Строение и функции базальной мембраны. Строение и функции базальной ламины (мембраны)

§ Состоит из

§ светлая пластинка,

§ темная плотная пластинка,

§ Светлая пластинка (lamina rаrа) - слой толщиной 30-50 нм, прилежит к плазмолемме базальной поверхности эпителиоцитов. От полудесмосом эпителиоцитов вглубь этой пластинки, пересекая ее, направляются тонкие якорные филаменты. Светлая пластинка содержит гликопротеины (ламинин) и антиген пузырчатки (способствующие прикреплению базальной части эпителиоцитов) и протеогликаны (гепарансульфат).

§ Плотная пластинка (lamina densa) - слой толщиной около 40-60 нм, образованный мелкозернистым или фибриллярным материалом, который располагается под светлой пластинкой и обращен в сторону соединительной ткани. В эту пластинку вплетаются коллагеновые фибриллы подлежащей соединительной ткани. Плотная пластинка содержит коллаген IV типа, энтактин (сульфатированный гликопротеин, связывающий ламинин с коллагеном IV типа), гепарансульфат. Также входит адгезивный гликопротеин - фибронектин.

Функции базальной мембраны:

§ поддержание нормальной архитектоники, дифференцировки и поляризации эпителия;

§ обеспечение прочной связи эпителия с подлежащей соедини тельной тканью. К базальной мембране прикрепляются, с одной стороны, эпителиальные клетки (с помощью полудесмосом), с другой - коллагеновые волокна соединительной ткани (посредством якорных фибрилл);

§ избирательная фильтрация питательных веществ, поступающих в эпителий (базальная мембрана играет роль молекулярного сита);

§ обеспечение и регуляция роста и движения эпителия по подлежащей соединительной ткани при его развитии или репаративной регенерации

Базальная мембрана - это тонкий бесклеточный слой, отделяющий соединительную ткань кожи (дермы) от эпителия. Базальная мембрана образуется посредством двух слоев:

  • светлым (лат. «lamina lucida») – толщина слоя составляет до 30 нм, содержит такие элементы как: протеины, протеогликаны, антиген пузырчатки;
  • темным (лат. «lamina densa») – толщина слоя составляет до 60 нм, содержит такие элементы как: коллаген, энтактин, гепарансульфат.

Базальные слои обнаруживаются не только в эпителиальных тканях, но и в участках, где другие типы клеток контактируют с соединительной тканью, например вокруг мышечных, жировых клеток и шванновских клеток нервной ткани.

От качества и целостности базальной мембраны во многом зависит упругость и эластичность кожи. Мембрана ответственна за доставку всех необходимых питательных веществ в дерму, тем самым восстанавливая и омолаживая кожу. В базальной мембране протекают активные процессы внутриклеточного синтеза коллагена. Она выполняет механические, барьерные и обменные функции для эпидермиса, играет важную роль в контролировании клеточного поведения. Через нее осуществляется питание клеток базального слоя эпидермиса, а следовательно, улучшается его структура, укрепляется местный иммунитет. Через активизацию мембраны происходит улучшение обменных процессов в дерме, стимуляция выработки коллагена, что является основой для улучшения общего вида и здоровья кожи.

Базальная мембрана имеет наибольшую связь с клетками эпителия именно в области полудесмосом. Именно тут, филаменты «якорного типа» проходят от плазмолеммы эпителиоцитов от светлого слоя к темному, что в совокупности с движущимися в противоположном направлении пучками «заякоривающих» коллагеновых фибрилл обеспечивается прочное соединение подлежащей ткани непосредственно с эпителиальной.

Базальная мембрана - состав элементов

В состав базальной мембраны входят следующие элементы:

  1. Коллаген IV типа - образует опорный каркас базальной мембраны. В случае, если коллаген IV типа находится в здоровом состоянии, то и мембрана функционирует правильно, держа оба слоя кожи вместе (соединительную ткань и эпидермис).
  2. Коллаген VII типа - представляет собой якорьки-скрепочки, плотно держащий и скрепляющий коллагеновые фибриллы (пучки) базальной мембраны с коллагеновыми фибриллами из дермы, т.е. коллаген VII-го типа «скрепляет» и удерживает коллагеновые пучки IV-го типа (базальная мембрана, которая «держит в тонусе» эпидермис), и коллагеновые волокна I и III типов (основное пространство дермы). По итогу, если всё функционирует и синтезируется вовремя, получаем плотно-сотканную кожную ткань, которую можно охарактеризовать, как «молодую»;
  3. Гепарансульфат-протеогликан - компонент, участвующий в процессах клеточной адгезии, демонстрирующий ангигенные свойства;
  4. Димеры - ключевой компонент фибрилл, обеспечивающий особую прочность мембраны;
  5. Энтактин - компонент, связывающий коллаген в мембране с гликопротеинами;
  6. Гликопротеины - адгезивный субстрат, посредством которого эпителиоциты фиксируются к мембране.
Функции базальной мембраны:

К функциям базальной мембраны можно отнести следующие:

  1. Опорная - поддерживает форму органов и сосудов.
  2. Фильтрующая - образует избирательный барьер не только для перемещения молекул, но и клеток.
  3. Служит в качестве специфического пути клеточных перемещений.
  4. Определяет полярность клеток.
  5. Влияет на клеточный метаболизм. Оказывает регулирующее влияние на развитие кожи.
  6. Играет важную роль в регенерации тканей после повреждения, в случае неполноценности базальной мембраны нередко формируются пузыри, происходит развитие рубцовой ткани.

Базальная мембрана (розовый) под эндотелием сосудов и эпителием.

Базальная мембрана - тонкий бесклеточный слой, отделяющий соединительную ткань от эпителия или эндотелия . Базальная мембрана состоит из двух пластинок: светлой (лат. lamina lucida ) и тёмной (lamina densa ). Иногда к тёмной пластинке прилегает образование, называемое фиброретикулярной пластинкой (lamina fibroreticularis ).

Строение базальной мембраны

Базальная мембрана образуется при слиянии двух пластинок: базальной пластинки и ретикулярной пластинки (lamina reticularis ). Ретикулярная пластинка соединена с базальной пластинкой с помощью якорных фибрилл (коллаген типа VII) и микрофибрилл (фибриллин). Обе пластинки вместе называются базальной мембраной .

  • Светлая пластинка (lamina lucida/lamina rara ) - толщина 20-30 нм, светлый мелкозернистый слой, прилежит к плазмалемме базальной поверхности эпителиоцитов. От полудесмосом эпителиоцитов вглубь этой пластинки, пересекая её, направляются тонкие якорные филаменты. Содержит протеины , протеогликаны и антиген пузырчатки .
  • Темная (плотная) пластинка (lamina densa ) - толщина 50-60 нм, мелкозернистый или фибриллярный слой, расположен под светлой пластинкой, обращен в сторону соединительной ткани. В пластинку вплетаются якорные фибриллы, имеющие вид петель (образованы коллагеном VII типа), в который продеты коллагеновые фибриллы подлежащей соединительной ткани. Состав: коллаген IV, энтактин, гепарансульфат.
  • Ретикулярная (фиброретикулярная) пластинка (lamina reticularis ) - состоит из коллагеновых фибрилл и микроокружения соединительной ткани, связанных с якорными фибриллами (многие авторы не выделяют эту пластинку).

Тип контакта базальной мембраны с эпителием: полудесмосома - сходна по строению с десмосомой , но это соединение клеток с межклеточными структурами. Так в эпителиях линкерные гликопротеиды (интегрины) десмосомы взаимодействуют с белками базальной мембраны. Базальные мембраны делят на 2-слойные, 3-слойные, прерывистые, сплошные.

БМ прикрепляется к подлежащей ткани посредством фиброретикулярного слоя с помощью 3 механизмов в зависимости от положения Lamina lucida:

1)За счет взаимодействия фиброретикулярного слоя с коллагеном III.

2)За счет прикрепления БМ к эластической ткани посредством фибрилиновых микрофиламетов.

3) За счет полудесмосом и якорных фибрилл из коллагена VII типа.

Функции базальной мембраны

Химический состав базальной мембраны

  • Коллаген IV типа - содержит 1530 аминокислот в виде повторов, прерываемых 19 разделяющими участками. Первоначально белок организуется в антипараллельные димеры , которые стабилизируются дисульфидными связями. Димеры - основной компонент якорных фибрилл. Обеспечивает механическую прочность мембраны.
  • Гепарансульфат-протеогликан - участвует в клеточной адгезии , обладает ангигенными свойствами.
  • Энтактин - имеет палочковидную структуру и связывает между собой ламинины и коллаген IV типа в базальной мембране.
  • Гликопротеины (ламинин, фибронектин) - выполняют роль адгезивного субстрата, с помощью которого к мембране прикрепляются эпителиоциты.

Базальная ламина представляет собой тонкий слой внеклеточного матрикса, который располагается на базальной стороне эпителиального слоя и в области нейромышечных контактов и состоит, по крайней мере, из двух различных слоев

Базальная мембрана состоит из базальной ламины связанной с сетью коллагеновых волокон

Базальная мембрана функционирует в качестве опорной структуры, поддерживающей эпителиальную ткань, служит диффузионным барьером и местом сбора таких растворимых белков, как факторы роста, а также сигналом, направляющим миграцию нейронов

В разных тканях компоненты базальной ламины отличаются друг от друга, однако для большинства характерно наличие четырех основных компонентов внеклеточного матрикса: слои коллагена IV и ламинина, скрепленные вместе гепарансульфат протеогликанами и линкерным белком, нидогеном

Термином базальная ламина обозначается тонкий слой (или ламина) внеклеточного матрикса, который непосредственно примыкает ко многим типам клеток, контактируя с ними. Базальная ламина представляет собой самостоятельную форму внеклеточного матрикса, поскольку она содержит такие характерные белки, как коллаген IV, обнаруженный только в базальной ламине, а также имеет слоистую структуру.

Вначале этот термин применялся только для обозначения слоя внеклеточного матрикса , находящегося в контакте с базальной поверхностью клеток эпителия (отсюда название базальная), где впервые с помощью электронного микроскопа удалось наблюдать базальную ламину. В настоящее время, когда идентифицированы основные компоненты базальной ламины, мы также используем этот термин для обозначения слоя, находящегося в месте контакта между мышечными и нервными клетками, что связано с тем, что этот слой содержит много таких же белков, что и базальная ламина, расположенная под клетками эпителия.

В течение многих лет этот слой внеклеточного матрикса назывался по-разному. В сканирующем электронном микроскопе базальная ламина выглядит как хорошо видимый слой, разделяющий две группы клеток. В трансмиссионном электронном микроскопе базальная ламина имеет вид двух слоев, ширина каждого из которых составляет 40-60 нм. Область, примыкающая к плазматической мембране эпителиальных клеток, кажется практически пустой и называется прозрачной ламиной (lamina lucida, от лат слова lucidus, яркий, прозрачный). Область, расположенная дальше всего от плазматической мембраны, интенсивно окрашивается электронно-плотными красителями и называется плотной ламиной (lamina densa).

За плотной ламиной лежит сеть коллагеновых волокон, которая иногда называется ретикулярной ламиной; в световом микроскопе базальная и ретикулярная ламины выглядят как один слой, который часто называется базальной мембраной. Часто термины базальная ламина и базальная мембрана используются для обозначения одних и тех же структур.

Базальная мембрана имеет вид тонкого слоя,
состоящего из белков и расположенного непосредственно под клетками эпителия.

Базальная ламина выполняет четыре основные функции:

Она служит структурным основанием слоя эпителиальных клеток. Клетки присоединяются к ламининовым и коллагеновым волокнам базальной ламины посредством специальных структур, которые называются полудесмосомы и которые также скрепляются с сетью промежуточных филаментов. Таким образом, базальная ламина связывает сети промежуточных филаментов нескольких клеток, что укрепляет ткань. Это особенно характерно для кожи, которая представляет собой очень упругий орган!

Базальная ламина представляет собой барьер между компартментами эпителия, который обладает селективной проницаемостью. Содержащиеся в ней про-теогликаны задерживают нерастворимые частицы (погибшие клетки, бактерии и т. д.), тем самым устраняя инфекции и способствуя деятельности иммунной системы.

Протеогликаны базальной ламины связывают, иммобилизуют и концентрируют растворимые лиганды (например, факторы роста), находящиеся в жидкой среде тканей. Это способствует доступности факторов роста для клеток и в ряде случаев облегчает их связывание с рецепторами.

Присутствующие в базальной ламине ламининовые белки служат сигналом, направляющим конусы роста развивающихся нейронов. Это один из путей, который используется данными отростками нейронов для обнаружения своих клеток- мишеней.

Учитывая столь широкий набор функций, неудивительно, что молекулярные компоненты варьируют в зависимости от вида ткани, а для одной и той же ткани даже изменяются во времени. Выделение этих компонентов представляет собой трудную задачу, поскольку в большинстве тканей на долю базальной ламины приходится крайне незначительная часть внеклеточного матрикса. К счастью для исследователей, идентификация у мышей хондросаркомы, опухоли, секрети-рующей большие количества белков «базальной мембраны», позволила выполнить детальный анализ компонентов базальной ламины. Сейчас в составе базальной ламины идентифицировано около 20 разных белков.

Почти во всех тканях в базальной ламине обнаружено четыре основных компонента. Это коллаген типа IV, ламинин, гепарансульфат-протеогликаны, и энтактин (также известный под названием нидоген). Предложена модель, объясняющая, каким образом эти компоненты встроены в слоистую конфигурацию базальной ламины.

Согласно этой модели, коллаген типа IV и ламинин полимеризуются, образуя разветвленные сетеобразные структуры. Эти структуры расположены одна поверх другой и образуют слои, которые скрепляются вместе мостиками, состоящими из таких белков, как гепарансульфат-протеогликан перлекан и энтактин, связывающиеся с обеими сетевыми структурами. Остальные компоненты, такие как ламинин-5 и филаменты коллагена типа VII, которые связываются с белками полудесмосом, вплетаются между слоями.

Каким образом эти дополнительные белки связываются с основными компонентами , неизвестно. Правда существуют данные о том, что за правильную сборку интактной базальной ламины отвечает клеточный контакт, который обеспечивается интегриновыми рецепторами. После сборки базальная ламина образует прочно связанную сложную сеть белков, которая обеспечивает необходимую структурную устойчивость эпителиальной ткани и в то же время остается достаточно пористой для того, чтобы функционировать как селективный фильтр внеклеточных жидкостей.

ЭПИТЕЛИАЛЬНЫЕ ТКАНИ

Определение и общая характеристика, классификация, строение базальной мембраны

Эпителиальные ткани - это совокупность дифферонов полярно дифференцированных клеток, тесно расположенных в виде пласта на базальной мембране, на границе с внешней или внутренней средой, а также образующих большинство желёз организма. Различают две группы эпителиальных тканей: поверхностные эпителии (покровные и выстилающие) и железистые эпителии.

Поверхностные эпителии - это пограничные ткани, располагающиеся на поверхности тела, слизистых оболочках внутренних органов и вторичных полостей тела. Они отделяют организм и его органы от окружающей их среды и участвуют в обмене веществ между ними, осуществляя функции поглощения веществ и выделения продуктов обмена. Например, через кишечный эпителий всасываются в кровь и лимфу продукты переваривания пищи, а через почечный эпителий выделяется ряд продуктов азотистого обмена, являющихся шлаками. Кроме этих функций, покровный эпителий выполняет важную защитную функцию, предохраняя подлежащие ткани организма от различных внешних воздействий - химических, механических, инфекционных и других.Например, кожный эпителий является мощным барьером для микроорганизмов и многих ядов. Наконец, эпителий, покрывающий внутренние органы, создает условия для их подвижности, например для движения сердца при его сокращении, движения легких при вдохе и выдохе.

Железистый эпителий , образующий многие железы, осуществляет секреторную функцию, т.е. синтезирует и выделяет специфические продукты - секреты, которые используются в процессах, протекающих в организме. Например, секрет поджелудочной железы участвует в переваривании белков, жиров и углеводов в тонкой кишке; секреты эндокринных желез (гормоны) – регулируют многие процессы в организме.

Источники развития эпителиальных тканей

Эпителии развиваются из всех трех зародышевых листков , начиная с 3-4-й недели эмбрионального развития человека. В зависимости от эмбрионального источника различают эпителии эктодермального, мезодермального и энтодермального происхождения.

Родственные виды эпителиев, развивающиеся из одного зародышевого листка, в условиях патологии могут подвергаться метаплазии , т.е. переходить из одного вида в другой, например в дыхательных путях эпителий при хронических бронхитах из однослойного реснитчатого может превратиться в многослойный плоский, который в норме характерен для ротовой полости.



Общий план строения эпителиальных тканей на примере эпителия поверхностностного типа.

Имеется пять основных особенностей эпителиев:

1. Эпителии представляют собой пласты (реже тяжи) клеток - эпителиоцитов . Между ними почти нет межклеточного вещества , и клетки тесно связаны друг с другом с помощью различных контактов.

2. Эпителии располагаются на базальных мембранах , отделяющих эпителиоциты от подлежащей соединительной ткани.

3. Эпителий обладает полярностью. Два отдела клеток - базальный (лежащий в основании) и апикальный (верхушечный), - имеют разное строение.

4. Эпителий не содержит кровеносных сосудов . Питание эпителиоцитов осуществляется диффузно через базальную мембрану со стороны подлежащей соединительной ткани.

5. Эпителиям присуща высокая способность к регенерации . Восстановление эпителия происходит вследствие митотического деления и дифференцировки стволовых клеток.

Строение и функции базальной мембраны

Базальные мембраны образуются в результате деятельности как клеток эпителия, так и клеток подлежащей соединительной ткани. Базальная мембрана имеет толщину около 1 мкм и состоит из двух пластинок: светлой (lamina lucida ) и темной (lamina densa ). Светлая пластинка включает аморфное вещество, относительно бедное белками, но богатое ионами кальция. Темная пластинка имеет богатый белками аморфный матрикс, в который впаяны фибриллярные структуры (такие как коллаген IV типа), обеспечивающие механическую прочность мембраны. Гликопротеины базальной мембраны - фибронектин и ламинин - выполняют роль адгезивного субстрата, к которому прикрепляются эпителиоциты. Ионыкальция при этом обеспечивают связь между адгезивными гликопротеинами базальной мембраны и полудесмосомами эпителиоцитов.



Кроме того, гликопротеины базальных мембран индуцируют пролиферацию и дифференцировку эпителиоцитов при регенерации эпителия.

Наиболее прочно клетки эпителия связаны с базальной мембраной в области полудесмосом. Здесь от плазмолеммы эпителиоцитов через светлую пластинку к темной пластинке базальной мембраны проходят «якорные» филаменты. В этой же области, но со стороны подлежащей соединительной ткани в темную пластинку базальной мембраны вплетаются пучки «заякоривающих» фибрилл коллагена VII типа, обеспечивающих прочное прикрепление эпителиального пласта к подлежащей ткани.

Функции базальной мембраны:

1. механическая (закрепление эпителиоцитов),

2. трофическая и барьерная (избирательный транспорт веществ),

3. морфогенетическая (обеспечение процессов регенерации и ограничение возможности инвазивного роста эпителия).

Классификации

Существует несколько классификаций эпителиев, в основу которых положены различные признаки: происхождение, строение, функция. Из них наибольшее распространение получиламорфологическая классификация , учитывающая главным образом отношение клеток к базальной мембране и их форму.

Согласно этой классификации, среди покровных и выстилающих эпителиев, различают две основные группы эпителиев: однослойные и многослойные . В однослойных эпителиях все клетки связаны с базальной мембраной, а в многослойных с ней непосредственно связан лишь один нижний слой клеток.

Однослойный эпителий по форме клеток подразделяют на плоский , кубический ипризматический . Призматический эпителий называют также столбчатым или цилиндрическим. В определении многослойных эпителиев учитывается лишь форма наружных слоев клеток. Например, эпителий роговицы глаза - многослойный плоский, хотя нижние слои эпителия состоят из клеток призматической формы.

Однослойный эпителий может быть двух типов: однорядным и многорядным . У однорядного эпителия все клетки имеют одинаковую форму - плоскую, кубическую или призматическую, а их ядра лежат на одном уровне, т.е. в один ряд. Однослойный эпителий, имеющий клетки различной формы и высоты, ядра которых лежат на разных уровнях, т.е. в несколько рядов, носит название многорядного, или псевдомногослойного.

Многослойный эпителий бывает ороговевающим , неороговевающим ипереходным . Эпителий, в котором протекают процессы ороговения, связанные с дифференцировкой клеток верхних слоев в плоские роговые чешуйки, называют многослойным плоским ороговевающим. При отсутствии ороговения эпителий является многослойным неороговевающим.

Переходный эпителий (уротелий, эпителий Генле) выстилает мочевыводящие пути, - органы, подверженные сильному растяжению. При изменении объема органа толщина и строение эпителия также изменяются, - «переходят» из одной формы в другую.

Наряду с морфологической классификацией используется онтофилогенетическая классификация, созданная российским гистологом Н.Г. Хлопиным. В основе ее лежат особенности развития эпителиев из тканевых зачатков. Она включает 5 типов: эпидермальный (или кожный), энтеродермальный (или кишечный), целонефродермальный, эпендимоглиальный и ангиодермальный типы эпителиев.

Эпидермальный тип эпителия образуется из эктодермы, имеет многослойное или многорядное строение, приспособлен к выполнению прежде всего защитной функции (например, многослойный плоский ороговевающий эпителий кожи).

Энтеродермальный тип эпителия развивается из энтодермы, является по строению однослойным призматическим, осуществляет процессы всасывания веществ (например, однослойный каемчатый эпителий тонкой кишки), выполняет железистую функцию (например, однослойный эпителий желудка).

Целонефродермальный тип эпителия развивается из мезодермы, по строению однослойный; выполняет главным образом барьерную или экскреторную функцию (например, плоский эпителий серозных оболочек - мезотелий, кубический и призматический эпителии вканальцах почек).

Эпендимоглиальный тип представлен специальным эпителием, выстилающим полости мозга. Источником его образования является нервная трубка.

К ангиодермальному типу эпителия относят эндотелиальную выстилку кровеносных сосудов, имеющую мезенхимное происхождение. По строению эндотелий подобен однослойным плоским эпителиям. Его принадлежность к эпителиальным тканям является спорной. Многие авторы относят эндотелий к соединительной ткани, с которой он связан общим эмбриональным источником развития - мезенхимой.

Некоторые термины из практической медицины:

· метаплазия (metaplasia ; греч. metaplasis преобразование, видоизменение: мета- + plasis формирование, образование) -- стойкое превращение одного типа ткани в другой, обусловленное изменением ее функциональной и морфологической дифференцировки.

· эпителиома -- общее название опухолей, развивающихся из эпителия;

· рак (carcinoma , cancer ; син.: карцинома , эпителиома злокачественная) -- злокачественная опухоль, развивающаяся из эпителиальной ткани;