольно.

Взаимодействие же фосфора с йодом может привести к образованию только триодида фосфора из-за существенно меньшей, чем у остальных галогенов окисляющей способности:

серой

Фтор окисляет серу до высшей степени окисления +6, образуя гексафторид серы:

Хлор и бром реагируют с серой, образуя соединения, содержащие серу в крайне не свойственных ей степенях окисления +1 и +2. Данные взаимодействия являются весьма специфичными, и для сдачи ЕГЭ по химии умение записывать уравнения этих взаимодействий не обязательно. Поэтому три нижеследующих уравнения даны скорее для ознакомления:

Взаимодействие галогенов с металлами

Как уже было сказано выше, фтор способен реагировать со всеми металлами, даже такими малоактивными как платина и золото:

Остальные галогены реагируют со всеми металлами кроме платины и золота:

Реакции галогенов со сложными веществами

Реакции замещения с галогенами

Более активные галогены, т.е. химические элементы которых расположены выше в таблице Менделеева, способны вытеснять менее активные галогены из образуемых ими галогеноводородных кислот и галогенидов металлов:

Аналогичным образом, бром и йод вытесняют серу из растворов сульфидов и или сероводорода:

Хлор является более сильным окислителем и окисляет сероводород в его водном растворе не до серы, а до серной кислоты:

Взаимодействие галогенов с водой

Вода горит во фторе синим пламенем в соответствии с уравнением реакции:

Бром и хлор реагируют с водой иначе, чем фтор. Если фтор выступал в роли окислителя, то хлор и бром диспропорционируют в воде, образуя смесь кислот. При этом реакции обратимы:

Взаимодействие йода с водой протекает в настолько ничтожно малой степени, что им можно пренебречь и считать, что реакция не протекает вовсе.

Взаимодействие галогенов с растворами щелочей

Фтор при взаимодействии с водным раствором щелочи опять же выступает в роли окислителя:

Умение записывать данное уравнение не требуется для сдачи ЕГЭ. Достаточно знать факт о возможности такого взаимодействия и окислительной роли фтора в этой реакции.

В отличие от фтора, остальные галогены в растворах щелочей диспропорционируют, то есть одновременно и повышают и понижают свою степень окисления. При этом, в случае хлора и брома в зависимости от температуры возможно протекание по двум разным направлениям. В частности, на холоду реакции протекают следующим образом:

а при нагревании:

Йод реагирует с щелочами исключительно по второму варианту, т.е. с образованием йодата, т.к. гипоиодит не устойчив не только при нагревании, но также при обычной температуре и даже на холоду.

1. Общая характеристика галогенов . Строение атомов и степени окисления галогенов в соединениях. Характер изменения атомных радиусов, энергий ионизации, сродства к электрону и электроотрицательности в ряду F - At. Характер химических связей галогенов с металлами и неметаллами. Устойчивость высших валентных состояний галогенов. Особенности фтора.

1. с. 367-371; 2. с. 338-347; 3. с. 415-416; 4. с. 270-271; 7. с. 340-345.

2. Строение молекул и физические свойства простых веществ галогенов . Характер химической связи в молекулах галогенов. Физические свойства галогенов: агрегатное состояние, температуры плавления и кипения в ряду фтор – астат, растворимость в воде и в органических растворителях.

1. с. 370-372; 2. с. 340-347; 3. с. 415-416; 4. с. 271-287; 8. с. 367-370.

3. Химические свойства галогенов . Причины высокой химической активности галогенов и её изменение по группе. Отношение к воде, растворам щелочей, к металлам и неметаллам. Влияние температуры на состав продуктов диспропорционирования галогенов в растворах щелочей. Особенности химии фтора. Природные соединения галогенов. Принципы промышленных и лабораторных способов получения галогенов. Применение галогенов. Физиологическое и фармакологическое действие галогенов и их соединений на живые организмы. Токсичность галогенов и меры предосторожности при работе с ними.

1. с. 372-374, с. 387-388; 2. с. 342-347; 3. с. 416-419; 4. с. 276-287; 7. с.340-345, с. 355; 8. с. 380-382.

Простые вещества галогены, в отличие от водорода, очень активны. Для них наиболее характерны окислительные свойства, которые в ряду F 2 – At 2 постепенно ослабевают. Самый активный из галогенов - фтор: в его атмосфере самовоспламеняются даже вода и песок! Галогены энергично реагируют с большинством металлов, с неметаллами, со сложными веществами.

4. Получение и применение галогенов .

1. с. 371-372; 2. с. 345-347; 3. с. 416-419; 4. с. 275-287; 7. с.340-345; 8. с. 380-382.

Все способы получения галогенов основаны на реакциях окисления галогенид-анионов различными окислителями: 2Гал -1 -2е - = Гал

Галогены в промышленности получают электролизом расплавов (F 2 и Cl 2) или водных растворов (Cl 2) галогенидов; вытеснением менее активных галогенов более активными из соответствующих галогенидов (I 2 - бромом; I 2 или Br 2 - хлором)

Галогены в лаборатории получают окислением галогеноводородов (HCl, HBr) в растворах сильными окислителями (KMnO 4 , K 2 Cr 2 O 7 , PbO 2 , MnO 2 , KClO 3); окислением галогенидов (NaBr, KI) указанными окислителями в кислой среде (H 2 SO 4).

Бинарные соединения галогенов

1. Соединения с водородом (галогеноводороды) . Характер химической связи в молекулах. Полярность молекул. Физические свойства, агрегатное состояние, растворимость в воде. Характер изменения температур плавления и кипения в ряду HF – HI. Ассоциация молекул фтороводорода. Термическая устойчивость галогеноводородов. Реакционная способность. Кислотные свойства, особенности плавиковой кислоты. Восстановительные свойства. Общие принципы получения галогеноводородов: синтез из простых веществ и из галогенидов. Хлороводород и соляная кислота. Физические и химические свойства. Способы получения. Применение соляной кислоты. Роль соляной кислоты и хлоридов в процессах жизнедеятельности. Галогениды.

1. с. 375-382; 2. с. 347-353; 3. с. 419-420; 4. с. 272-275, с. 289-292; 7. с.354-545; 8. с. 370-373, с. 374-375.

2 . Соединения галогенов с кислородом.

1. с. 377-380; 2. с. 353-359; 3. с. 420-423; 4. с. 292-296; 7. с.350-354; 8. с. 375-376, с. 379.

3. Соединения с другими неметаллами.

1. с. 375-381; 2. с. 342-345; 4. с. 292-296; 7. с.350-355.

4 . Соединения с металлами .

2. с. 342; 4. с. 292-296; 7. с.350-355.

Многоэлементные соединения галогенов

1. Кислородсодержащие кислоты хлора и их соли. Хлорноватистая, хлористая, хлорноватая и хлорная кислоты. Изменение кислотных свойств, устойчивости и окислительных свойств в ряду HClO – HClO 4 . Принципы получения этих кислот. Гипохлориты, хлориты, хлораты и перхлораты. Термическая устойчивость и окислительные свойства. Общие принципы получения солей. Применение солей. Хлорная известь. Бертоллетова соль. Перхлорат аммония.

1. с. 382-387; 2. с. 353-359; 3. с. 423; 4. с. 292-296; 7. с.350-354; 8. с. 375-378.

2 . Кислородсодержащие кислоты брома и иода и их соли .

1. с. 382-387; 2. с. 353-359; 3. с. 423; 4. с. 292-296; 7. с.350-354; 8. с. 379-380.

3 . Применение галогенов и их важнейших соединений

1. с. 387-388; 2. с. 345-347; 3. с. 419-423; 4. с. 272-296; 8. с. 380-382.

4 . Биологическая роль соединений галогенов

1. с. 387-388; 2. с. 340-347; 3. с. 419-423; 4. с. 272-296; 8. с. 380-382.

Взаимосвязь важнейших соединений хлора:


Подгруппу галогенов составляют элементы фтор, хлор, бром и иод.

Электронные конфигурации внешнего валентного слоя галогенов относятся к типу соответственно у фтора, хлора, брома и иода). Такие электронные конфигурации обусловливают типичные окислительные свойства галогенов - способностью присоединять электроны обладают все галогены, хотя при переходе к иоду окислительная способность галогенов ослабляется.

При обычных условиях галогены существуют в виде простых веществ, состоящих из двухатомных молекул типа с ковалентными связями. Физические свойства галогенов существенно различаются: так, при нормальных условиях фтор - газ, который трудно сжижается, хлор - также газ, но сжижается легко, бром - жидкость, иод - твердое вещество.

Химические свойства галогенов.

В отличие от всех других галогенов фтор во всех своих соединениях проявляет только одну степень окисления 1- и не проявляет переменной валентности. Для других галогенов наиболее характерной степенью окисления также является 1-, однако благодаря наличию свободных -орбиталей на внешнем уровне они могут проявлять и другие нечетные степени окисления от до за счет частичного или полного распаривания валентных электронов.

Наибольшей активностью обладает фтор. Большинство металлов даже при комнатной температуре загорается в его атмосфере, выделяя большое количество теплоты, например:

Без нагревания фтор реагирует и со многими неметаллами (водородом - см. выше, ), выделяя при этом также большое количество теплоты:

При нагревании фтор окисляет все другие галогены по схеме:

где , причем в соединениях степени окисления хлора, брома и иода равны .

Наконец, при облучении фтор реагирует даже с инертными газами:

Взаимодействие фтора со сложными веществами также протекает очень энергично. Так, он окисляет воду, при этом реакция носит взрывной характер:

Свободный хлор также очень реакционноспособен, хотя его активность и меньше, чем у фтора. Он непосредственно реагирует со всеми простыми веществами, за исключением кислорода, азота и благородных газов, например:

Для этих реакций, как и для всех других, очень важны условия их протекания. Так, при комнатной температуре хлор с водородом не реагирует; при нагревании эта реакция протекает, но оказывается сильно обратимой, а при мощном облучении протекает необратимо (со взрывом) по цепному механизму.

Хлор вступает в реакции со многими сложными веществами, например замещения и присоединения с углеводородами:

Хлор способен при. нагревании вытеснять бром или иод из их соединений с водородом или металлами:

а также обратимо реагирует с водой:

Хлор, растворяясь в воде и частично реагируя с ней, как это показано выше, образует равновесную смесь веществ, называемую хлорной водой.

Заметим также, что хлор в левой части последнего уравнения имеет степень окисления 0. В результате реакции у одних атомов хлора степень окисления стала 1- (в ), у других (в хлорноватистой кислоте ). Такая реакция - пример реакции самоокисления-самовосстановления, или диспропорционирования.

Напомним, что хлор может таким же образом реагировать (диспропорционировать) с щелочами (см. раздел «Основания» в § 8).

Химическая активность брома меньше, чем фтора и хлора, но все же достаточно велика в связи с тем, что бром обычно используют в жидком состоянии и поэтому его исходные концентрации при прочих равных условиях больше, чем у хлора. Являясь более «мягким» реагентом, бром находит широкое применение в органической химии.

Отметим, что бром, так же, как и хлор, растворяется в воде, и, частично реагируя с ней, образует так называемую «бромную воду», тогда как иод практически в воде не растворим и не способен ее окислять даже при нагревании; по этой причине не существует «йодной воды».

Получение галогенов.

Наиболее распространенным технологическим методом получения фтора и хлора является электролиз расплавов их солей (см. § 7). Бром и иод в промышленности, как правило, получают химическим способом.

В лаборатории хлор получают действием различных окислителей на соляную кислоту, например:

Еще более эффективно окисление проводится перманганатом калия - см. раздел «Кислоты» в § 8.

Галогеноводороды и галогеноводородные кислоты.

Все галогеноводороды при обычных условиях газообразны. Химическая связь, осуществляемая в их молекулах, - ковалентная полярная, причем полярность связи в ряду падает. Прочность связи также уменьшается в этом ряду. Вследствие своей полярности, все галогеноводороды, в отличие от галогенов, хорошо растворимы в воде. Так, при комнатной температуре в 1 объеме воды можно растворить около 400 объемов объемов и около 400 объемов

При растворении галогеноводородов в воде происходит их диссоциация на ионы, и образуются растворы соответствующих галогеноводородных кислот. Причем при растворении и HCI диссоциируют почти полностью, поэтому образующиеся кислоты относятся к числу сильных. В отличие от них, фтороводородная (плавиковая) кислота является слабой. Это объясняется ассоциацией молекул HF вследствие возникновения между ними водородных связей. Таким образом, сила кислот уменьшается от HI к HF.

Поскольку отрицательные ионы галогеноводородных кислот могут проявлять только восстановительные свойства, то при взаимодействии этих кислот с металлами окисление последних может происходить только за счет ионов Поэтому кислоты реагируют только с металлами, стоящими в ряду напряжений левее водорода.

Все галогениды металлов, за исключением солей Ag и Pb, хорошо растворимы в воде. Малая растворимость галогенидов серебра позволяет использовать обменную реакцию типа

как качественную для обнаружения соответствующих ионов. В результате реакции AgCl выпадает в виде осадка белого цвета, AgBr - желтовато-белого, Agl - ярко-желтого цвета.

В отличие от других галогеноводородных кислот, плавиковая кислота взаимодействует с оксидом кремния (IV):

Так как оксид кремния входит в состав стекла, то плавиковая кислота разъедает стекло, и поэтому в лабораториях ее хранят в сосудах из полиэтилена или тефлона.

Все галогены, кроме фтора, могут образовывать соединения, в которых они обладают положительной степенью окисления. Наиболее важными из таких соединений являются кислородсодержащие кислоты галогенов типа и соответствующие им соли и ангидриды.

Галогены – элементы VII группы – фтор, хлор, бром, йод, астат (астат мало изучен в связи с его радиоактивностью). Галогены – ярко выраженные неметаллы. Лишь йод в редких случаях обнаруживает некоторые свойства, схожие с металлами.

В невозбужденном состоянии атомы галогенов имеют общие электронную конфигурацию: ns2np5 . Это значит, что галогены имеют 7 валентных электронов, кроме фтора.

Физические свойства галогенов: F2 – бесцветный, трудно сжижающийся газ; Cl2 – желто-зеленый, легко сжижающийся газ с резким удушливым запахом; Br2 – жидкость красно-бурого цвета; I2 – кристаллическое вещество фиолетового цвета.

Водные растворы галогеноводородов образуют кислоты. НF – фтороводородная (плавиковая); НCl – хлороводородная (соляная); НBr – бромоводородная; НI – йодоводородная. Силы кислот сверху вниз снижаются. Плавиковая кислота является самой слабой в ряду галогеново-дородных кислот, а йодоводородная – самой сильной. Это объясняется тем, что энергия связи Нг сверху уменьшается. В том же направлении уменьшается и прочность молекулы Н Г, что связано с ростом межъядерного расстояния. Растворимость малорастворимых солей в воде тоже уменьшается:

Слева направо растворимость галогенидов уменьшается. АgF хорошо растворим в воде. Все галогены в свободном состоянии – окислители . Сила их как окислителей снижается от фтора к йоду. В кристаллическом, жидком и газообразном состоянии все галогены существуют в виде отдельных молекул. Атомные радиусы возрастают в том же направлении, что приводит к повышению температуры плавления и кипения. Фтор диссоциирует на атомы лучше йода. Электродные потенциалы при переходе вниз по подгруппе галогенов снижаются. У фтора самый высокий электродный потенциал. Фтор – самый сильный окислитель . Любой вышестоящий свободный галоген вытеснит нижестоящий, находящийся в состоянии отрицательного однозарядного иона в растворе.

20. Хлор. Хлороводород и соляная кислота

Хлор (Cl) – стоит в 3-м периоде, в VII группе главной подгруппы периодической системы, порядковый номер 17, атомная масса 35,453; относится к галогенам.

Физические свойства: газ желто-зеленого цвета с резким запахом. Плотность 3,214 г/л; температура плавления -101 °C; температура кипения -33,97 °C, При обычной температуре легко сжижается под давлением 0,6 МПа. Растворяясь в воде, образует хлорную воду желтоватого цвета. Хорошо растворим в органических растворителях, особенно в гексане (C6H14), в четырех-хлористом углероде.

Химические свойства хлора: электронная конфигурация: 1s22s22p63s22p5. На внешнем уровне 7 электронов. До завершения уровня нужен 1 электрон, который хлор принимает, проявляя степень окисления -1. Существуют и положительные степени окисления хлора вплоть до + 7. Известны следующие оксиды хлора: Cl2O, ClO2, Cl2O6 и Cl2O7. Все они неустойчивы. Хлор – сильный окислитель. Он непосредственно реагирует с металлами и неметаллами:

Реагирует с водородом. При обычных условиях реакция идет медленно, при сильном нагревании или освещении – со взрывом, по цепному механизму:

Хлор взаимодействует с растворами щелочей, образуя соли – гипохлориты и хлориды:

При пропускании хлора в раствор щелочи образуется смесь растворов хлорида и гипохлорита:

Хлор – восстановитель: Cl2 + 3F2 = 2ClF3.

Взаимодействие с водой:

Хлор не взаимодействует непосредственно с углеродом, азотом и кислородом.

Получение: 2NaCl + F2 = 2NaF + Cl2.

Электролиз: 2NaCl + 2H2O = Cl2 + H2 + 2NaOH.

Нахождение в природе: содержится в составе минералов: галит (каменная соль), сильвин, бишофит; морская вода содержит хлориды натрия, калия, магния и других элементов.

Хлороводород HCl . Физические свойства: бесцветный газ, тяжелее воздуха, хорошо растворим в воде с образованием соляной кислоты.

Получение: в лаборатории:

В промышленности: сжигают водород в струе хлора. Далее хлороводород растворяют в воде, и получают соляную кислоту (см. выше).

Химические свойства : соляная кислота – сильная, одноосновная, взаимодействует с металлами, стоящими в ряду напряжений до водорода: Zn + 2HCl = ZnCl2 + H2.

Как восстановитель реагирует с оксидами и гидроксидами многих металлов.