Исследовательская работа по математике на тему "Треугольник Паскаля" (7 класс). Определение треугольника паскаля

Для того, чтобы получить треугольник Паскаля , перепишем Таблицу 1 из раздела «Формулы сокращенного умножения: степень суммы и степень разности» в следующем виде (Таблица П.):

Таблица П. – Натуральные степени бинома x + y

Степень Разложение в сумму одночленов
0 (x + y ) 0 = 1
1 (x + y ) 1 = 1x + 1y
2 (x + y ) 2 = 1x 2 + 2xy + 1y 2
3 (x + y ) 3 = 1x 3 + 3x 2 y + 3x y 2 + 1y 3
4 (x + y ) 4 = 1x 4 + 4x 3 y + 6x 2 y 2 + 4x y 3 + 1y 4
5 (x + y ) 5 = 1x 5 + 5x 4 y + 10x 3 y 2 + 10x 2 y 3 + 5x y 4 + 1y 5
6 (x + y ) 6 = 1x 6 + 6x 5 y + 15x 4 y 2 + 20x 3 y 3 +
+ 15x 2 y 4 + 6x y 5 + 1y 6

Теперь, воспользовавшись третьим столбцом Таблицы П., составим следующую Таблицу - Треугольник Паскаля :

Степень 0:

(x + y ) 0 =

Степень 1:

(x + y ) 1 =

Разложение в сумму одночленов:

1x + 1y

Степень 2:

(x + y ) 2 =

Разложение в сумму одночленов:

1x 2 + 2xy + 1y 2

Степень 3:

(x + y ) 3 =

Разложение в сумму одночленов:

1x 3 + 3x 2 y + 3x y 2 + 1y 3

Степень 4:

(x + y ) 4 =

Разложение в сумму одночленов:

1x 4 + 4x 3 y + 6x 2 y 2 +
+ 4x y 3 + 1y 4

Степень 5:

(x + y ) 5 =

Разложение в сумму одночленов:

1x 5 + 5x 4 y + 10x 3 y 2 +
+ 10x 2 y 3 + 5x y 4 + 1y 5

Степень 6:

(x + y ) 6 =

Разложение в сумму одночленов:

1x 6 + 6x 5 y + 15x 4 y 2 +
+ 20x 3 y 3 +
+ 15x 2 y 4 +
+ 6x y 5 + 1y 6

Теперь, записыая только коэффициенты разложений степеней бинома в сумму одночленов, получим следующую Таблицу - Треугольник Паскаля :

Таблица - Треугольник Паскаля

На всякий случай напомним, что Блез Паскаль – это знаменитый физик и математик, живший во Франции более трех веков назад.

В треугольнике Паскаля каждая строка соответствует строке с тем же номером в Таблице П. Однако в каждой строке треугольника Паскаля, в отличие от Таблицы П., записаны только коэффициенты разложения в сумму одночленов соответствующей степени бинома x + y .

Заполнив сначала строки треугольника Паскаля с номерами 0 и 1, рассмотрим строки с номерами 2 и далее.

Основным свойством треугольника Паскаля , позволяющим последовательно, начиная со строки с номером 2, заполнять его строки, является следующее свойство :

Каждая из строк , начиная со строки с номером 2, во-первых, начинается и заканчивается числом 1, а, во-вторых, между числами 1 стоят числа, каждое из которых равно сумме двух чисел, стоящих над ним в предыдущей строке.

Действительно, число 2, стоящее в строке с номером два, равно сумме чисел 1 плюс 1, стоящих в первой строке. Точно так же, числа 3 и 3, стоящие в строке с номером три, равны соответственно сумме чисел 1 плюс 2 и сумме чисел 2 плюс 1, стоящих во второй строке.

Также и для других строк.

Таким образом, свойство треугольника Паскаля позволяет, заполнив одну из строк, легко заполнить и следующую за ней, т.е. получить необходимые коэффициенты разложения в сумму одночленов следующей степени бинома x + y .

Пример . Написать разложение вида:

(x + y ) 7 .

Решение . Воспользовавшись строкой треугольника Паскаля с номером 6 и применив основное свойство треугольника Паскаля, получим строку с номером 7:

На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ и ОГЭ по математике .

Для школьников, желающих хорошо подготовиться и сдать ЕГЭ

Рассмотрим следующие выражения со степенями (a + b) n , где a + b есть любой бином, а n - целое число.

Каждое выражение - это полином. Во всех выражениях можно заметить особенности.

1. В каждом выражении на одно слагаемое больше, чем показатель степени n.

2. В каждом слагаемом сумма степеней равна n, т.е. степени, в которую возводится бином.

3. Степени начинаются со степени бинома n и уменьшаются к 0. Последний член не имеет множителя a. Первый член не имеет множителя b, т.е. степени b начинаются с 0 и увеличиваются до n.

4. Коэффициенты начинаются с 1 и увеличиваются на определенные значения до "половины пути", а потом уменьшаются на те же значения обратно к 1.

Давайте рассмотрим коэффициенты подробнее. Предположим, что мы хотим найти значение (a + b) 6 . Согласно особенности, которую мы только что заметили, здесь должно быть 7 членов
a 6 + c 1 a 5 b + c 2 a 4 b 2 + c 3 a 3 b 3 + c 4 a 2 b 4 + c 5 ab 5 + b 6 .
Но как мы можем определить значение каждого коэффициента, c i ? Мы можем сделать это двумя путями. Первый метод включает в себя написание коэффициентов треугольником, как показано ниже. Это известно как Треугольник Паскаля :


Есть много особенностей в треугольнике. Найдите столько, сколько сможете.
Возможно вы нашли путь, как записать следующую строку чисел, используя числа в строке выше. Единицы всегда расположены по сторонам. Каждое оставшееся число это сумма двух чисел, расположенных выше этого числа. Давайте попробуем отыскать значение выражения (a + b) 6 путем добавления следующей строки, используя особенности, которые мы нашли:

Мы видим, что в последней строке

первой и последнее числа 1 ;
второе число равно 1 + 5, или 6 ;
третье число это 5 + 10, или 15 ;
четвертое число это 10 + 10, или 20 ;
пятое число это 10 + 5, или 15 ; и
шестое число это 5 + 1, или 6 .

Таким образом, выражение (a + b) 6 будет равно
(a + b) 6 = 1 a 6 + 6 a 5 b + 15 a 4 b 2 + 20 a 3 b 3 + 15 a 2 b 4 + 6 ab 5 + 1 b 6 .

Для того, чтобы возвести в степень (a + b) 8 , мы дополняем две строки к треугольнику Паскаля:

Тогда
(a + b) 8 = a 8 + 8a 7 b + 28a 6 b 2 + 56a 5 b 3 + 70a 4 b 4 + 56a 3 b 5 + 28a 2 b 6 + 8ab 7 + b 8 .

Мы можем обобщить наши результаты следующим образом.

Бином Ньютона с использованием треугольника Паскаля

Для любого бинома a+ b и любого натурального числа n,
(a + b) n = c 0 a n b 0 + c 1 a n-1 b 1 + c 2 a n-2 b 2 + .... + c n-1 a 1 b n-1 + c n a 0 b n ,
где числа c 0 , c 1 , c 2 ,...., c n-1 , c n взяты с (n + 1) ряда треугольника Паскаля.

Пример 1 Возведите в степень: (u - v) 5 .

Решение У нас есть (a + b) n , где a = u, b = -v, и n = 5. Мы используем 6-й ряд треугольника Паскаля:
1 5 10 10 5 1
Тогда у нас есть
(u - v) 5 = 5 = 1 (u) 5 + 5 (u) 4 (-v) 1 + 10 (u) 3 (-v) 2 + 10 (u) 2 (-v) 3 + 5 (u)(-v) 4 + 1 (-v) 5 = u 5 - 5u 4 v + 10u 3 v 2 - 10u 2 v 3 + 5uv 4 - v 5 .
Обратите внимание, что знаки членов колеблются между + и -. Когда степень -v есть нечетным числом, знак -.

Пример 2 Возведите в степень: (2t + 3/t) 4 .

Решение У нас есть (a + b) n , где a = 2t, b = 3/t, и n = 4. Мы используем 5-й ряд треугольника Паскаля:
1 4 6 4 1
Тогда мы имеем

Разложение бинома используя значения факториала

Предположим, что мы хотим найти значение (a + b) 11 . Недостаток в использовании треугольника Паскаля в том, что мы должны вычислить все предыдущие строки треугольника, чтобы получить необходимый ряд. Следующий метод позволяет избежать этого. Он также позволяет найти определенную строку - скажем, 8-ю строку - без вычисления всех других строк. Этот метод полезен в вычислениях, статистике и он использует биномиальное обозначение коэффициента .
Мы можем сформулировать бином Ньютона следующим образом.

Бином Ньютона с использованием обозначение факториала

Для любого бинома (a + b) и любого натурального числа n,
.

Бином Ньютона может быть доказан методом математической индукции. Она показывает почему называется биноминальным коэффициентом .

Пример 3 Возведите в степень: (x 2 - 2y) 5 .

Решение У нас есть (a + b) n , где a = x 2 , b = -2y, и n = 5. Тогда, используя бином Ньютона, мы имеем


Наконец, (x 2 - 2y) 5 = x 10 - 10x 8 y + 40x 6 y 2 - 80x 4 y 3 + 80x 2 y 4 - 35y 5 .

Пример 4 Возведите в степень: (2/x + 3√x ) 4 .

Решение У нас есть (a + b) n , где a = 2/x, b = 3√x , и n = 4. Тогда, используя бином Ньютона, мы получим


Finally (2/x + 3√x ) 4 = 16/x 4 + 96/x 5/2 + 216/x + 216x 1/2 + 81x 2 .

Нахождение определенного члена

Предположим, что мы хотим определить тот или иной член термин из выражения. Метод, который мы разработали, позволит нам найти этот член без вычисления всех строк треугольника Паскаля или всех предыдущих коэффициентов.

Обратите внимание, что в биноме Ньютона дает нам 1-й член, дает нам 2-й член, дает нам 3-й член и так далее. Это может быть обощено следующим образом.

Нахождение (k + 1) члена

(k + 1) член выражения (a + b) n есть .

Пример 5 Найдите 5-й член в выражении (2x - 5y) 6 .

Решение Во-первых, отмечаем, что 5 = 4 + 1. Тогда k = 4, a = 2x, b = -5y, и n = 6. Тогда 5-й член выражения будет

Пример 6 Найдите 8-й член в выражении (3x - 2) 10 .

Решение Во-первых, отмечаем, что 8 = 7 + 1. Тогда k = 7, a = 3x, b = -2 и n = 10. Тогда 8-й член выражения будет

Общее число подмножеств

Предположим, что множество имеет n объектов. Число подмножеств, содержащих k элементов есть . Общее число подмножеств множества есть число подмножеств с 0 элементами, а также число подмножеств с 1 элементом, а также число подмножеств с 2-мя элементами и так далее. Общее число подмножеств множества с n элементами есть
.
Теперь давайте рассмотрим возведение в степень (1 + 1) n:

.
Так. общее количество подмножеств (1 + 1) n , или 2 n . Мы доказали следующее.

Полное число подмножеств

Полное число подмножеств множества с n элементами равно 2 n .

Пример 7 Сколько подмножеств имеет множество {A, B, C, D, E}?

Решение Множество имеет 5 элементов, тогда число подмножеств равно 2 5 , или 32.

Пример 8 Сеть ресторанов Венди предлагает следующую начинку для гамбургеров:
{кетчуп, горчица, майонез, помидоры, салат, лук, грибы, оливки, сыр }.
Сколько разных видов гамбургеров может предложить Венди, исключая размеры гамбургеров или их количество?

Решение Начинки на каждый гамбургер являются элементами подмножества множества всех возможных начинок, а пустое множество это просто гамбургер. Общее число возможных гамбургеров будет равно

. Таким образом, Венди может предложить 512 различных гамбургеров.

Числовой треугольник Паскаля

В верхней строчке треугольника располагается одинокая единица. В остальных строках каждое число является суммой двух своих соседей этажом выше - слева и справа. Если какой-то из соседей отсутствует, он считается равным нулю. Треугольник бесконечно простирается вниз; мы приводим лишь восемь верхних строчек: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 …

Обозначим буквой n номер строки треугольника, а буквой k - номер числа в строке (нумерация начинается в обоих случаях с нуля). Чаще всего число в n -ой строке и на k -ом месте в этой строке обозначается C n k , реже - n k .

Назовём лишь некоторые факты, относящиеся к треугольнику Паскаля.

Числа в n -ой строке треугольника являются биномиальными коэффициентами , то есть коэффициентами в разложении n -ой степени бинома Ньютона : a + b n = ∑ k = 0 n C n k ⁢ a k ⁢ b n − k .

Сумма всех чисел в n -ой строке равна n -ой степени двойки: ∑ k = 0 n C n k = 2 n . Эта формула получается из формулы бинома, если положить a = b = 1 .

Можно доказать явную формулу для вычисления биномиального коэффициента: C n k = n ! k ! ⁢ n − k ! .

Если строки в треугольнике Паскаля выровнять по левому краю, то суммы чисел, расположенных вдоль диагоналей, идущих слева направо и снизу вверх, равны числам Фибоначчи - 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 … (каждое число в этой последовательности равно сумме двух предыдущих, а начинают последовательность две единицы): 1 ⬃ 1 2 1 ⬃ ⬃ 3 5 1 1 ⬃ ⬃ 8 13 1 2 1 ⬃ ⬃ 21 34 1 3 3 1 ⬃ ⬃ 55 89 1 4 6 4 1 ⬃ ⬃ 144 233 1 5 10 10 5 1 ⬃ ⬃ 377 610 1 6 15 20 15 6 1 ⬃ ⬃ 987 1597 1 7 21 35 35 21 7 1 ⬃ ⬃ 2584 4181 … ⬃ ⬃

Если раскрасить нечётные числа в треугольнике Паскаля в один цвет, а чётные - в другой, получится такая картина (на рисунке 10.1. «Треугольник Паскаля - Серпинского» указанным образом раскрашены числа в первых 128 строчках):


Похожее изображение можно построить следующим образом. В закрашенном треугольнике перекрасим в другой цвет его серединный треугольник (образованный серединами сторон исходного). Три маленьких треугольника, расположенные по углам большого, останутся закрашенными в прежний цвет. Поступим с каждым из них точно так же, как мы поступили с большим, то есть перекрасим в каждом серединный треугольник. То же самое сделаем с оставшимися треугольниками старого цвета. Если эту процедуру проделывать до бесконечности, на месте исходного треугольника останется двухцветная фигура. Та её часть, которая не перекрашена, называется треугольником Серпинского . Несколько первых этапов построения треугольника Серпинского показаны на рисунке 10.2. «Построение треугольника Серпинского» .


Важным свойством треугольника Серпинского является его самоподобие - ведь он состоит из трёх своих копий, уменьшенных в два раза (это части треугольника Серпинского, содержащиеся в маленьких треугольниках, примыкающих к углам). Самоподобие - одно из характерных свойств фракталов , о которых мы ещё поговорим в главе 44. «L-системы » . Треугольник Серпинского также будет упомянут в этой главе.

О таинственной связи треугольника Паскаля с простыми числами мы вычитали в книге в небольшой заметке Ю. Матиясевича . Заменим в треугольнике Паскаля числа на их остатки от деления на номер строки. Расположим строки в полученном треугольнике таким образом, чтобы следующая строка начиналась на две колонки правее начала предыдущей (см. рисунок 10.3. «Связь треугольника Паскаля с простыми числами»). Тогда столбцы с простыми номерами будут состоять из одних нулей, а в столбцах, чьи номера составные, найдётся ненулевое число.

Вариации на тему "Треугольник Паскаля"

История

Треугольник Паскаля является, пожалуй, одной из наиболее известных и изящных числовых схем во всей математике.

Блез Паскаль, французский математик и философ, посвятил ей специальный "Трактат об арифметическом треугольнике".

Впрочем, эта треугольная таблица была известна задолго до 1665 года - даты выхода в свет трактата.

Так, в 1529 году треугольник Паскаля был воспроизведен на титульном листе учебника арифметики, написанного астрономом Петром Апианом.

Изображен треугольник и на иллюстрации книги "Яшмовое зеркало четырех элементов" китайского математика Чжу Шицзе, выпущенной в 1303 году.

Омар Хайям, бывший не только философом и поэтом, но и математиком, знал о существовании треугольника в 1110 году, в свою очередь заимствовав его из более ранних китайских или индийских источников.

Построение треугольника Паскаля

Треугольник Паскаля - это просто бесконечная числовая таблица "треугольной формы", в которой на вершине и по боковым сторонам стоят единицы, каждое из остальных чисел равно сумме двух чисел, стоящих над ним слева и справа в предшествующей строке. Таблица обладает симметрией относительно оси, проходящей через его вершину.

Свойства треугольника Паскаля

Свойства строк

    Сумма чисел n-й строки Паскаля равна 2 n (потому что при переходе от каждой строки к следующей сумма членов удваивается, а для нулевой строки она равна 20=1) Все строки Паскаля симметричны (потому что при переходе от каждой строки к следующей свойство симметричности сохраняется, а нулевая строка симметрична) Каждый член строки Паскаля с номером n тогда и только тогда делится на т, когда т - простое число, а n - степень этого простого числа

Треугольные числа
Вдоль диагоналей, параллельных сторонам треугольника, выстроены треугольные, тетраэдрические и другие числа. Треугольные числа указывают количество шаров или других предметов, уложенных в виде треугольника (эти числа образуют следующую последовательность: 1,3,6,10,15,21,..., в которой 1- первое треугольное число, 3- второе треугольное число, 6-третье и т. д. до m-ro, которое показывает, сколько членов треугольника Паскаля содержится в первых m его строках - от нулевой до (m-1)-й).

Тетраэдрические числа
Члены последовательности 1,4, 10, 20, 36, 56,... называются пирамидальными, или, более точно, тетраэдрическими числами: 1- первое тетраэдрическое число, 4- второе, 10- третье и т. д. до m-ro. Эти числа показывают, сколько шаров может быть уложено в виде треугольной пирамиды (тетраэдра).

Числа Фибоначчи
В 1228 году выдающийся итальянский математик Леонардо из Пизы, более известный сейчас под именем Фибоначчи, написал свою знаменитую "Книгу об абаке". Одна из задач этой книги - задача о размножении кроликов - приводила к последовательности чисел 1,1,2,3,5,8,13,21..., в которой каждый член, начиная с третьего, представляет собой сумму двух предыдущих членов. Эта последовательность носит название ряда Фибоначчи, члены ряда Фибоначчи называют числами Фибоначчи. Обозначая n-е число Фибоначчи через

Между рядом Фибоначчи и треугольником Паскаля существует любопытная связь. Образуем для каждой восходящей диагонали треугольника Паскаля сумму всех стоящих на этой диагонали чисел. Получим для первой диагонали 1, для второй 1, для третьей 2, для четвертой 3, для пятой 5. Мы получили не что иное, как пять начальных чисел Фибоначчи. Оказывается, что всегда сумма чисел n-й диагонали есть n-е число Фибоначчи. Для доказательства интересующего нас предложения достаточно показать, что сумма всех чисел, составляющих n-ю и (n+1) диоганали треугольника Паскаля равна сумме чисел, составляющих его т+2-ю диагональ.

Биномиальные коэффициенты
Числа, стоящие по горизонтальным строкам, являются биномиальными коэффициентами. Строка с номером n состоит из коэффициентов разложения бинома (1+n)n. Покажем это при помощи операции Паскаля. Но сначала представим, как биномиальные коэффициенты определяются.

Возьмем бином 1+х и начнем возводить его в степени 0, 1, 2, 3 и т. д., располагая получающиеся при этом многочлены по возрастающим степеням буквы х. Мы получим

1.(1+х)0=1,
2.(1+х)1=1+х,
3. (1 +х)2=(1 +х)(1 +х)= 1 +2х+х2,
4.(1+х)3=1+Зх+Зх2+хЗ
и т. д.

Вообще, для любого целого неотрицательного числа n
(1+x)n=a0+a1x+a2x2+...+apxp,
где a0,a1,...,ap

Последнее соотношение можно переписать в виде а из соотношений 1-4 получаем

Образовался треугольник Паскаля, каждый элемент которого

Именно это фундаментальное свойство треугольника Паскаля связывает его не только с комбинаторикой и теорией вероятностей, но и с другими областями математики и ее приложений.

Решение задач с применением треугольника Паскаля

Старинные задачи о случайном
Еще в глубокой древности появились различные азартные игры. В Древней Греции и Риме широкое распространение получили игры в астрагалы, когда игроки бросали кости животных. Также пользовались популярностью игральные кости - кубики с нанесенными на гранях точками. Позднее азартные игры распространились в средневековой Европе.

Эти игры подарили математикам массу интересных задач, которые потом легли в основу теории вероятностей. Очень популярны были задачи о дележе ставки. Ведь, как правило, игра велась на деньги: игроки делали ставки, а победитель забирал всю сумму. Однако игра иногда прерывалась раньше финала, и возникал вопрос: как разделить деньги.

Многие математики занимались решением этой проблемы, но до середины XVII века так и не нашли его. В 1654 году между французскими математиками Блезом Паскалем, уже хорошо известным нам, и Пьером Ферма возникла переписка по поводу ряда комбинаторных задач, в том числе и задач о дележе ставки. Оба ученых, хотя и несколько разными путями, пришли к верному решению, деля ставку пропорционально вероятности выигрыша всей суммы при продолжении игры.

Следует отметить, что до них никто из математиков вероятность событий не вычислял, в их переписке теория вероятностей и комбинаторика впервые были научно обоснованы, и поэтому Паскаль и Ферма считаются основателями теории вероятностей.

Рассмотрим одну из задач Ферма, решенную Паскалем с помощью своей числовой таблицы.

Пусть до выигрыша всей встречи игроку А недостает двух партий, а игроку В - трех партий. Как справедливо разделить ставку, если игра прервана?

Паскаль складывает количество партий, недостающих игрокам, и берет строку таблицы, в которой количество членов равно найденной сумме, т. е. 5. Тогда доля игрока А будет равна сумме трех (по количеству партий, недостающих игроку В) первых членов пятой строки, а доля игрока В - сумме оставшихся двух чисел. Выпишем эту строку: 1,4,6,4, 1. Доля игрока А равна 1+4+6=11, а доля В -1+4=5.

Другие арифметические треугольники

Рассмотрим треугольники, построение которых связано с известными однопараметрическими комбинаторными числами. Создание таких треугольников основано на принципе построения рассматриваемого выше треугольника Паскаля.

Треугольник Люка

Рассмотрим построенный арифметический треугольник. Данный треугольник носит название треугольника Люка, так как суммы чисел, стоящих на восходящих диагоналях, дают последовательность чисел Люка: 1, 3, 4, 7, 11, 18, / которые могут быть определены как

Ln=Ln-1+Ln-2, L0=2, L1=1

Каждый элемент треугольника определяется по правилу Паскаля Ln+1,k=Ln, k-1+Ln, k при начальных условиях L1,0=1, L1,1=2 и L0,k=0

т. е. n-я строка треугольника люка может быть получена сложением n-й и (n-1)-й строк треугольника Паскаля.

Треугольник Фибоначчи

Из чисел (fm, n), удовлетворяющих уравнениям
fm, n=fm-1,n+fm-2,n,
fm, n=fm-1,n-1+fm-2,n-2, где с начальными условиями f0,0=f1,0=f1,1=f2,1=1 строится следующий треугольник.

fm, n =fn fn-m, m Є n Є 0, где fn - n - е число Фибоначчи. Построенный треугольник назван треугольником Фибоначчи.

Треугольник Трибоначчи

Рассмотрим еще один треугольник, создание которого основано на методе построения треугольника Паскаля. Это треугольник Трибоначчи. Он назван так потому, что суммы элементов, стоящих на восходящих диагоналях, образуют последовательность чисел Трибоначчи: 1,1,2,4,7,13,24,44,..., которая может быть определена следующим рекуррентным соотношением: tn+3 = tn+2 + tn+1 + tn с начальными условиями t0 = 1, t1 = 1, t2 = 2

"Знаковый треугольник"

Построение "знакового треугольника"

Перед нами треугольник, составленный из одних знаков, плюсов и минусов, по принципу образования треугольника Паскаля. В отличие от последнего, он расположен основанием вверх.

Сначала задается первая строка, состоящая из произвольного количества знаков и их расположения. Каждый знак следующей строки получается путем перемножения двух вышестоящих знаков.

Одной из наших задач является установить, при каком количестве знаков первой строки число минусов и плюсов будет одинаковым. Общее количество знаков в таблице можно определить формулой

где n - число знаков в первой строке.

Образуется последовательность чисел, при которых количество минусов и плюсов может быть равным: 3, 4, 7, 8, 11, 12, 15, 16,..., каждое из которых показывает количество знаков в первой строке. Однако не установлено, при каком расположении знаков число минусов и плюсов будет однозначно одинаковым.

Второй нашей задачей, касающейся треугольника произведения знаков, является установление наименьшего количества плюсов, которое может иметь "знаковый треугольник".

Существует интересная последовательность знаков первой строки: +, -, -, +, -, -, ... (или -, -, + ,- ,- ,+ , ...), при которой число плюсов, как до сих пор считается, будет наименьшим и равным 1/3 от общего числа знаков, т. е. равным

Важно заметить, что если постепенно обходить треугольник, то последовательность знаков +, -, -, ... сохранится.

Обратим внимание на тот факт, что наименьшее количество плюсов, равное 1/3 от общего числа знаков, можно увидеть и в треугольнике при n = 2.

Биномиальные коэффициенты коэффициенты в разложении (1 + x)n по степеням x (т. н. бином Ньютона): Иначе говоря, (1 + x)n является производящей функцией для биномиальных коэффициентов. Значение биномиального коэффициента определено для всех целых… … Википедия

В Викисловаре есть статья «треугольник» Треугольник в широком смысле объект треугольной формы, либо тройка объектов, попарно связ … Википедия

Таблица чисел, являющихся биномиальными коэффициентами. В этой таблице по боковым сторонам равнобедренного треугольника стоят единицы, а каждое из остальных чисел равно сумме двух чисел, стоящих над ним слева и справа: В строке с номером n+1… … Математическая энциклопедия

Треугольник Серпинского фрактал, один из двумерных аналогов множества Кантора, предложенный польским математиком Серпински … Википедия

Построение треугольника Рёло Треугольник Рёло[* 1] предста … Википедия

Треугольная числовая таблица для составления биномиальных коэффициентов (см. Ньютона бином). П. т. предложен Б. Паскалем (См. Паскаль). См. Арифметический треугольник …

Треугольник Паскаля, треугольная числовая таблица для составления биномиальных коэффициентов (см. Ньютона бином). По бокам А. т. стоят единицы, внутри суммы двух верхних чисел. В (n + 1) й строке А. т. биномиальные коэффициенты… … Большая советская энциклопедия

То же, что Паскаля треугольник … Математическая энциклопедия

В математике биномиальные коэффициенты это коэффициенты в разложении бинома Ньютона по степеням x. Коэффициент при обозначается или и читается «биномиальный коэффициент из n по k» (или «це из n по k»): В … Википедия

Коэффициенты в разложении (1 + x)n по степеням x (т. н. бином Ньютона): Иначе говоря, (1 + x)n является производящей функцией для биномиальных коэффициентов. Значение биномиального коэффициента определено для всех целых чисел n и k. Явные формулы … Википедия

Книги

  • Треугольник Паскаля. Книга 102 , В. А. Успенский. В настоящей лекции рассматривается одна важная числовая таблица (которая и называется треугольником Паскаля), полезная при решении ряда вычислительных задач. Попутно с решением таких задач…
  • Треугольник Паскаля. Книга № 102 , Успенский В.А.. В настоящей лекции рассматривается одна важная числовая таблица (которая и называется треугольником Паскаля), полезная при решении ряда вычислительных задач. Попутно с решением таких задач…