Числитель выражения преобразуем знаменатель. Преобразование рациональных (алгебраических) дробей, виды преобразований, примеры

Данный обобщенный материал известен из школьного курса математики. Тут рассматриваем дроби общего вида с числами, степенями, корнями, логарифмами, тригонометрическими функция ми или другими объектами. Будут рассмотрены основные преобразования дробей вне зависимости от их вида.

Что такое дробь?

Определение 1

Существует еще несколько определений.

Определение 2

Горизонтальная наклонная черта, которая разделяет A и B , называют чертой дроби или дробной чертой.

Определение 3

Выражение, которое находится над чертой дроби, называют числителем, а под – знаменателем .

От обыкновенных дробей к дробям общего вида

Знакомство с дробью происходит еще в 5 классе, когда проходят обыкновенные дроби. Из определения видно, что числителем и знаменателем являются натуральные числа.

Пример 1

К примеру 1 5 , 2 6 , 12 7 , 3 1 , которые можно записать как 1 / 5 , 2 / 6 , 12 / 7 , 3 / 1 .

После изучения действий с обыкновенными дробями имеем дело с дробями, которые имеют в знаменателе не одно натуральное число, а выражения с натуральными числами.

Пример 2

Например, 1 + 3 5 , 9 - 5 16 , 2 · 7 9 · 12 .

Когда имеем дело с дробями, где есть буквы или буквенные выражения, то записывается таким образом:

a + b c , a - b c , a · c b · d .

Определение 4

Зафиксируем правила сложения, вычитания, умножения обыкновенных дробей a c + b c = a + b c , a c - b c = a - b c , a b · v d = a · c b · d

Для вычисления зачастую необходимо приходить к переводу смешанных чисел в обыкновенные дроби. Когда целую часть обозначим как a , тогда дробная имеет вид b / c , получаем дробь вида a · c + b c , откуда понятно появления таких дробей 2 · 11 + 3 11 , 5 · 2 + 1 2 и так далее.

Черта дроби расценивается как знак деления. Поэтому запись можно преобразовать по-другому:

1: a - (2 · b + 1) = 1 a - 2 · b + 1 , 5 - 1 , 7 · 3: 2 · 3 - 4: 2 = 5 - 1 , 7 · 3 2 · 3 - 4: 2 , где частное 4: 2 можно заменить на дробь, тогда получим выражение вида

5 - 1 , 7 · 3 2 · 3 - 4 2

Вычисления с рациональными дробями занимают особое место в математике, так как в числителе и знаменателе могут быть не просто числовые значения, а многочлены.

Пример 3

Например, 1 x 2 + 1 , x · y - 2 · y 2 0 , 5 - 2 · x + y 3 .

Рациональные выражения рассматриваются как дроби общего вида.

Пример 4

Например, x · x + 1 4 x 2 · x 2 - 1 2 · x 3 + 3 , 1 + x 2 · y · (x - 2) 1 x + 3 · x 1 + 2 - x 4 · x 5 + 6 · x .

Изучение корней, степеней с рациональными показателями, логарифмов, тригонометрических функций говорит о том, что их применение появляется в заданных дробях вида:

Пример 5

a n b n , 2 · x + x 2 3 x 1 3 - 12 · x , 2 x 2 + 3 3 x 2 + 3 , ln (x - 3) ln e 5 , cos 2 α - sin 2 α 1 - 1 cos 2 α .

Дроби могут быть комбинированными, то есть иметь вид x + 1 x 3 log 3 sin 2 x + 3 , lg x + 2 lg x 2 - 2 · x + 1 .

Виды преобразований дробей

Для ряда тождественных преобразований рассматривают несколько видов:

Определение 5

  • преобразование, характерное для работы с числителем и знаменателем;
  • изменение знака перед дробным выражением;
  • приведение к общему знаменателю и сокращение дроби;
  • представление дроби в виде суммы многочленов.

Преобразование выражений в числителе и знаменателе

Определение 6

При тождественно равных выражениях имеем, что полученная дробь является тождественно равной исходной.

Если дана дробь вида A / B , то A и B являются некоторыми выражениями. Тогда при замене получим дробь вида A 1 / B 1 . Необходимо доказать справедливость равенства A / A 1 = B / B 1 при любом значении переменных, удовлетворяющих ОДЗ.

Имеем, что A и A 1 и B и B 1 тождественно равны, тогда их значения тоже равны. Отсюда следует, что при любом их значении A / B и A 1 / B 1 данные дроби будут равны.

Такое преобразование упрощает работу с дробями, если необходимо преобразовывать отдельно числитель и отдельно знаменатель.

Пример 6

Для примера возьмем дробь вида 2 / 18 , которую преобразуем к 2 2 · 3 · 3 . Для этого знаменатель раскладываем на простые множители. Дробь x 2 + x · y x 2 + 2 · x · y + y 2 = x · x + y (x + y) 2 имеет числитель вида x 2 + x · y , означает, что необходимо произвести замену на x · (x + y) , которое будет получено при вынесении за скобки общего множителя x . Знаменатель заданной дроби x 2 + 2 · x · y + y 2 свернуть по формуле сокращенного умножения. Тогда получим, что его тождественно равным выражением является (x + y) 2 .

Пример 7

Если дана дробь вида sin 2 3 · φ - π + cos 2 3 · φ - π φ · φ 5 6 ,тогда для упрощения необходимо числитель заменить 1 по формуле, а знаменатель привести к виду φ 11 12 . Тогда получим, что 1 φ 11 12 равна заданной дроби.

Изменение знака перед дробью, в ее числителе, знаменателе

Преобразования дробей – это также и замена знаков перед дробью. Рассмотрим некоторые правила:

Определение 7

  • при изменении знака числителя получаем дробь, которая равна заданной, причем буквенно это выглядит как _ - A - B = A B , где А и В являются некоторыми выражениями;
  • при изменении знака перед дробью и перед числителем, получаем, что - - A B = A B ;
  • при замене знака перед дробью и его знаменателя, получаем, что - A - B = A B .

Доказательство

Знак минуса в большинстве случаев рассматривается как коэффициент со знаком - 1 , а дробная черта является делением. Отсюда получаем, что - A - B = - 1 · A: - 1 · B . Сгруппировав множители, имеем, что

1 · A: - 1 · B = ((- 1) : (- 1) · A: B = = 1 · A: B = A: B = A B

После доказательства первого утверждения, обосновываем оставшиеся. Получим:

A B = (- 1) · (((- 1) · A) : B) = (- 1 · - 1) · A: B = = 1 · (A: B) = A: B = A B - A - B = (- 1) · (A: - 1 · B) = ((- 1) : (- 1)) · (A: B) = = 1 · (A: B) = A: B = A B

Рассмотрим примеры.

Пример 8

Когда необходимо выполнить преобразование дроби 3 / 7 к виду - 3 - 7 , - - 3 7 , - 3 - 7 , тогда аналогично выполняется с дробью вида - 1 + x - x 2 2 2 3 - ln (x 2 + 3) x + sin 2 x · 3 x .

Преобразования выполняются следующим образом:

1) - 1 + x - x 2 2 2 3 - ln (x 2 + 3) x + sin 2 x · 3 x = = - (- 1 + x - x 2) - 2 2 3 - ln x 2 + 3 x + sin 2 x · 3 x = = 1 - x + x 2 - 2 2 3 + ln (x 2 + 3) x - s i n 2 x · 3 x 2) - 1 + x - x 2 2 2 3 - ln (x 2 + 3) x + sin 2 x · 3 x = = - - (- 1 + x - x 2) 2 2 3 - ln (x 2 + 3) x + sin 2 x · 3 x = = - 1 - x + x 2 2 2 3 - ln (x 2 + 3) x + sin 2 x · 3 x 3) - 1 + x - x 2 2 2 3 - ln (x 2 + 3) x + sin 2 x · 3 x = = - - 1 + x - x 2 - 2 2 3 - ln (x 2 + 3) x + sin 2 x · 3 x = = - - 1 + x - x 2 - 2 2 3 + ln (x 2 + 3) x - sin 2 x · 3 x

Приведение дроби к новому знаменателю

При изучении обыкновенных дробей, мы коснулись основного свойства дробей, которое позволяет умножать, делить числитель и знаменатель на одно и то же натуральное число. Это видно из равенства a · m b · m = a b и a: m b: m = a b , где a , b , m являются натуральными числами.

Это равенство действительно для любых значений a , b , m и всех a , кроме b ≠ 0 и m ≠ 0 . То есть мы получаем, что если числитель дроби А / В с A и C , которые являются некоторыми выражениями, умножить или разделить на выражение M , не равное 0 , тогда получим дробь, тождественно равную начальной. Получаем, что A · M B · M = A B и A: M B: M = A B .

Отсюда видно, что преобразования основываются на 2 преобразованиях: приведении к общему знаменателю, сокращении.

При приведении к общему знаменателю производится умножение на одно и то же число или выражение числитель и знаменатель. То есть мы переходим к решению тождественной равной преобразованной дроби.

Рассмотрим примеры.

Пример 9

Если взять дробь x + 1 0 , 5 · x 3 и умножить на 2 , тогда получим, что новый знаменатель получится 2 · 0 , 5 · x 3 = x 3 , а выражение примет вид 2 · x + 1 x 3 .

Пример 10

Для приведения дроби 1 - x 2 · x 2 3 · 1 + ln x к другому знаменателю вида 6 · x · 1 + ln x 3 нужно, чтобы числитель и знаменатель быль умножен на 3 · x 1 3 · (1 + ln x) 2 . В итоге получаем дробь 3 · x 1 3 · 1 + ln x 2 · 1 - x 6 · x · (1 + ln x) 3

Такое преобразование как избавление от иррациональности в знаменателе также применимо. Оно избавляет от наличия корня в знаменателе, что упрощает процесс решения.

Сокращение дробей

Основное свойство – это преобразование, то есть ее непосредственное сокращение. При сокращении мы получаем упрощенную дробь. Рассмотрим на примере:

Пример 11

Или дробь вида x 3 · x 3 · x 2 · (2 x 2 + 1 + 3) x 3 · x 3 · 2 x 2 + 1 + 3 · 3 + 1 3 · x , где сокращение производится при помощи x 3 , x 3 , 2 x 2 + 1 + 3 или на выражение вида x 3 · x 3 · 2 x 2 + 1 + 3 . Тогда получим дробь x 2 3 + 1 3 · x

Сокращение дроби является простым, когда общие множители сразу явно видны. Практически это встречается не часто, поэтому предварительно необходимо проводить некоторые преобразования выражений такого вида. Бывают случаи, когда необходимо находить общий множитель.

Если имеется дробь вида x 2 2 3 · (1 - cos 2 x) 2 · sin x 2 · cos x 2 2 · x 1 3 , тогда необходимо применять тригонометрические формулы и свойства степеней для того, чтобы можно было преобразовать дробь к виду x 1 3 · x 2 1 3 · sin 2 x sin 2 x · x 1 3 . Это даст возможность сократить ее на x 1 3 · sin 2 x .

Представление дроби в виде суммы

Когда числитель имеет алгебраическую сумму выражений типа A 1 , A 2 , … , A n , а знаменатель обозначается B , тогда эта дробь может быть представлена как A 1 / B , A 2 / B , … , A n / B .

Определение 8

Для этого зафиксируем это A 1 + A 2 + . . . + A n B = A 1 B + A 2 B + . . . + A n B .

Данное преобразование в корне отличается от сложения дробей с одинаковыми показателями. Рассмотрим пример.

Пример 12

Дана дробь вида sin x - 3 · x + 1 + 1 x 2 , которую мы представим как алгебраическая сумма дробей. Для этого представим как sin x x 2 - 3 · x + 1 x 2 + 1 x 2 или sin x - 3 · x + 1 x 2 + 1 x 2 или sin x x 2 + - 3 · x + 1 + 1 x 2 .

Любая дробь, имеющая вид А / В представляется в виде суммы дробей любым способом. Выражение A в числителе может быть уменьшено или увеличено на любое число или выражение А 0 , которое даст возможность прейти к A + A 0 B - A 0 B .

Разложение дроби на простейшие является частным случаем для преобразования дроби в сумму. Чаще всего его применяют при сложных вычислениях для интегрирования.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Арифметическое действие, которое выполняется последним при подсчете значения выражения, является «главным».

То есть, если ты подставишь вместо букв какие-нибудь (любые) числа, и попытаешься вычислить значение выражения, то если последним действием будет умножение - значит, у нас произведение (выражение разложено на множители).

Если последним действием будет сложение или вычитание, это значит, что выражение не разложено на множители (а значит, сокращать нельзя).

Для закрепления реши самостоятельно несколько примеров:

Примеры:

Решения:

1. Надеюсь, ты не бросился сразу же сокращать и? Еще не хватало «сократить» единицы типа такого:

Первым действием должно быть разложение на множители:

4. Сложение и вычитание дробей. Приведение дробей к общему знаменателю.

Сложение и вычитание обычных дробей - операция хорошо знакомая: ищем общий знаменатель, домножаем каждую дробь на недостающий множитель и складываем/вычитаем числители.

Давай вспомним:

Ответы:

1. Знаменатели и - взаимно простые, то есть у них нет общих множителей. Следовательно, НОК этих чисел равен их произведению. Это и будет общий знаменатель:

2. Здесь общий знаменатель равен:

3. Здесь первым делом смешанные дроби превращаем в неправильные, а дальше - по привычной схеме:

Совсем другое дело, если дроби содержат буквы, например:

Начнем с простого:

a) Знаменатели не содержат букв

Здесь все то же, что и с обычными числовыми дробями: находим общий знаменатель, домножаем каждую дробь на недостающий множитель и складываем/вычитаем числители:

теперь в числителе можно приводить подобные, если есть, и раскладывать на множители:

Попробуй сам:

Ответы:

b) Знаменатели содержат буквы

Давай вспомним принцип нахождения общего знаменателя без букв:

· в первую очередь мы определяем общие множители;

· затем выписываем все общие множители по одному разу;

· и домножаем их на все остальные множители, не общие.

Чтобы определить общие множители знаменателей, сперва разложим их на простые множители:

Подчеркнем общие множители:

Теперь выпишем общие множители по одному разу и допишем к ним все необщие (не подчеркнутые) множители:

Это и есть общий знаменатель.

Вернемся к буквам. Знаменатели приводятся по точно такой же схеме:

· раскладываем знаменатели на множители;

· определяем общие (одинаковые) множители;

· выписываем все общие множители по одному разу;

· домножаем их на все остальные множители, не общие.

Итак, по порядку:

1) раскладываем знаменатели на множители:

2) определяем общие (одинаковые) множители:

3) выписываем все общие множители по одному разу и домножаем их на все остальные (неподчеркнутые) множители:

Значит, общий знаменатель здесь. Первую дробь нужно домножить на, вторую - на:

Кстати, есть одна хитрость:

Например: .

Видим в знаменателях одни и те же множители, только все с разными показателями. В общий знаменатель пойдут:

в степени

в степени

в степени

в степени.

Усложним задание:

Как сделать у дробей одинаковый знаменатель?

Давай вспомним основное свойство дроби:

Нигде не сказано, что из числителя и знаменателя дроби можно вычитать (или прибавлять) одно и то же число. Потому что это неверно!

Убедись сам: возьми любую дробь, например, и прибавь к числителю и знаменателю какое-нибудь число, например, . Что поучилось?

Итак, очередное незыблемое правило:

Когда приводишь дроби к общему знаменателю, пользуйся только операцией умножения!

Но на что же надо домножить, чтобы получить?

Вот на и домножай. А домножай на:

Выражения, которые невозможно разложить на множители будем называть «элементарными множителями».

Например, - это элементарный множитель. - тоже. А вот - нет: он раскладывается на множители.

Что скажешь насчет выражения? Оно элементарное?

Нет, поскольку его можно разложить на множители:

(о разложении на множители ты уже читал в теме « »).

Так вот, элементарные множители, на которые ты раскладываешь выражение с буквами - это аналог простых множителей, на которые ты раскладываешь числа. И поступать с ними будем таким же образом.

Видим, что в обоих знаменателях есть множитель. Он пойдет в общий знаменатель в степени (помнишь, почему?).

Множитель - элементарный, и он у них не общий, значит первую дробь на него придется просто домножить:

Еще пример:

Решение:

Предже, чем в панике перемножать эти знаменатели, надо подумать, как их разложить на множители? Оба они представляют :

Отлично! Тогда:

Еще пример:

Решение:

Как обычно, разложим знаменатели на множители. В первом знаменателе просто выносим за скобки; во втором - разность квадратов:

Казалось бы, общих множителей нет. Но если присмотреться, то и так похожи… И правда:

Так и напишем:

То есть получилось так: внутри скобки мы поменяли местами слагаемые, и при этом знак перед дробью поменялся на противоположный. Возьми на заметку, так поступать придется часто.

Теперь приводим к общему знаменателю:

Усвоил? Сейчас проверим.

Задачи для самостоятельного решения:

Ответы:

Тут надо вспомнить еще одну - разность кубов:

Обрати внимание, что в знаменателе второй дроби не формула «квадрат суммы»! Квадрат суммы выглядел бы так: .

А - это так называемый неполный квадрат суммы: второе слагаемое в нем - это произведение первого и последнего, а не удвоенное их произведение. Неполный квадрат суммы - это один из множителей в разложени разности кубов:

Что делать, если дробей аж три штуки?

Да то же самое! В первую очередь сделаем так, чтобы максимальное количество множителей в знаменателях было одинаковым:

Обрати внимание: если поменять знаки внутри одной скобки, знак перед дробью меняется на противоположный. Когда меняем знаки во второй скобке, знак перед дробью снова меняется на противоположный. В результате он (знак перед дробью) не изменился.

В общий знаменатель выписавыем полностью первый знаменатель, а потом дописываем к нему все множители, которые еще не написаны, из второго, а потом из третьего (и так далее, если дробей больше). То есть получается вот так:

Хм… С дробями-то понятно что делать. Но вот как быть с двойкой?

Все просто: ты ведь умеешь складывать дроби? Значит, надо сделать так, чтобы двойка стала дробью! Вспоминаем: дробь - это операция деления (числитель делится на знаменатель, если ты вдруг забыл). И нет ничего проще, чем разделить число на. При этом само число не изменится, но превратится в дробь:

То, что нужно!

5. Умножение и деление дробей.

Ну что же, самое сложное теперь позади. А впереди у нас самое простое, но при этом самое важное:

Порядок действий

Какой порядок действий при подсчете числового выражения? Вспомни, посчитав значение такого выражения:

Посчитал?

Должно получиться.

Итак, напоминаю.

Первым делом вычисляется степень.

Вторым - умножение и деление. Если умножений и делений одновременно несколько, делать их можно в любом порядке.

И напоследок выполняем сложение и вычитание. Опять же, в любом порядке.

Но: выражение в скобках вычисляется вне очереди!

Если несколько скобок умножаются или делятся друг на друга, вычисляем сначала выражение в каждой из скобок, а потом умножаем или дели их.

А если внутри скобок есть еще одни скобки? Ну давай подумаем: внутри скобок написано какое-то выражение. А при вычислении выражения в первую очередь надо делать что? Правильно, вычислять скобки. Ну вот и разобрались: сначала вычисляем внутренние скобки, потом все остальное.

Итак, порядок действий для выражения выше такой (красным выделено текущее дествие, то есть действие, которое выполняю прямо сейчас):

Хорошо, это все просто.

Но это ведь не то же самое, что выражение с буквами?

Нет, это то же самое! Только вместо арифметических действий надо делать алгебраические, то есть действия, описанные в предыдущем разделе: приведение подобных , сложение дробей, сокращение дробей и так далее. Единственным отличием будет действие разложения многочленов на множители (его мы часто применяем при работе с дробями). Чаще всего для разложения на множители нужно применять я или просто выносить общий множитель за скобки.

Обычно наша цель - представить выражение в виде произведения или частного.

Например:

Упростим выражение.

1) Первым упрощаем выражение в скобках. Там у нас разность дробей, а наша цель - представить ее как произведение или частное. Значит, приводим дроби к общему знаменателю и складываем:

Больше это выражение упростить невозможно, все множители здесь - элементарные (ты еще помнишь, что это значит?).

2) Получаем:

Умножение дробей: что может быть проще.

3) Теперь можно и сократить:

Ну вот и все. Ничего сложного, правда?

Еще пример:

Упрости выражение.

Сначала попробуй решить сам, и уж только потом посмотри решение.

Решение:

Перво-наперво определим порядок действий.

Сначала выполним сложение дробей в скобках, получится вместо двух дробей одна.

Потом выполним деление дробей. Ну и результат сложим с последней дробью.

Схематически пронумерую действия:

Теперь покажу весть процесс, подкрашивая текущее действие красным:

1. Если есть подобные, их надо немедленно привести. В какой бы момент у нас ни образовались подобные, их желательно приводить сразу.

2. То же самое касается сокращения дробей: как только появляется возможность сократить, ей надо воспользоваться. Исключение составляют дроби, которые ты складываешь или вычитаешь: если у них сейчас одинаковые знаменатели, то сокращение нужно оставить на потом.

Вот тебе задачи для самостоятельного решения:

И обещанная в самом начале:

Ответы:

Решения (краткие):

Если ты справился хотя бы с первыми тремя примерами, то тему ты, считай, освоил.

Теперь вперед к обучению!

ПРЕОБРАЗОВАНИЕ ВЫРАЖЕНИЙ. КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Базовые операции упрощения:

  • Приведение подобных : чтобы сложить (привести) подобные слагаемые, надо сложить их коэффициенты и приписать буквенную часть.
  • Разложение на множители: вынесение общего множителя за скобки, применение и т.д.
  • Сокращение дроби : числитель и знаменатель дроби можно умножать или делить на одно и то же ненулевое число, от чего величина дроби не изменяется.
    1) числитель и знаменатель разложить на множители
    2) если в числителе и знаменателе есть общие множители , их можно вычеркнуть.

    ВАЖНО: сокращать можно только множители!

  • Сложение и вычитание дробей:
    ;
  • Умножение и деление дробей:
    ;

Материал этой статьи представляет собой общий взгляд на преобразование выражений, содержащих дроби. Здесь мы рассмотрим основные преобразования, которые характерны для выражений с дробями.

Навигация по странице.

Выражения с дробями и дробные выражения

Для начала проясним, с преобразованием выражений какого вида мы собрались разбираться.

В заголовке статьи фигурирует говорящее за себя словосочетание «выражения с дробями ». То есть, ниже речь пойдет о преобразовании числовых выражений и выражений с переменными, в записи которых присутствует хотя бы одна дробь .

Сразу заметим, что после выхода в свет статьи «преобразование дробей: общий взгляд » нам уже не интересны отдельные дроби. Таким образом, дальше мы будем рассматривать суммы, разности, произведения, частные и более сложные выражения с корнями, степенями, логарифмами, объединяет которые лишь наличие хотя бы одной дроби.

И еще оговоримся про дробные выражения . Это не то же самое, что выражения с дробями. Выражения с дробями – более общее понятие. Не каждое выражение с дробями есть дробное выражение. Например, выражение не является дробным выражением, хотя и содержит дробь, это целое рациональное выражение . Так что не стоит называть выражение с дробями дробным выражением, не будучи полностью уверенным, что оно является таковым.

Основные тождественные преобразования выражений с дробями

Пример.

Упростите выражение .

Решение.

В данном случае можно раскрыть скобки , что даст выражение , в котором присутствуют подобные слагаемые и , а также −3 и 3 . После их приведения получим дробь .

Покажем краткую форму записи решения:

Ответ:

.

Работа с отдельными дробями

Выражения, о преобразовании которых мы говорим, отличаются от других выражений главным образом наличием дробей. А наличие дробей требует инструментов для работы с ними. В этом пункте мы обсудим преобразование отдельных дробей, входящих в запись данного выражения, а в следующем пункте перейдем к выполнению действий с дробями, составляющими исходное выражение.

С любой дробью, которая является составной частью исходного выражения, можно выполнять любое из преобразований, обозначенных в статье преобразование дробей . То есть, можно взять отдельную дробь, поработать с ее числителем и знаменателем, сократить ее, привести к новому знаменателю и т.д. Понятно, что при этом преобразовании выбранная дробь заменится тождественно равной ей дробью, а исходное выражение – тождественно равным ему выражением. Давайте рассмотрим пример.

Пример.

Преобразовать выражение с дробью к более простому виду.

Решение.

Преобразование начнем с того, что поработаем с дробью . Для начала раскроем скобки и приведем подобные слагаемые в числителе дроби: . Теперь напрашивается вынесение за скобки общего множителя x в числителе и последующее сокращение алгебраической дроби : . Остается лишь подставить полученный результат вместо дроби в исходное выражение, что дает .

Ответ:

.

Выполнение действий с дробями

Частью процесса преобразования выражений с дробями часто является выполнение действий с дробями . Они проводятся в соответствии с принятым порядком выполнения действий. Также стоит иметь в виду, что любое число или выражение всегда можно представить в виде дроби со знаменателем 1 .

Пример.

Упростите выражение .

Решение.

К решению поставленной задачи можно подходить с разных сторон. Мы в контексте разбираемой темы пойдем путем выполнения действий с дробями. Начнем с умножения дробей:

Теперь произведение запишем в виде дроби со знаменателем 1 , после чего проведем вычитание дробей:

При желании и необходимости можно еще освободиться от иррациональности в знаменателе , на чем можно закончить преобразования.

Ответ:

Применение свойств корней, степеней, логарифмов и т.п.

Класс выражений с дробями очень широк. Такие выражения помимо собственно дробей, могут содержать корни, степени с различными показателями, модули, логарифмы, тригонометрические функции и т.п. Естественно, при их преобразовании применяются соответствующие свойства.

Применимо к дробям, стоит выделить свойство корня из дроби , свойство дроби в степени , свойство модуля частного и свойство логарифма разности .

Для наглядности приведем несколько примеров. Например, в выражении может быть полезно на базе свойств степени первую дробь заменить степенью , что в дальнейшем позволяет представить выражение в виде квадрата разности. При преобразовании логарифмического выражения можно логарифм дроби заменить разностью логарифмов, что в дальнейшем позволяет привести подобные слагаемые и тем самым упростить выражение: . Преобразование тригонометрических выражений может потребовать заменить отношение синуса к косинусу одного и того же угла тангенсом. Также возможно придется от половинного аргумента по соответствующим формулам переходить к целому аргументу, тем самым избавляясь от аргумента-дроби, например, .

Применение свойств корней, степеней и т.п. к преобразованию выражений более подробно освещено в статьях:

  • Преобразование иррациональных выражений с использованием свойств корней ,
  • Преобразование выражений с использованием свойств степеней ,
  • Преобразование логарифмических выражений с использованием свойств логарифмов ,
  • Преобразование тригонометрических выражений .

Из курса алгебры школьной программы переходим к конкретике. В этой статье мы подробно изучим особый вид рациональных выражений – рациональные дроби , а также разберем, какие характерные тождественные преобразования рациональных дробей имеют место.

Сразу отметим, что рациональные дроби в том смысле, в котором мы их определим ниже, в некоторых учебниках алгебры называют алгебраическими дробями. То есть, в этой статье мы под рациональными и алгебраическими дробями будем понимать одно и то же.

По обыкновению начнем с определения и примеров. Дальше поговорим про приведение рациональной дроби к новому знаменателю и о перемене знаков у членов дроби. После этого разберем, как выполняется сокращение дробей. Наконец, остановимся на представлении рациональной дроби в виде суммы нескольких дробей. Всю информацию будем снабжать примерами с подробными описаниями решений.

Навигация по странице.

Определение и примеры рациональных дробей

Рациональные дроби изучаются на уроках алгебры в 8 классе. Мы будем использовать определение рациональной дроби, которое дается в учебнике алгебры для 8 классов Ю. Н. Макарычева и др.

В данном определении не уточняется, должны ли многочлены в числителе и знаменателе рациональной дроби быть многочленами стандартного вида или нет. Поэтому, будем считать, что в записях рациональных дробей могут содержаться как многочлены стандартного вида, так и не стандартного.

Приведем несколько примеров рациональных дробей . Так , x/8 и - рациональные дроби. А дроби и не подходят под озвученное определение рациональной дроби, так как в первой из них в числителе стоит не многочлен, а во второй и в числителе и в знаменателе находятся выражения, не являющиеся многочленами.

Преобразование числителя и знаменателя рациональной дроби

Числитель и знаменатель любой дроби представляют собой самодостаточные математические выражения, в случае рациональных дробей – это многочлены, в частном случае – одночлены и числа. Поэтому, с числителем и знаменателем рациональной дроби, как и с любым выражением, можно проводить тождественные преобразования. Иными словами, выражение в числителе рациональной дроби можно заменять тождественно равным ему выражением, как и знаменатель.

В числителе и знаменателе рациональной дроби можно выполнять тождественные преобразования . Например, в числителе можно провести группировку и приведение подобных слагаемых, а в знаменателе – произведение нескольких чисел заменить его значением. А так как числитель и знаменатель рациональной дроби есть многочлены, то с ними можно выполнять и характерные для многочленов преобразования, например, приведение к стандартному виду или представление в виде произведения.

Для наглядности рассмотрим решения нескольких примеров.

Пример.

Преобразуйте рациональную дробь так, чтобы в числителе оказался многочлен стандартного вида, а в знаменателе – произведение многочленов.

Решение.

Приведение рациональных дробей к новому знаменателю в основном применяется при сложении и вычитании рациональных дробей .

Изменение знаков перед дробью, а также в ее числителе и знаменателе

Основное свойство дроби можно использовать для смены знаков у членов дроби. Действительно, умножение числителя и знаменателя рациональной дроби на -1 равносильно смене их знаков, а в результате получится дробь, тождественно равная данной. К такому преобразованию приходится достаточно часто обращаться при работе с рациональными дробями.

Таким образом, если одновременно изменить знаки у числителя и знаменателя дроби, то получится дробь, равная исходной. Этому утверждению отвечает равенство .

Приведем пример. Рациональную дробь можно заменить тождественно равной ей дробью с измененными знаками числителя и знаменателя вида .

С дробями можно провести еще одно тождественное преобразование, при котором меняется знак либо в числителе, либо в знаменателе. Озвучим соответствующее правило. Если заменить знак дроби вместе со знаком числителя или знаменателя, то получится дробь, тождественно равная исходной. Записанному утверждению соответствуют равенства и .

Доказать эти равенства не составляет труда. В основе доказательства лежат свойства умножения чисел. Докажем первое из них: . С помощью аналогичных преобразований доказывается и равенство .

Например, дробь можно заменить выражением или .

В заключение этого пункта приведем еще два полезных равенства и . То есть, если изменить знак только у числителя или только у знаменателя, то дробь изменит свой знак. Например, и .

Рассмотренные преобразования, позволяющие изменять знак у членов дроби, часто применяются при преобразовании дробно рациональных выражений.

Сокращение рациональных дробей

В основе следующего преобразования рациональных дробей, имеющего название сокращение рациональных дробей, лежит все тоже основное свойство дроби. Этому преобразованию соответствует равенство , где a , b и c – некоторые многочлены, причем b и c - ненулевые.

Из приведенного равенства становится понятно, что сокращение рациональной дроби подразумевает избавление от общего множителя в ее числителе и знаменателе.

Пример.

Сократите рациональную дробь .

Решение.

Сразу виден общий множитель 2 , выполним сокращение на него (при записи общие множители, на которые сокращают, удобно зачеркивать). Имеем . Так как x 2 =x·x и y 7 =y 3 ·y 4 (при необходимости смотрите ), то понятно, что x является общим множителем числителя и знаменателя полученной дроби, как и y 3 . Проведем сокращение на эти множители: . На этом сокращение завершено.

Выше мы выполняли сокращение рациональной дроби последовательно. А можно было выполнить сокращение в один шаг, сразу сократив дробь на 2·x·y 3 . В этом случае решение выглядело бы так: .

Ответ:

.

При сокращении рациональных дробей основная проблема заключается в том, что общий множитель числителя и знаменателя далеко не всегда виден. Более того, он не всегда существует. Для того, чтобы найти общий множитель или убедиться в его отсутствии нужно числитель и знаменатель рациональной дроби разложить на множители. Если общего множителя нет, то исходная рациональная дробь не нуждается в сокращении, в противном случае – проводится сокращение.

В процессе сокращения рациональных дробей могут возникать различные нюансы. Основные тонкости на примерах и в деталях разобраны в статье сокращение алгебраических дробей .

Завершая разговор о сокращении рациональных дробей, отметим, что это преобразование является тождественным, а основная сложность в его проведении заключается в разложении на множители многочленов в числителе и знаменателе.

Представление рациональной дроби в виде суммы дробей

Достаточно специфическим, но в некоторых случаях очень полезным, оказывается преобразование рациональной дроби, заключающееся в ее представлении в виде суммы нескольких дробей, либо сумме целого выражения и дроби.

Рациональную дробь, в числителе которой находится многочлен, представляющий собой сумму нескольких одночленов, всегда можно записать как сумму дробей с одинаковыми знаменателями, в числителях которых находятся соответствующие одночлены. Например, . Такое представление объясняется правилом сложения и вычитания алгебраических дробей с одинаковыми знаменателями .

Вообще, любую рациональную дробь можно представить в виде суммы дробей множеством различных способов. Например, дробь a/b можно представить как сумму двух дробей – произвольной дроби c/d и дроби, равной разности дробей a/b и c/d . Это утверждение справедливо, так как имеет место равенство . К примеру, рациональную дробь можно представить в виде суммы дробей различными способами: Представим исходную дробь в виде суммы целого выражения и дроби. Выполнив деление числителя на знаменатель столбиком, мы получим равенство . Значение выражение n 3 +4 при любом целом n является целым числом. А значение дроби является целым числом тогда и только тогда, когда ее знаменатель равен 1 , −1 , 3 или −3 . Этим значениям отвечают значения n=3 , n=1 , n=5 и n=−1 соответственно.

Ответ:

−1 , 1 , 3 , 5 .

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 13-е изд., испр. - М.: Мнемозина, 2009. - 160 с.: ил. ISBN 978-5-346-01198-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Учение без принуждения

(Путеводитель в увлекательный мир математики)

Математику уже затем учить надо, что она ум в порядок приводит. (М.В. Ломоносов)

Так как же учить математику?

Этот вопрос интересует многих.

Первым делом нужно ликвидировать пробелы из прошлого. Если вы пропустили (не поняли, принципиально не изучали, и т.д.) какую-нибудь тему, рано или поздно вы обязательно наступите на эти грабли. С классическим результатом... Уж так устроена математика.

Независимо от того, изучаете вы новую тему, или повторяете старую - освойте математические определения и термины! Обратите внимание, я не говорю – «выучите», а говорю «освойте». Это разные вещи. Вы должны понимать, к примеру, что такое знаменатель, дискриминант, или арксинус на простом, даже примитивном уровне. Что это такое, зачем это нужно и как с этим обращаться. Жить станет легче.

Если я вас спрошу, как пользоваться устройством перехода через плотные ограниченные среды, вам будет неуютно отвечать, верно? А если вы понимаете, что это самое устройство - обычная дверь? Правда, как-то веселее.

И, конечно, нужно решать. Если не умеете решать - ничего страшного. Нужно пытаться решать, пробовать. Все когда-то не умели. Но кто пытался и пробовал, пусть и неправильно, с ошибками - тот сейчас умеет решать. А кто не пробовал, не учился - тот так и не научился.

Вот вам три составляющие ответа на вопрос: "Как учить математику?" Ликвидировать пробелы, освоить термины на понятном уровне и осмысленно решать задания.

Если вам математика представляется дебрями каких-то правил, формул, выражений, в которых невозможно ориентироваться, то я вас утешу. Есть там тропы и путеводные звезды! Обживетесь, попривыкнете, еще и любоваться этими дебрями начнете…

Математика школьного курса не решает сложные примеры, так как не умеет. Она хорошо может решить что-нибудь вида 5х = 10, квадратное уравнение через дискриминант, ну и такое же простое из тригонометрии, логарифмов и т.д. И вся мощь математики направлена на упрощение сложных выражений. Именно для этого нужны правила и формулы различных преобразований. Они позволяют записывать исходное выражение в другом, удобном нам виде, не меняя его сущности.



«Математика – это искусство называть разные вещи одним и тем же именем». (А. Пуанкаре)

Например, 8 = 6 + 2 = 2 = = log 6561 = 32: 4. Это всё одно и то же число 8! Только записано в самых разных видах. Какой вид выбрать - решать нам! Сообразуясь с заданием и здравым смыслом.

Главной путеводной звездой в математике является умение преобразовывать выражения. Практически любое решение начинается с преобразования исходного выражения. С помощью правил и формул, которых вовсе не такое безумное количество, как вам кажется.

Мы часто говорим «Все формулы работают слева – направо и справа – налево». Скажем, (a + b) почти каждый распишет как a + 2ab + b . Но не каждый (к сожалению) сообразит, что x + 2x + 1 можно записать, как (x + 1) . А вот это надо уметь! Формулы нужно знать в лицо! Уметь опознавать их в зашифрованных хитрыми преподавателями выражениях, выявлять части формул, доводить, при необходимости, до полных.

Преобразования выражений – вещь, поначалу, хлопотная. Требует труда. На стартовом этапе нужно проверять, где можно, правильность преобразования обратным преобразованием. Разложили на множители – перемножьте обратно и приведите подобные. Получилось исходное выражение – ура! Нашли корни уравнения – подставьте в исходное выражение. Посмотрите, что получилось. И так далее.

Итак, я приглашаю вас в удивительный мир математики. А начнём наш путь со знакомства с дробями, так это, пожалуй, самое уязвимое место большинства школьников.

В добрый путь!

Занятие 1.

Виды дробей. Преобразования.

Кто знает дроби, тот силён, тот в математике отважен!

Дроби бывают трёх видов.

1. Обыкновенные дроби , например: , , , .

Иногда вместо горизонтальной черты ставят наклонную черту: 1/2, 3/7, 19/5. Черта, и горизонтальная (винкулиум), и наклонная (солидус) означает одну и ту же операцию: деление верхнего числа (числителя) на нижнее (знаменатель). И всё! Вместо черты вполне можно поставить знак деления - две точки. 1/2 = 1: 2.

Когда деление возможно нацело, это надо делать. Так, вместо дроби 32/8 гораздо приятнее написать число 4. Т.е. 32 просто поделить на 8. 32/8 = 32: 8 = 4. Я уж не говорю про дробь 4/1, которая тоже равна 4. А если уж не делится нацело, так и оставляем, в виде дроби. Иногда приходится обратную операцию проделывать. Делать из целого числа дробь. Но об этом далее.

2. Десятичные дроби , например: 0,5; 3,28; 0,543; 23,32.

3. Смешанные числа , например: , , , .

Смешанные числа практически не используются в старших классах. Для того, чтобы с ними работать, их надо переводить в обыкновенные дроби. Но это точно надо уметь делать! А то попадётся такое число в задаче и зависните... На пустом месте. Но мы-то вспомним эту процедуру!

Наиболее универсальны обыкновенные дроби. С них и начнём. Кстати, если в дроби стоят всякие логарифмы, синусы и прочие буквы, это ничего не меняет. В том смысле, что все действия с дробными выражениями ничем не отличаются от действий с обыкновенными дробями!

Итак, вперёд! Всё многообразие преобразований дробей обеспечивается одним-единственным свойством! Оно так и называется, основное свойство дроби . Запоминайте: если числитель и знаменатель дроби умножить (разделить) на одно и то же число, дробь не изменится. Т.е:

А оно нам надо, все эти превращения? – спросите вы. Ещё как! Сейчас сами увидите. Для начала употребим основное свойство дроби для сокращения дробей. Казалось бы, вещь элементарная. Делим числитель и знаменатель на одно и то же число и все дела! Ошибиться невозможно! Но... человек - существо творческое. Ошибиться везде может! Особенно, если приходиться сокращать не дробь вида 5/10, а дробное рациональное выражение.

Обычно ученик не задумывается над делением числителя и знаменателя на одно и то же число (или выражение)! Он просто зачеркивает всё одинаковое сверху и снизу! Здесь-то и таится типичная ошибка, ляп, если хотите.

Например, надо упростить выражение: .

Что мы делаем? Зачеркиваем множитель а сверху и степень снизу! Получаем: .

Все правильно. Но реально вы поделили весь числитель и весь знаменатель на множитель а. Если вы привыкли просто зачеркивать, то, впопыхах, можете зачеркнуть букву а в выражении и получить снова . Что будет категорически неверно: непростительная ошибка. Потому что здесь весь числитель на а уже не делится ! Эту дробь сократить нельзя.

При сокращении делить надо весь числитель и весь знаменатель!

Сокращение дробей сильно облегчает жизнь. Получится где-нибудь у вас дробь, к примеру, 375/1000. И как теперь с ней дальше работать? Без калькулятора? Умножать, скажем, складывать, в квадрат возводить!? А если не полениться, да аккуратненько сократить на пять, да ещё на пять, да ещё... пока сокращается. Получим 3/8! Куда приятнее, правда?

Основное свойство дроби позволяет переводить обыкновенные дроби в десятичные и, наоборот, без калькулятора! Это важно на ЦТ, правда?

С десятичными дробями всё просто. Как слышится, так и пишется! Скажем, 0,25. Это нуль целых, двадцать пять сотых. Так и пишем: 25/100. Сокращаем (делим числитель и знаменатель на 25), получаем обыкновенную дробь: 1/4. Всё. Бывает, и не сокращается ничего. Например, 0,3. Это три десятых, т.е. 3/10.

А если целых - не нуль? Ничего страшного. Записываем всю дробь без всяких запятых в числитель, а в знаменатель - то, что слышится. Например: 3,17. Это три целых, семнадцать сотых. Пишем в числитель 317, а в знаменатель 100. Получаем 317/100. Ничего не сокращается, значит всё. Это ответ. Из всего сказанного полезный вывод: любую десятичную дробь можно превратить в обыкновенную.

А вот обратное преобразование, обыкновенной в десятичную, некоторые без калькулятора не могут сделать. А надо! Как вы ответ записывать будете!? Внимательно читаем и осваиваем этот процесс.

Десятичная дробь чем характерна? У неё в знаменателе всегда стоит 10, или 100, или 1000, или 10000 и так далее. Если ваша обыкновенная дробь имеет такой знаменатель, проблем нет. Например, 4/10 = 0,4. Или 7/100 = 0,07. Или 12/10 = 1,2. А если в результате решения получилось 1/2? А ответ нужно записать десятичной…

Вспоминаем основное свойство дроби ! Математика благосклонно позволяет умножать числитель и знаменатель на одно и то же число. На любое, между прочим! Кроме нуля, разумеется. Вот и применим это свойство себе на пользу! На что можно умножить знаменатель, т.е. 2 чтобы он стал 10, или 100, или 1000 (поменьше лучше, конечно...)? На 5, очевидно. Смело умножаем знаменатель на 5. Но, тогда и числитель надо умножить тоже на 5. Получим 1/2 = 0,5. Вот и всё.

Однако, знаменатели могут быть разными. Например, дробь 3/16. Тогда можно просто разделить 3 на 16. За отсутствием калькулятора делить придётся уголком, как в младших классах учили. Получим 0,1875.

А бывают и совсем скверные знаменатели. Например, дробь 1/3 ну никак не превратишь в хорошую десятичную. И на калькуляторе, и при делении уголком мы получим 0,3333333... Отсюда ещё один полезный вывод. Не каждая обыкновенная дробь переводится в десятичную!

Итак, с обыкновенными и десятичными дробями разобрались. Осталось разобраться со смешанными числами. Для работы с ними их нужно перевести в обыкновенные дроби. Как это сделать? Можно поймать пятиклассника и спросить у него. Но не всегда пятиклассник окажется рядом... Придётся самим. Это несложно. Надо знаменатель дробной части умножить на целую часть и прибавить числитель дробной части. Это будет числитель обычной дроби. А знаменатель? Знаменатель останется тем же самым. Звучит сложно, но на деле всё элементарно. Смотрим пример.

Пусть в задаче вы с ужасом увидели число:

Спокойно, без паники рассуждаем. Целая часть - это 1. Единица. Дробная часть - 3/7. Стало быть, знаменатель дробной части - 7. Этот знаменатель и будет знаменателем обыкновенной дроби. Считаем: числитель. 7 умножаем на 1 (целая часть) и прибавляем 3 (числитель дробной части). Получим 10. Это будет числитель обыкновенной дроби. Вот и всё. Еще проще это выглядит в математической записи:

Легко? Тогда закрепите успех! Переведите эти смешанные числа , , в обыкновенные дроби. У вас должно получиться 10/3, 23/10 и 21/4.

Ну вот, практически и всё. Вы вспомнили виды дробей и поняли, как переводить их из одного вида в другой. Остаётся вопрос: зачем это делать? Где и когда применять эти глубокие познания?

Любой пример сам подсказывает необходимые действия. Если в примере смешались в кучу обыкновенные дроби, десятичные, да ещё и смешанные числа, переводим всё в обыкновенные дроби. Это всегда можно сделать. Ну а если написано, к примеру, 0,8 + 0,3, то так и считаем, безо всякого перевода. Зачем нам лишняя работа? Мы выбираем тот путь решения, который удобен нам!

Если в задании сплошь десятичные дроби, но гм... страшные какие-то, перейдите к обыкновенным, попробуйте! Может, всё и наладится. Например, придется в квадрат возводить число 0,125. Не так-то просто, если от калькулятора не отвыкли! Мало того, что числа перемножать столбиком надо, так ещё думай, куда запятую вставить! В уме точно не получится! А если перейти к обыкновенной дроби? 0,125 = 125/1000. Сокращаем на 5 (это для начала). Получаем 25/200. Ещё раз на 5. Получаем 5/40. Ещё сокращается! Снова на 5! Получаем 1/8. Легко возводим в квадрат (в уме!) и получаем 1/64. Всё!

Подведём итоги нашего занятия.

1. Дроби бывают трёх видов: обыкновенные, десятичные и смешанные числа.

2. Десятичные дроби и смешанные числа всегда можно перевести в обыкновенные дроби. Обратный перевод не всегда возможен.

3. Выбор вида дробей для работы с заданием зависит от этого самого задания. При наличии разных видов дробей в одном задании, самое надёжное - перейти к обыкновенным дробям.

Практические советы:

1. Самое главное при работе с дробными выражениями - аккуратность и внимательность! Это не общие слова, не благие пожелания! Это суровая необходимость! Лучше написать две лишние строчки в черновике, чем ошибиться при расчёте в уме.

2. В примерах с разными видами дробей - переходим к обыкновенным дробям.

3. Все дроби сокращаем до упора.

4. Многоэтажные дробные выражения сводим к обыкновенным, используя деление через две точки (следим за порядком деления!).

5. Единицу на дробь делим в уме, просто переворачивая дробь.

А теперь попробуйте применить теорию на практике.

Итак, решаем в режиме экзамена! Решаем пример, проверяем, решаем следующий. Решили все - проверили снова с первого по последний пример. И только потом смотрим ответы.

Решили? Ищем ответы, которые совпадают с вашими. Ответы записаны в беспорядке, подальше от соблазна, так сказать...

0; 17/22; 3; 1; 3/4; 14; -5/4; 17/12; 1/3; 5; 2/5; 25.

А теперь делаем выводы. Если всё получилось - рада за вас! Элементарные вычисления с дробями - не ваша проблема! Можно заняться более серьёзными вещами. Если нет... Терпение и труд всё перетрут.