Как определить положение центра масс. Центры масс однородных фигур

Механическая система

Механическая система - совокупность материальных точек: - движущихся согласно законам классической механики; и - взаимодействующих друг с другом и с телами, не включенными в эту совокупность.

Ма́сса

Масса проявляется в природе несколькими способами.

Пассивная гравитационнаямасса показывает, с какой силой тело взаимодействует с внешнимигравитационными полями- фактически эта масса положена в основу измерения массывзвешиваниемв современнойметрологии.

Активная гравитационная масса показывает, какое гравитационное поле создаёт само это тело - гравитационные массы фигурируют взаконе всемирного тяготения.

Инертная масса характеризуетинертностьтел и фигурирует в одной из формулировоквторого закона Ньютона. Если произвольная сила винерциальной системе отсчётаодинаково ускоряет разные исходно неподвижные тела, этим телам приписывают одинаковую инертную массу.

Гравитационная и инертная массы равны друг другу (с высокой точностью - порядка 10 −13 - экспериментально, а в большинстве физических теорий, в том числе всех, подтверждённых экспериментально - точно), поэтому в том случае, когда речь идёт не о «новой физике», просто говорят о массе, не уточняя, какую из них имеют в виду.

В классической механике масса системы тел равна сумме масс составляющих её тел. В релятивистской механике масса не является аддитивной физической величиной, то есть масса системы в общем случае не равна сумме масс компонентов, а включает в себяэнергию связии зависит от характера движения частиц друг относительно друга

Центр масс - (вмеханике) геометрическая точка, характеризующаядвижениетела или системы частиц, как целого . Не является тождественным понятиюцентра тяжести(хотя чаще всего совпадает).

Положение центра масс (центра инерции) системы материальных точекв классической механике определяется следующим образом :

где -радиус-векторцентра масс,- радиус-векторi -й точки системы,-массаi -й точки.

Для случая непрерывного распределения масс:

где - суммарная масса системы,- объём,- плотность. Центр масс, таким образом, характеризует распределение массы по телу или системе частиц.

Можно показать, что если система состоит не из материальных точек, а из протяжённых тел с массами , то радиус-вектор центра масс такой системысвязан с радиус-векторами центров масс телсоотношением :

Иначе говоря, в случае протяжённых тел справедлива формула, по своей структуре совпадающая с той, что используется для материальных точек.

В механике !!!

Понятие центра масс широко используется в механике и физике.

Движение твёрдого тела можно рассматривать как суперпозициюдвижения центра масс ивращательного движениятела вокруг его центра масс. Центр масс при этом движется так же, как двигалось бы тело с такой же массой, но бесконечно малыми размерами (материальная точка). Последнее означает, в частности, что для описания этого движения применимы всезаконы Ньютона. Во многих случаях можно вообще не учитывать размеры и форму тела и рассматривать только движение его центра масс.

Часто бывает удобно рассматривать движение замкнутой системы в системе отсчёта, связанной с центром масс. Такая система отсчёта называетсясистемой центра масс(Ц-система), илисистемой центра инерции. В ней полныйимпульсзамкнутой системы всегда остаётся равным нулю, что позволяет упростить уравнения её движения.

Центры масс однородных фигур

У отрезка - середина.

У многоугольников (как сплошных плоских фигур, так и каркасов):

У параллелограмма- точка пересечениядиагоналей.

У треугольника- точка пересечениямедиан(центроид ).

У правильного многоугольника- центрповоротной симметрии.

У полукруга - точка, делящая перпендикулярный радиус в отношении 4:3π от центра круга.

Количество движения = импульс

Количество движения системы (импульс системы).

Количество движения (импульс тела) – векторная физическая величина, равная произведению массы тела на его скорость:

Импульс (количество движения) – одна из самых фундаментальных характеристик движения тела или системы тел.

Запишем IIзакон Ньютона в другой форме, учитывая, что ускорениеТогдаследовательно

Произведение силы на время ее действия равно приращению импульса тела (рис. 1):

Где - импульс силы, который показывает, что результат действия силы зависит не только от ее значения, но и от продолжительности ее действия.

Рис.1

Количеством движения системы (импульсом) будем называть векторную величину , равную геомет­рической сумме (главному вектору) количеств движения (импульсов) всех точек системы (рис.2):

Из чертежа видно, что независимо от величин скоростей точек системы (если только эти скорости не параллельны) вектор может принимать любые значения и даже оказаться равным нулю, когда многоугольник, построенный из векторов, замкнется. Следова­тельно, по величиненель­зя полностью судить о ха­рактере движения системы.

Рис.2

Найдем формулу, с по­мощью которой значительно легче вычислять величину , а также уяснить ее смысл.

Из равенства

следует, что

Беря от обеих частей производную по времени, получим

Отсюда находим, что

количество движения (импульс) системы равно произведению массы всей системы на скорость ее центра масс . Этим результатом особенно удобно пользоваться при вычислении количеств движения твердых тел.

Из формулы видно, что если тело (или система) движется так, что центр масс остается неподвижным, то количество движения тела равно нулю. Например, количество движения тела, вращающегося вокруг неподвижной оси, проходящей через его центр масс, будет равно нулю.

Если же движение тела является сложным, то величина не будет характеризовать вращательную часть движения вокруг центра масс. Например, для катящегося колесанезависимо от того, как вращается колесо вокруг его центра массС .

Таким образом, количество движения характеризует только поступательное движение системы. При сложном же движении величинахарактеризует только поступательную часть движения системы вместе с центром масс.

Главный момент количе ств дв ижения (импульса) системы.

Главным моментом количеств движения (или кинетическом моментом) системы относительно данного центра О называется величина, равная геометрической сумме моментов количеств движения всех точек системы относи­тельно этого центра.

Аналогично определяются моменты количеств движения системы относительно координатных осей:

При этом представляют собою одновременно проекции векторана координатные оси.

Подобно тому, как количество движения системы является характеристикой ее поступательного движения, главный момент количеств движения системы является характеристи­кой вращательного движения системы.

Рис.6

Чтобы уяснить механический смысл величины L 0 и иметь необхо­димые формулы для решения задач, вычислим кинетический момент тела, вращающегося вокруг неподвижнойоси (рис.6).Приэтом, как обычно, определение вектора сводится к определению его проекций.

Найдем сначала наиболее важ­ную для приложений формулу, оп­ределяющую величину L z , т.е. кине­тический момент вращающегося тела относительно оси вращения.

Для любой точки тела, отстоя­щей от оси вращения на расстоя­нии , скорость. Сле­довательно, для этой точки. Тогда для всего тела, вынося общий множитель ω за скобку, получим

Величина, стоящая в скобке, представляет собою момент инерции тела относительно оси z . Окончательно находим

Таким образом, кинетический момент вращающегося тела относительно оси вращения равен произведению момента инерции тела относительно этой оси на угловую скорость тела.

Если система состоит из нескольких тел, вращающихся вокруг одной и той же оси, то, очевидно, будет

Легко видеть аналогию между формулами и: количество движения равно произведению массы (величина, характеризующая инертность тела при поступательном движении) на скорость; кинети­ческий момент равен произведению момента инерции (величина, характеризующая инертность тела при вращательном движении) на угловую скорость.

Снова рассмотрим ту же систему материальных точек. Построим радиус-вектор по следующему правилу:

где - радиус-вектор - той материальной точки системы, а - ее масса.

Радиус-вектор определяет положение в пространстве центра инерции (центра масс) системы.

Вовсе не обязательно, что в центре масс системы окажется какая-то материальная точка.

Пример. Найдем центр масс системы, состоящей из двух маленьких шариков - материальных точек, соединенных невесомым стержнем (рис. 3.29). Такая система тел называется гантелей.

Рис. 3.29. Центр масс гантели

Из рис. видно, что

Подставляя в эти равенства выражение для радиус-вектора центра масс

Отсюда следует, что центр масс лежит на прямой, проходящей через центры шаров. Расстояния l 1 и l 2 между шарами и центром масс равны соответственно

Центр масс ближе к тому шарику, масса которого больше, что видно из отношения:

Определим, с какой скоростью движется центр инерции системы. Дифференцируем по времени обе части:

В числителе полученного выражения в правой части стоит сумма импульсов всех точек, то есть импульс системы. В знаменателе стоит полная масса системы

Мы получили, что скорость центра инерции связана с импульсом системы и ее полной массой таким же соотношением, какое справедливо для материальной точки:

Видео 3.11. Движение центра масс двух одинаковых тележек, связанных пружиной.

Центр масс замкнутой системы движется всегда с постоянной скоростью, поскольку импульс такой системы сохраняется.

Если продифференцировать теперь выражение для импульса системы по времени и учесть, что производная импульса системы есть равнодействующая внешних сил, то получим уравнение движения центра масс системы в общем случае:

Видно, что

Центр масс системы движется точно так же, как двигалась бы материальная точка с массой, равной массе всех частиц системы, под действием векторной суммы всех внешних сил, приложенных к системе.

Если имеется система материальных точек, внутреннее расположение и движение которых нас не интересует, мы вправе считать ее материальной точкой с координатами радиус-вектора центра инерции и массой, равной сумме масс материальных точек системы.

Если связать с центром масс замкнутой системы материальных точек (частиц) систему отсчета (ее называют системой центра масс ), то полный импульс всех частиц в такой системе окажется равным нулю. Таким образом, в системе центра масс замкнутая система частиц как целое покоится, и существует только движение частиц относительно центра масс. Поэтому ясно выявляются свойства внутренних процессов, протекающих в замкнутой системе.

В случае, когда системой является тело с непрерывным распределением масс, определение центра масс остается по существу тем же. Окружаем произвольную точку в нашем теле небольшим объемом . Масса, заключенная в этом объеме, равна , где - плотность вещества тела, которая может и не быть постоянной по его объему. Сумма по всем таким элементарным массам заменяется теперь на интеграл по всему объему тела, так что для положения центра масс тела получается выражение

Если вещество тела однородно, плотность его постоянна, и ее можно вынести из-под знака интеграла, так что она сократится в числителе и знаменателе. Тогда выражение для радиус-вектора центра масс тела принимает вид

где - объем тела.

И в случае непрерывного распределения масс справедливо утверждение, что

Центр масс твердого тела движется так, как двигалась бы материальная точка с массой, равной массе тела, под действием векторной суммы всех внешних сил,приложенных к телу.

Пример . Если снаряд взрывается в некоторой точке своей параболической траектории, то осколки летят по самым различным траекториям, но его центр масс продолжает движение по параболе.

Существует множество различных конструкций и сооружений, смотря на которые, удивляешься, как они сохраняют равновесие. Самое, пожалуй, известное из них – знаменитая Пизанская башня, построенная ещё в 1360 году и сохраняющая свой непреднамеренный наклон. Почему же Пизанская башня сохраняет равновесие? Секрет прост. Вертикальная проекция центра масс башни находится на её основании. Это справедливо и для любого другого сооружения. Кроме того, если какой-либо предмет подвесить за точку, которая совпадает с центром масс, то подвешенный предмет тоже будет сохранять равновесие. Можно также собирать из различных предметов конструкции самой причудливой формы, которые будут находиться в равновесии, если правильно рассчитать местоположение центра масс. Давайте попробуем разобраться, как рассчитывать координаты центра масс различных плоских фигур.

Предположим, что Вы решили сделать новогоднюю гирлянду, состоящую из различных фигур, в том числе в форме стрелки. Сначала нужно вырезать из плотной бумаги с новогодним рисунком равнобедренный треугольник. Потом нужно сделать вырез тоже в форме равнобедренного треугольника так, чтобы центр масс получившейся фигуры оказался в точке В (см.рисунок). Найдем координаты x c и y c центра масс этой фигуры в прямоугольной системе координат yOx .

Положение центра масс плоских фигур известно: центр масс треугольника находится в точке пересечения его медиан, центр масс прямоугольника находится в точке пересечения его диагоналей, центр масс круга совпадает с его центром. Так как треугольник ACD – равнобедренный, то, исходя из его симметрии относительно прямой ОА , следует, что x c = 0 .

Для расчета координаты y c воспользуемся следующей формулой:

где S ΔACD и S ΔBCD – площади треугольников ACD и BCD , а y c 1 и y c 2 – координаты их центров масс, соответственно. Тогда:

Учитывая, что центр масс должен находиться в точке B , получаем:

|OB | = ½ |OA | . То есть точка B – середина отрезка |OA |.

По предложенному методу мы предлагаем вам решить задачу:

Рассчитайте координаты центра масс круга радиуса R с вырезанным кругом радиуса r (см. рисунок). Определите, каким должен быть отношение радиусов R и r , чтобы центр масс фигуры находился в точке B . Проанализируйте результат.

Инструкция

Следует учитывать, что положение центра масс напрямую зависит от того, каким образом распределена по объему тела его масса. Центр масс может даже не находиться в самом теле, примером такого объекта может служить однородное кольцо, у которого центр масс находится в его геометрическом центре. То есть – . При расчетах центр масс можно расценивать математической точкой, в которой сосредоточена вся масса тела.

Здесь R.ц.м. – радиус-вектор центра масс, mi – масса i-той точки, ri – радиус-вектор i-той точки системы. На практике во многих случаях легко найти центр масс, если предмет имеет некую строгую геометрическую форму. Например, у однородного стержня он находится точно посередине. У параллелограмма - на пересечении диагоналей, у треугольника это точка , а у правильного многоугольника центр масс находится в центре поворотной симметрии.

Для более сложных тел задача расчета усложняется, в этом случае необходимо разбить объект на однородные объемы. Для каждого из них отдельно центры масс, после чего найденные значения подставляются в соответствующие формулы и находится итоговое значение.

На практике необходимость определения центра масс (центра тяжести) обычно связана с конструкторскими работами. Например, при проектировании судна важно обеспечить его остойчивость. Если центр тяжести будет находиться очень , то может опрокинуться. Как рассчитать нужный параметр для такого сложного объекта, как судно? Для этого находятся центры тяжести его отдельных элементов и агрегатов, после чего найденные значения складываются с учетом их месторасположения. При конструировании центр тяжести обычно стараются расположить как можно ниже, поэтому наиболее тяжелые агрегаты располагают в самом низу.

Источники:

  • Центр масс
  • Решение задач по физике

Центр масс – важнейшая геометрическая и техническая характеристика тела. Без вычисления его координат невозможно представить конструирование в машиностроении, решение задач строительства и архитектуры. Точное определение координат центра массы производится с помощью интегрального исчисления.

Инструкция

Начинать всегда следует от , постепенно переходя к более сложным ситуациям. Исходите из того, что определению подлежит центр массы непрерывной плоской фигуры D, которой ρ постоянна и равномерно распределена в ее пределах. Аргумент х изменяется от а до b, y от c до d. Разбейте фигуру сеткой вертикальных (x=x(i-1), x=xi (i=1,2,…,n)) и горизонтальных прямых (y=y(j-1), y=xj (j=1,2,…,m)) на элементарные прямоугольники с основаниями ∆хi=xi-x(i-1) и высотами ∆yj=yj-y(j-1) (см. рис. 1). При этом середину элементарного отрезка ∆хi найдите как ξi=(1/2), а высоту ∆yj как ηj=(1/2). Поскольку плотность распределяется равномерно, то центр массы элементарного прямоугольника совпадет с ее геометрическим центром. То есть Хцi=ξi, Yцi=ηj.

Массу М плоской фигуры (если она неизвестна), вычислите как произведение на площадь. Замените элементарную площадь на ds=∆хi∆yj=dxdy. Представьте ∆mij в виде dM=ρdS=ρdxdy и получите ее массу по формуле, приведенной на рисунке. 2a. При малых приращениях считайте, что ∆mij, сосредоточена в материальной точке с координатами Хцi=ξi, Yцi=ηj. Из задач известно, что каждая координата центра масс системы материальных точек равна дроби, числитель которой сумму статических моментов масс mν относительно соответствующей оси, а равен сумме этих масс. Статический момент массы mν, относительно оси 0х равен уν*mν, а относительно 0у хν*mν.

Примените это к рассматриваемой ситуации и получите приблизительные значения статических моментов Јх и Ју в виде Ју≈{∑ξνρ∆xν∆yν}, Јх≈{∑ηνρ∆xν∆yν} (суммирование производилось по ν от 1 до N). Входящие в последнее выражения суммы являются интегральными. Перейдите к пределам от них при ∆хν→0 ∆yν→0 и запишите окончательные (см. рис. 2b). Координаты центра масс находите делением соответствующего статистического момента на общую массу фигуры М.

Методология получения координат центра масс пространственной фигуры G отличается лишь тем, что возникают тройные интегралы, а статические моменты рассматриваются относительно координатных плоскостей. Не следует забывать и что плотность не обязательно постоянна, то есть ρ(x,y,z)≠const. Поэтому окончательный и самйы общий имеет вид (см. рис. 3).

Источники:

  • Пискунов Н.С. Дифференциальное и интегральное исчисления. Т.2., М.: 1976, 576 с., ил.

Закон всемирного тяготения, открытый Ньютоном в 1666 году и опубликованный в 1687 году, гласит, что все тела, обладающие массой, притягиваются друг к другу. Математическая формулировка позволяет не только установить сам факт взаимного притяжения тел, но и измерить его силу.

Инструкция

Еще до Ньютона многие высказывали предположения о существовании всемирного тяготения. С самого начала им было очевидно, что притяжение между любыми двумя телами должно зависеть от их массы и ослабевать с расстоянием. Иоганн Кеплер, первым описавший эллиптические орбиты Солнечной системы, считал, что Солнце притягивает с силой, обратно пропорциональной расстоянию.

Окончательно закон всемирного тяготения формулируется так: любые два тела, обладающие массой, взаимно притягиваются, и сила их притяжения равна

F = G* ((m1*m2)/R^2),

где m1 и m2 - массы тел, R - расстояние , G - гравитационная постоянная.

Если тело, участвующее в тяготении, обладает приблизительно сферической формой, то расстояние R следует отмерять не от его поверхности, а от центра масс. Материальная точка с той же массой, находящаяся точно в центре, порождала бы точно такую же силу притяжения.

В частности, это значит, что, например, при расчете силы, с которой Земля притягивает стоящего на ней , расстояние R равно не нулю, а радиусу . На самом деле оно равно расстоянию между центром Земли и центром тяжести человека, но этой разницей можно пренебречь без потери точности.

Гравитационное притяжение всегда взаимно: не только Земля притягивает человека, но , в свою очередь, притягивает Землю. Из-за огромной разницы между массой человека планеты это незаметно. Аналогично и при расчетах траекторий космических аппаратов обычно пренебрегают тем, что аппарат притягивает к себе планеты и кометы.

Однако если массы взаимодействующих объектов сравнимы, то их взаимное притяжение становится заметным для всех участников. Например, с точки зрения физики не вполне верно говорить, что Луна вращается вокруг Земли. В действительности Луна и Земля вращаются вокруг общего центра масс. Поскольку наша планета намного больше своего естественного , то этот центр находится внутри нее, но все же с центром самой Земли не совпадает.

Видео по теме

Источники:

  • Классная физика для любознательных - закон всемирного тяготения

Математика и физика, возможно, самые удивительные науки из доступных человеку. Описывая мир через вполне определенные и поддающиеся расчету законы, ученые могут «на кончике пера» получить значения, измерить которые, на первый взгляд, кажется невозможным.

Инструкция

Один из базовых законов физики – закон всемирного тяготения. Он гласит, что все тела притягиваются друг к другу с силой, равной F=G*m1*m2/r^2. При этом G является определенной константой (будет указана непосредственно во время расчета), m1 и m2 массы тел, а r –расстояние между ними.

Массу Земли можно вычислить на основе эксперимента. При помощи маятника и секундомера можно рассчитать ускорение свободного падения g (шаг будет опущен за несущественностью), равное 10 м/c^2. Согласно второму закону Ньютона F можно представить как m*a. Поэтому, для тела, притягивающегося к Земле: m2*a2=G*m1*m2/r^2, где m2 – масса тела, m1 – масса Земли, a2=g. После преобразований (сокращения m2 в обеих частях, переноса m1 влево, а a2 - вправо) уравнение примет следующий вид: m1=(ar)^2/G. Подстановка значений дает m1=6*10^27

Расчет массы Луны опирается на правило: от тел до центра масс системы обратно пропорциональны массам тел. Известно, что Земля и Луна обращаются вокруг некоторой точки (Цм), причем расстояния от центров до этой точки как 1/81,3. Отсюда Мл=Мз/81,3=7.35*10^25.

Дальнейшие вычисления опираются на 3-ий закон Кепплера, согласно которому (T1/T2)^2*(M1+Mc)/(M2+Mc)=(L1/L2)^3, где T – период обращения небесного тела вокруг Солнца , L – расстояние до последнего, M1, M2 и Mc – массы двух небесных тел и , соответственно. Составив уравнения для двух систем ( +луна – / земля - луна) можно увидеть, что одна часть уравнения получается общей, а значит, вторые можно приравнять.

Расчетной формулой в наиболее общем виде является Lз^3/(Tз^2*(Mc+Мз)=Lл^3/(Tл^2*(Mз+Мл). Массы небесных тел были вычислены теоретически, периоды обращения находятся практически, для расчета L используются исчисления либо практические методы. После упрощения и подстановки необходимых значений уравнение примет вид: Мс/Мз+Мл=329.390. Отсюда Мс=3,3*10^33.

Кинетическая энергия – это энергия механической системы, которая зависит от скоростей движения каждой из ее точек. Другими словами, кинетическая энергия представляет собой разницу между полной энергией и энергией покоя рассматриваемой системы, та часть полной энергии системы, которая обусловлена движением. Кинетическая энергия делится на энергию поступательного и вращательного движения. Единицей измерения кинетической энергии в системе СИ является Джоуль.

Инструкция

В случае поступательного движения все точки системы (тела) имеют одинаковые скорости движения, которые равны скорости движения центра масс тела. При этом кинетическая системы Тпост равна:
Tпост = ? (mk Vс2)/2,
где mk –масса тела, Vс – центра масс.Таким образом, при поступательном тела кинетическая энергия равна произведению массы тела на квадрат скорости центра масс, деленному на два. При этом значение кинетической не зависит от движения.

В инженерной практике случается, что возникает необходимость вычислить координаты центра тяжести сложной плоской фигуры, состоящей из простых элементов, для которых расположение центра тяжести известно. Такая задача является частью задачи определения...

Геометрических характеристик составных поперечных сечений балок и стержней. Часто с подобными вопросами приходится сталкиваться инженерам-конструкторам вырубных штампов при определении координат центра давления, разработчикам схем погрузки различного транспорта при размещении грузов, проектировщикам строительных металлических конструкций при подборе сечений элементов и, конечно, студентам при изучении дисциплин «Теоретическая механика» и «Сопротивление материалов».

Библиотека элементарных фигур.

Для симметричных плоских фигур центр тяжести совпадает с центром симметрии. К симметричной группе элементарных объектов относятся: круг, прямоугольник (в том числе квадрат), параллелограмм (в том числе ромб), правильный многоугольник.

Из десяти фигур, представленных на рисунке выше, только две являются базовыми. То есть, используя треугольники и сектора кругов, можно скомбинировать почти любую фигуру, имеющую практический интерес. Любые произвольные кривые можно, разбив на участки, заменить дугами окружностей.

Оставшиеся восемь фигур являются самыми распространенными, поэтому они и были включены в эту своеобразную библиотеку. В нашей классификации эти элементы не являются базовыми. Прямоугольник, параллелограмм и трапецию можно составить из двух треугольников. Шестиугольник – это сумма из четырех треугольников. Сегмент круга — это разность сектора круга и треугольника. Кольцевой сектор круга — разность двух секторов. Круг – это сектор круга с углом α=2*π=360˚. Полукруг – это, соответственно, сектор круга с углом α=π=180˚.

Расчет в Excel координат центра тяжести составной фигуры.

Передавать и воспринимать информацию, рассматривая пример, всегда легче, чем изучать вопрос на чисто теоретических выкладках. Рассмотрим решение задачи «Как найти центр тяжести?» на примере составной фигуры, изображенной на рисунке, расположенном ниже этого текста.

Составное сечение представляет собой прямоугольник (с размерами a 1 =80 мм, b 1 =40 мм), к которому слева сверху добавили равнобедренный треугольник (с размером основания a 2 =24 мм и высотой h 2 =42 мм) и из которого справа сверху вырезали полукруг (с центром в точке с координатами x 03 =50 мм и y 03 =40 мм, радиусом r 3 =26 мм).

В помощь для выполнения расчета привлечем программу MS Excel или программу OOo Calc . Любая из них легко справится с нашей задачей!

В ячейках с желтой заливкой выполним вспомогательные предварительные расчеты .

В ячейках со светло-желтой заливкой считаем результаты .

Синий шрифт – это исходные данные .

Черный шрифт – это промежуточные результаты расчетов .

Красный шрифт – это окончательные результаты расчетов .

Начинаем решение задачи – начинаем поиск координат центра тяжести сечения.

Исходные данные:

1. Названия элементарных фигур, образующих составное сечение впишем соответственно

в ячейку D3: Прямоугольник

в ячейку E3: Треугольник

в ячейку F3: Полукруг

2. Пользуясь представленной в этой статье «Библиотекой элементарных фигур», определим координаты центров тяжести элементов составного сечения xci и yci в мм относительно произвольно выбранных осей 0x и 0y и запишем

в ячейку D4: =80/2= 40,000

xc 1 = a 1 /2

в ячейку D5: =40/2=20,000

yc 1 = b 1 /2

в ячейку E4: =24/2=12,000

xc 2 = a 2 /2

в ячейку E5: =40+42/3=54,000

yc 2 = b 1 + h 2 /3

в ячейку F4: =50=50,000

xc 3 = x 03

в ячейку F5: =40-4*26/3/ПИ()=28,965

yc 3 = y 03 -4* r3 /3/ π

3. Рассчитаем площади элементов F 1 , F 2 , F 3 в мм2, воспользовавшись вновь формулами из раздела «Библиотека элементарных фигур»

в ячейке D6: =40*80=3200

F 1 = a 1 * b 1

в ячейке E6: =24*42/2=504

F2 = a2 *h2 /2

в ячейке F6: =-ПИ()/2*26^2=-1062

F3 = -π/2*r3 ^2

Площадь третьего элемента – полукруга – отрицательная потому, что это вырез – пустое место!

Расчет координат центра тяжести:

4. Определим общую площадь итоговой фигуры F 0 в мм2

в объединенной ячейке D8E8F8: =D6+E6+F6=2642

F 0 = F 1 + F 2 + F 3

5. Вычислим статические моменты составной фигурыSx и Sy в мм3 относительно выбранных осей 0x и 0y

в объединенной ячейке D9E9F9: =D5*D6+E5*E6+F5*F6=60459

Sx = yc1 * F1 + yc2 *F2 + yc3 *F3

в объединенной ячейке D10E10F10: =D4*D6+E4*E6+F4*F6=80955

Sy = xc1 * F1 + xc2 *F2 + xc3 *F3

6. И в завершение рассчитаем координаты центра тяжести составного сеченияXc и Yc в мм в выбранной системе координат 0x — 0y

в объединенной ячейке D11E11F11: =D10/D8=30,640

Xc = Sy / F 0

в объединенной ячейке D12E12F12: =D9/D8=22,883

Yc =Sx /F0

Задача решена, расчет в Excel выполнен — найдены координаты центра тяжести сечения, составленного при использовании трех простых элементов!

Заключение.

Пример в статье был выбран очень простым для того, чтобы легче было разобраться в методологии расчетов центра тяжести сложного сечения. Метод заключается в том, что любую сложную фигуру следует разбить на простые элементы с известными местами расположения центров тяжести и произвести итоговые вычисления для всего сечения.

Если сечение составлено из прокатных профилей – уголков и швеллеров, то их нет необходимости разбивать на прямоугольники и квадраты с вырезанными круговыми «π/2»- секторами. Координаты центров тяжести этих профилей приведены в таблицах ГОСТов, то есть и уголок и швеллер будут в ваших расчетах составных сечений базовыми элементарными элементами (о двутаврах, трубах, прутках и шестигранниках говорить нет смысла – это центрально симметричные сечения).

Расположение осей координат на положение центра тяжести фигуры, конечно, не влияет! Поэтому выбирайте систему координат, упрощающую вам расчеты. Если, например, я развернул бы в нашем примере систему координат на 45˚ по часовой стрелке, то вычисление координат центров тяжести прямоугольника, треугольника и полукруга превратилось бы в еще один отдельный и громоздкий этап расчетов, который «в уме» не выполнишь.

Представленный ниже расчетный файл Excel в данном случае программой не является. Скорее – это набросок калькулятора, алгоритм, шаблон по которому следует в каждом конкретном случае составлять свою последовательность формул для ячеек с яркой желтой заливкой .

Итак, как найти центр тяжести любого сечения вы теперь знаете! Полный расчет всех геометрических характеристик произвольных сложных составных сечений будет рассмотрен в одной из ближайших статей в рубрике « ». Следите за новостями на блоге.

Для получения информации о выходе новых статей и для скачивания рабочих файлов программ прошу вас подписаться на анонсы в окне, расположенном в конце статьи или в окне вверху страницы.

После ввода адреса своей электронной почты и нажатия на кнопку «Получать анонсы статей» НЕ ЗАБЫВАЙТЕ ПОДТВЕРЖДАТЬ ПОДПИСКУ кликом по ссылке в письме, которое тут же придет к вам на указанную почту (иногда - в папку « Спам» )!

Несколько слов о бокале, монете и двух вилках, которые изображены на «значке-иллюстрации» в самом начале статьи. Многим из вас, безусловно, знаком этот «трюк», вызывающий восхищенные взгляды детей и непосвященных взрослых. Тема этой статьи – центр тяжести. Именно он и точка опоры, играя с нашим сознанием и опытом, попросту дурачат наш разум!

Центр тяжести системы «вилки+монета» всегда располагается на фиксированном расстоянии по вертикали вниз от края монеты, который в свою очередь является точкой опоры. Это положение устойчивого равновесия! Если покачать вилки, то сразу становится очевидным, что система стремится занять свое прежнее устойчивое положение! Представьте маятник – точка закрепления (=точка опоры монеты на кромку бокала), стержень-ось маятника (=в нашем случае ось виртуальная, так как масса двух вилок разведена в разные стороны пространства) и груз внизу оси (=центр тяжести всей системы «вилки+монета»). Если начать отклонять маятник от вертикали в любую сторону (вперед, назад, налево, направо), то он неизбежно под действием силы тяжести будет возвращаться в исходное устойчивое состояние равновесия (это же самое происходит и с нашими вилками и монетой)!

Кто не понял, но хочет понять – разберитесь самостоятельно. Это ведь очень интересно «доходить» самому! Добавлю, что этот же принцип использования устойчивого равновесия реализован и в игрушке ванька–встань-ка. Только центр тяжести у этой игрушки расположен выше точки опоры, но ниже центра полусферы опорной поверхности.

Всегда рад вашим комментариям, уважаемые читатели!!!

Прошу, УВАЖАЯ труд автора, скачивать файл ПОСЛЕ ПОДПИСКИ на анонсы статей.