Металлы и сплавы, используемые при изготовлении художественных изделий. Получение металлов высокой чистоты

Металлы человечество начало активно использовать еще в 3000-4000 годах до нашей эры. Тогда люди познакомились с самыми распространенными из них, это золото , серебро , медь. Эти металлы было очень легко найти на поверхности земли. Чуть позже они познали химию и начали выделять из них такие виды как олово, свинец и железо. В Средневековье набирали популярность очень ядовитые виды металлов. В обиходе был мышьяк , которым было отравлено больше половины королевского двора во Франции. Так же и , которая помогала вылечить разные болезни тех времен, начиная от ангины и до чумы. Уже до двадцатого столетия было известно более 60 металлов, а вначале XXI века – 90. Прогресс не стоит на месте и ведет человечество вперед. Но встает вопрос, какой металл является тяжелым и превосходит по весу все остальные? И вообще, какие они, эти самые тяжелые металлы в мире?

Многие ошибочно думают, что золото и свинец являются самыми тяжелыми металлами. Почему именно так сложилось? Многие из нас выросли на старых фильмах и видели, как главный герой использует свинцовую пластину для зашиты от злобных пуль. В добавок, и сегодня используют свинцовые пластины в некоторых видах бронежилетов. А при слове золото у многих всплывает картинка с тяжелыми слитками этого металла. Но думать, что они самые тяжелые – ошибочно!

Для определения самого тяжелого металла надо брать во внимание его плотность, ведь чем больше плотность вещества, тем оно тяжелее.

ТОП-10 самых тяжелых металлов в мире

  1. Осмий (22,62 г/см 3),
  2. Иридий (22,53 г/см 3),
  3. Платина (21,44 г/см 3),
  4. Рений (21,01 г/см 3),
  5. Нептуний (20,48 г/см 3),
  6. Плутоний (19,85 г/см 3),
  7. Золото (19,85 г/см 3)
  8. Вольфрам (19,21 г/см 3),
  9. Уран (18,92 г/см 3),
  10. Тантал (16,64 г/см 3).

И где же свинец? А он располагается намного ниже в данном списке, в середине второго десятка.

Осмий и иридий — самые тяжелые металлы в мире

Рассмотрим основных тяжеловесов, которые делят 1 и 2 места. Начнем с иридия и заодно произнесём слова благодарности в адрес английского ученого Смитсона Теннат, который в 1803 году получил этот химический элемент из платины, где присутствовал вместе с осмием в виде примеси. Иридий с древнегреческого можно перевести, как «радуга». Металл имеет белый цвет с серебряным оттенком и его можно назвать ни только тяжеловесным, но и самым прочным. На нашей планете его очень мало и за год его добывают всего до 10000 кг. Известно, что большинство месторождений иридия можно обнаружить на местах падения метеоритов. Некоторые ученые приходят к мысли, что данный металл ранее был широко распространён на нашей планете, однако из-за своего веса, он постоянно выдавливал себя ближе к центру Земли. Иридий сейчас широко востребован в промышленности и используется для получения электрической энергии. Так же его любят использовать палеонтологи, и с помощью иридия определяют возраст многих находок. Вдобавок, данный металл могут использовать для покрытия некоторых поверхностей. Но сделать это сложно.


Далее рассмотрим осмий. Он самый тяжёлый в периодической таблице Менделеева , ну, соответственно, и самый тяжелый в мире металл. Осмий имеет оловянно-белый с синим оттенок и также открыт Смитсоном Теннат одновременно с иридием. Осмий практически невозможно обработать и, в основном, его находят на местах падения метеоритов. Он неприятно пахнет, запах похож на смесь хлора и чеснока. И с древнегреческого переводится, как «запах». Металл довольно тугоплавкий и используется в лампочках и в других приборах с тугоплавкими металлами. За один только грамм этого элемента надо заплатить более 10000 долларов, из этого понятно, что метал очень редкий.


Осмий

Как не крути, самые тяжелые металлы являются большой редкостью и поэтому они дорого стоят. И надо запомнить на будущее, что ни золото, ни свинец – не самые тяжелые металлы в мире! Иридий и осмий – вот победители в весе!

Состоящие из атомов одного химического элемента. В таблице Менделеева металлические свойства элементов возрастают справа налево. Все чистые металлы (как элементы) - являютя простыми веществами.

Кристаллический кремний - полупроводник Фотоэффект

Различают физические и химические свойства металлов . В общем случае, свойства металлов достаточно разнообразны. Различают металлы щелочные , щелочноземельные , чёрные , цветные , лантаноиды (или редкоземельные - близкие по химическим свойствам к щелочноземельным), актиноиды (большинство из них - радиоактивные элементы), благородные и платиновые металлы. Кроме того, отдельные металлы проявляют как металлические, так и неметаллические свойства. Такие металлы - амфотерные (или как говорят - переходные).

Практически все металлы имеют некоторые общие свойства: металлический блеск, строение кристаллической решётки, способность в химических реакциях проявлять свойства восстановителя, при этом окисляясь. В химических реакциях ионы растворённых металлов при взаимодействии с кислотами образуют соли, при взаимодействии с водой (в зависимости от активности металла) образуют щёлочь или основание.

Почему блестят металлы

В узлах кристаллической решётки металлов содержатся атомы. Электроны, движущиеся вокруг атомов, образуют "электронный газ" который свободно может перемещаться в разных направлениях. Это свойство объясняет высокую электропроводность и теплопроводность металлов.

Электронный газ отражает почти все световые лучи. Именно поэтому металлы так сильно блестят и чаще всего имеют серый или белый цвет. Связи между отдельными слоями металла невелики, что позволяет перемещать эти слои под нагрузкой в разных направлениях (по-другому - деформировать металл). Уникальным металлом является чистое золото. С помощью ковки из чистого золота можно сделать фольгу толщиной 0,002 мм! такой тончайший листочек металла полупрозрачен и имеет зелёный оттенок если смотрень через него на солнечный свет.

Электрофизическое свойство металлов выражено в его электропроводности. Принято считать, что все металлы имеют высокую электропроводность , то есть хорошо проводят ток! Но это не так, да и к тому же, всё зависит от температуры, при которой замеряют ток. Представим себе кристаллическую решётку металла, в которой ток передаётся с помощью движения электронов. Электроны движутся от одного узла кристаллическрой решётки к другому. Один электрон "выталкивает" из узла решётки другой электрон, который продолжает двигаться к другому узлу решётки и т.д. То есть электропроводность также зависит от того, насколько легко электроны могут перемещаться между узлов решётки. Можно сказать, что электропроводность металла зависит от кристаллического строения решётки и плотности расположения в ней частиц. Частицы в узлах решётки имеют колебания, и эти колебания тем больше, чем выше температура металла. Такие кролебания значительно препятствуют перемещению электронов в кристаллической решётке. Таким образом, чем ниже температура металла, тем выше его способность проводить ток!

Отсюда вытекает понятие сверхпроводимости , которое наступает в металле при температуре близкой к абсолютному нулю! При абсолютном нуле (-273 0 C) колебания частиц в кристаллической решётке металла полностью затухают!

Электрофизическое свойство металлов , связанное с прохождением тока, называют температурным коэффициентом электросопротивления !

Электрофизическое свойство металлов

Электрофизическое свойство металлов

Установлен интересный факт, что, например у свинца (Pb) и ртути (Hg) при температуре, которая выше абсолютного нуля всего на несколько градусов, почти полностью исчезает электросопротивление, то есть наступает условие сверхпроводимости.

Самую высокую электропроводность имеет серебро (Ag), затем медь (Cu), далее идёт золото (Au) и алюминий (Al). С высокой электропроводностью этих металлов связано их использование в электротехнике. Иногда, для обеспечения химической стойкости и антикоррозионных свойств используют именно золото (позолоченные контакты).

Надо отметить, что электропроводность металлов значительно выше, чем электропроводность неметаллов. Вот например, углерод (С - графит) или кремний (Si) имеют электропроводность в 1000 раз меньше, чем, например, у ртути. Кроме того, неметаллы , в своём большинстве не являются проводниками электричества. Но среди неметаллов встречаются полупроводники: германий (Ge), кремний кристаллический, а также некоторые оксиды, фосфиты (химические соединения металла с фосфором) и сульфиды (химические соединения металла и серы).

Вам, наверное, знакомо явление - это свойство металлов под действием температуры или света отдавать электроны.

Что касается теплопроводности металлов, то её можно оценить из таблицы Менделеева, - она распределяется точно также, как электроотрицательность металлов. (Металлы, находящиеся слева вверху имеют наибольшую электроотрицательность, например, электроотрицательность натрия Na равна -2,76 В). В вою очередь, теплопроводность металлов объясняется наличием свободных электронов, которые переносят тепловую энергию.

Эдельман В. Металлы //Квант. - 1992. - № 2. - С. 2-9.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Что такое металлы?

«Металлом называется светлое тело, которое ковать можно»,- писал в 1763 году Ломоносов. Загляните в ваш учебник химии и вы увидите, что металлы обладают характерным металлическим блеском («светлое тело»), хорошо проводят тепло и электрический ток. Правда, тут же вы прочтете, что существуют элементы, проявляющие свойства как металлов, так и неметаллов. Другими словами, нет четкой грани, отделяющей одно от другого. Химика, который интересуется, в первую очередь, химическими реакциями и для которого каждый элемент - свой особый мир, такая неоднозначность не очень смущает. А вот физика это не устраивает. Если физика делит тела на металлы и неметаллы, то нужно понять, в чем их принципиальное различие. Поэтому надо так определить, что такое металл, чтобы, как и в других случаях в области точных наук, удовлетворить двум требованиям:

  1. все металлы должны обладать всеми без исключения приписываемыми им признаками;
  2. иные объекты должны не обладать хотя бы одним из этих признаков.

Вооружившись этими соображениями, посмотрим, все ли металлы без исключения имеют все свойства, приписываемые им учебником. Начнем с «ковать можно», т. е. с пластичности, говоря современным языком. И тут же, по созвучию, мы вспомним пластмассы: ведь не зря они так названы, многим из них свойственна пластичность - способность необратимо изменять форму без разрушения. Конечно, медь, железо, алюминий ковать легко, со свинцом еще проще, индий - довольно редкий и дорогой металл - можно мять почти как воск (а воск ведь - не металл!), щелочные металлы и того мягче. А попробуйте стукнуть по обычному чугуну - и он разлетится на кусочки! Ну, тут металлурги скажут: это потому, что чугун - не простое вещество. Он состоит из кристаллов железа, разделенных прослойками углерода, т. е. графита. Вот по этим-то прослойкам чугун и ломается. Ну что же, все верно. Только вот беда - хрупкий графит, как оказывается, современная физика относит к металлам! Да и не один графит: числятся, например, среди металлов мышьяк, сурьма и висмут, но ковать их можно с таким же успехом, как стекло - разлетаются на мелкие кусочки!

Проделайте такой простой опыт: разбейте баллон сгоревшей лампы, достаньте оттуда вольфрамовую спираль и попробуйте ее раскрутить. Ничего не выйдет, она рассыпется в пыль! Но ведь как-то ее сумели скрутить на заводе? Значит, может быть и такое - то можно деформировать, то нельзя, в зависимости от того, что происходило с образцом в прошлом. Что ж, придется, видимо, с этим признаком - пластичностью - расстаться. Тем более, что он присущ многим неметаллам; ведь то же стекло - нагрей его, и оно станет мягким и податливым.

Итак, укорачиваем формулировку и двигаемся дальше.

На очереди - «блеск», или, говоря научным языком, оптические свойства. Блестящих предметов много: и вода, и стекло, и полированные камни, да мало ли что еще. Так что просто «блеском» не обойтись, вот и говорится: для металлов характерен металлический блеск. Ну, это совсем хорошо: получается, что металл - это металл. Правда, интуитивно мы чувствуем, что металлическим блеском блестят полированные медь, золото, серебро, железо. А широко распространенный минерал пирит - разве не блестит, как металлы? Про типичные полупроводники германий и кремний и говорить не приходится, по внешнему виду их от металлов никак не отличишь. С другой стороны, не так давно научились получать хорошие кристаллы таких соединений, как двуокись молибдена; кристаллы эти коричнево-фиолетовые и на обычный металл мало похожи. Оказывается, это вещество надо считать металлом. Почему - будет ясно чуть дальше.

Так что блеск как чисто «металлический» признак отпадает.

На очереди - теплопроводность. Пожалуй, этот признак можно отбросить сразу - все без исключения тела проводят тепло. Правда, про металлы говорится, что они хорошо проводят тепло. Но, боюсь, на вопрос «что такое хорошо и что такое плохо?» в этом случае ни один папа не ответит.

Хорошо ли проводит тепло медь? Посмотрим в таблицу и сразу же столкнемся со встречным вопросом: а какая медь и при какой температуре? Если взять чистую медь, например ту, из которой делают провода для радиоприборов, и нагреть ее до красного каления, т. е. отжечь, то при комнатной температуре она да еще чистое серебро будут проводить тепло лучше любого другого металла. Но погните такой медный образец, стукните или зажмите в тисках - и его теплопроводность станет заметно хуже. А что произойдет, если кусочек отожженной меди начать охлаждать? Сначала теплопроводность будет расти, увеличится в десятки раз при температуре около 10 К, а потом начнет быстро падать и при достижении абсолютного нуля должна стать нулевой (рис. 1).

Рис. 1. Зависимость удельной теплопроводности от температуры для различных веществ. (Удельная теплопроводность - это количество теплоты, которое протекает между противоположными гранями кубика со стороной 1 см при разности температур между этими гранями 1 К в 1 с.)

Возьмем теперь другой металл - висмут. Картина для него очень похожа на ту, которую мы видели для меди, только максимум теплопроводности лежит при 3 К, а при комнатной температуре висмут проводит тепло плохо, не многим лучше, чем кристалл кварца. Но кварц-то - не металл! И тот же кварц, как видно из рисунка 1, по своим теплопроводным свойствам иногда оказывается не хуже меди. А плавленный кварц, т. е. кварцевое стекло, проводит тепло плохо, примерно как нержавеющая сталь.

Кварц - не исключение. Все кристаллы хорошего качества ведут себя подобным образом, только числа будут немного различными. У алмаза, например, уже при комнатной температуре теплопроводность лучше, чем у меди.

Отбрасываем с чистым сердцем теплопроводность и жалеть об этом не будем. И не только потому, что по этому признаку металл от неметалла не так уж легко отличить, но и потому, что, оказывается, специфические черты в теплопроводности металлов (а такие есть) являются следствием его электропроводности - последнего оставшегося свойства.

И опять в формулировке, приведенной в начале статьи, уточнение - не просто электропроводность, а хорошая электропроводность. А ведь когда речь шла о теплопроводности, эпитет «хорошая» нас насторожил и, как оказалось, не напрасно. Что же - и последнее свойство под подозрением? Надо обязательно его спасать, а то мы останемся вообще без металлов, а заодно без полупроводников, без изоляторов. Вот это наука получается! Любой школьник в большинстве случаев не задумываясь скажет, с чем он имеет дело, а копнули поглубже - остановились в недоумении.

И есть от чего. Возьмем таблицы физических величин и посмотрим на числа. Вот, к примеру, при комнатной температуре удельное сопротивление ρ (Ом·см) меди ~1,55·10 -6 ; у висмута ρ ~ 10 -4 ; у графита ρ ~ 10 -3 ; у чистых кремния и германия ρ ~ 10 2 (но, добавляя примеси, его можно довести до ~10 -3); у мрамора ρ = 10 7 - 10 11 ; у стекла ρ = 10 10 ; а где-то в конце списка - янтарь с удельным сопротивлением до 1019. И где же тут кончаются металлы-проводники и начинаются диэлектрики? А мы еще не упомянули про электролиты. Обычная морская вода неплохо проводит ток. Что же - и ее считать металлом?

Посмотрим, не поможет ли нам температура. Если повышать температуру, то различия между веществами начнут сглаживаться: у меди сопротивление начнет расти, у стекла, например, уменьшаться. Значит, надо проследить за тем, что произойдет при охлаждении. И вот тут мы наконец увидим качественные различия. Посмотрите на рисунок 2: при температурах жидкого гелия, вблизи абсолютного нуля, вещества разделились на две группы. У одних сопротивление остается небольшим, у сплавов или у не очень чистых металлов ρ почти не изменяется при охлаждении, у чистых металлов сопротивление сильно уменьшается. Чем чище и совершеннее кристалл, тем значительнее это изменение. Иногда ц при температуре, близкой к абсолютному нулю, меньше, чем при комнатной, в сотни тысяч раз. У других веществ, например у полупроводников, с понижением температуры сопротивление начинает стремительно возрастать, и чем ниже температура, тем оно больше. Бели бы можно было добраться до абсолютного нуля, то ρ стало бы бесконечно большим. Впрочем, достаточно и того, что сопротивление реально становится столь большим, что никаким современным прибором его уже не измеришь.

Итак, мы добрались до ответа: металлы - это такие вещества, которые проводят электричество при любой температуре.

Рис. 2. Зависимость удельного сопротивления чистых металлов (меди и платины) и полупроводника (чистого германия) от температуры.

В противоположность этому диэлектрики перестают проводить ток, если их охладить до абсолютного нуля. Если пользоваться таким определением, то и графит, и двуокись молибдена оказываются металлами. А куда же отнести полупроводники? Если речь идет о чистых, совершенных кристаллах, то они, строго говоря, диэлектрики. Но если в них содержится много примесей, то они могут стать металлами, т. е. сохранять проводимость при самых низких температурах.

Что же у нас осталось в конце концов? Нам удалось выявить единственный существенный признак, руководствуясь которым мы можем, если не в повседневной практике, то хотя бы в принципе, всегда отличить металл от неметалла. А раз этот признак единственный, то оказываются автоматически удовлетворенными оба условия, выполнения которых мы потребовали в начале статьи.

Почему металлы проводят ток?

Уже давно было замечено, что одни элементы, такие как медь, золото, серебро, железо, свинец, олово, и в чистом виде, и при сплавлении друг с другом образуют металлы. Другие, например фосфор, сера, хлор, азот, кислород, не только сами металлами не являются, но и соединяясь с металлами превращают их в диэлектрики. Пример тому - обыкновенная соль NaCl . Поэтому в химии появилось деление элементов на металлы и неметаллы.

Такая классификация, однако, не более чем констатация фактов, хотя на первый взгляд она претендует на то, чтобы объяснить свойства веществ исходя только из строения атомов. В самом деле, посмотрим на таблицу Менделеева. Элементы, расположенные в одном столбце, очень похожи по своим химическим свойствам. А вот будут ли изготовленные из них кристаллы или сплавы проводить электрический ток? Глядя на таблицу, ответить на этот вопрос нельзя. Так, все элементы первой группы - металлы, за исключением первого - водорода. Но ведь закон, который кому-то разрешено нарушать,- уже не закон. Правда, во второй группе дело обстоит лучше: здесь все элементы - привычные металлы; а в третьей группе опять сбой: бор - полупроводник, а алюминий - прекрасный металл. Дальше еще хуже. Первый элемент четвертой группы - углерод; мы уже упоминали, что графит, так называют кристалл углерода,- это металл. А вот алмаз - тоже кристалл, составленный из атомов углерода, но расположенных иначе, чем в графите,- изолятор. Кремний и германий - классические полупроводники. Олово - казалось бы, типичный металл. Однако... Если всем знакомое белое блестящее олово долго подержать при температуре -30 °С, то его кристаллическая структура изменится, а внешне оно посереет. И это олово - его так и называют «серое олово» - полупроводник! А свинец всегда металл.

Если начинать смешивать разные элементы, то картина совсем усложнится. Возьмем, например, и сплавим два металла индий и сурьму - в пропорции один к одному. Получим широко применяемый в технике полупроводник InSb . С другой стороны, мы уже говорили, что двуокись молибдена МoО 2 при Т ≈ 0 К проводит ток, т. е. МoО 2 - металл. (И WО 2 , и Re 2 О 3 и некоторые другие оксиды - тоже металлы.) А если получающиеся из атомов кристаллы сильно сжать, сдавить, то, оказывается, чуть ли не все вещества становятся металлами, даже такие типичные металлоиды, как сера. Правда, для нее давление перехода в металлическое состояние очень велико - несколько сотен тысяч атмосфер (а для водорода еще больше).

Похоже, что разделить элементы на металлы и неметаллы - не такая уж простая задача. Во всяком случае, ясно, что, рассматривая отдельные атомы, мы не можем сказать, будет ли вещество, составленное из этих атомов, проводить ток при Т ≈ 0 К, потому что огромную роль играет то, как расположены атомы друг относительно друга. Поэтому для ответа на вопрос «почему металлы проводят ток?» надо изучать, как атомы взаимодействуют между собой, образуя твердое тело.

Посмотрим, как обстоит дело с простейшим из металлов - литием. Порядковый номер Li - три. Это означает, что ядро атома Li содержит три протона и положительный заряд ядра компенсируют три электрона. Два из них образуют заполненную s-оболочку, ближайшую к ядру, и сильно связаны с ядром. Оставшийся электронрасположен на второй s-оболочке. На ней мог бы поместиться еще один электрон, но его у лития нет. Все остальные разрешенные состояния энергии свободны, и электроны на них попадают только при возбуждении атома (например, при сильном нагреве паров лития). Схема уровней в атоме лития показана на рисунке 3.

Рис. 3. Схема уровней энергии атома лития и их трансформации в зоны при объединении атомов в кристалл. Красным цветом обозначены занятые состояния.

Рассмотрим теперь множество атомов лития, находящихся в ограниченном объеме. Они могут образовывать газ (пар), жидкость или твердое тело. При достаточно низкой температуре силы взаимного притяжения препятствуют тепловому движению атомов, образуется кристалл. Это наверняка происходит при абсолютном нуле температуры, когда все известные вещества, кроме гелия,- кристаллы.

Итак, из опыта известно, что при низких температурах твердое тело - устойчивое состояние для лития. Но, как известно, устойчивым всегда является такое состояние вещества, в котором его внутренняя энергия меньше, чем в других возможных агрегатных состояниях при той же температуре. Суммарное уменьшение энергии при переходе из одного состояния в другое легко измерить - ведь это и есть теплота испарения или плавления.

С микроскопической точки зрения при низких температурах внутренняя энергия вещества есть, в первую очередь, сумма энергий электронов атомов, составляющих тело. Но электроны в атомах занимают строго определенные уровни энергии. Значит, мы можем ожидать, что при сближении атомов изменятся уровни энергии. При этом распределение электронов по уровням должно оказаться таким, чтобы их суммарная энергия была меньше, чем сумма энергий электронов в таком же количестве изолированных друг от друга атомов.

Что произойдёт с уровнями, можно понять исходя из аналогии движения электрона в атоме с любой колебательной системой, например с маятником. Пусть у нас есть два совершенно одинаковых маятника. Пока они не взаимодействуют друг с другом, частота колебаний обоих маятников одна и та же. Введем теперь взаимодействие между ними - свяжем их, например, мягкой пружинкой. И сразу же вместо одной частоты появятся две. Посмотрите на рисунок 4: связанные маятники могут колебаться синфазно, а могут навстречу друг другу. Очевидно, в последнем случае их движение будет более быстрым, т. е. частота колебаний такой системы выше собственной частоты колебаний одного маятника. Таким образом, связь приводит к расщеплению частот. Если связать три маятника, то станет уже три собственных частоты, у системы из четырех связанных маятников четыре собственные частоты и так далее до бесконечности.

Рис. 4. Колебания связанных маятников.

Поведение любой другой колебательной системы подобно. Если мы заменим маятники, например, на электрические колебательные контуры, то, как хорошо знают радиолюбители, при введении связи между ними их собственные частоты также расщепляются. Электроны в атоме - это тоже своеобразная колебательная система. Как и маятник, электроны имеют массу, есть сила Кулона, возвращающая их к положению равновесия; и этим определяется движение электронов в атоме, характеризуемое, согласно квантовой механике, собственной частотой. Для электронов включение взаимодействия при взаимном сближении приводит к тому, что частоты, бывшие до того одинаковыми, становятся немного разными.

В квантовой механике имеется прямая связь между энергией и частотой колебаний, выражаемая формулой \(~E = h \nu\), где h = 6,6·10 -34 Дж·с - постоянная Планка, а ν - частота колебаний. Поэтому надо ожидать, что при сближении двух атомов лития каждый из уровней, показанных на рисунке 3, расщепится на два. Каждому новому уровню энергии будет соответствовать своя электронная оболочка теперь уже не отдельного атома, а «молекулы». Оболочки заполняются электронами по тому же правилу, что и у атома,- по два электрона на оболочку. Та пара оболочек, которая получилась из самого нижнего уровня, будет полностью заполнена электронами. Действительно, на них можно разместить четыре электрона, а их у двух атомов лития - шесть. Остаются два электрона, которые теперь расположатся на нижнем из уровней второй пары. Заметьте, какой произошел качественный скачок: раньше эти два электрона занимали два из четырех состояний, имеющих одинаковую энергию. Теперь у них появилась возможность выбирать, и они расположились так, чтобы их суммарная энергия была поменьше. Нетрудно сообразить, что произойдет при добавлении следующих атомов: для трех атомов каждый исходный уровень расщепится на три (см. рис. 3). Девять электронов расположатся так: шесть на нижней триаде уровней, возникших из уровня ближайшей к ядру внутренней заполненной оболочки атома; еще два электрона - на нижнем уровне следующей триады; оставшийся электрон - на среднем уровне той же триады. Еще одно место на этом уровне остается свободным, а верхний уровень полностью пуст. Если взять n атомов (\(~n \gg 1\)), то каждый уровень расщепится на n тесно расположенных уровней, образующих, как говорят, полосу или зону разрешенных значений энергии. В нижней полосе все состояния заняты, а во второй - только половина, и именно те, энергия которых ниже. Следующая полоса - полностью пустая.

Расстояние между соседними уровнями в зоне легко оценить. Естественно считать, что при сближении атомов изменение энергии электронов атома примерно равно теплоте испарения вещества, пересчитанной на один атом. Она составляет для металлов обычно несколько электронвольт, а значит, и полная ширина зон ΔE , определяемая взаимодействием соседних атомов, должна иметь тот же масштаб, т. е. ΔE ~ 1 эВ ≈ 10 -19 Дж. Для расстояния между уровнями получим \(~\delta E \sim \dfrac{\Delta E}{n}\), где n - число атомов в образце. Это число чрезвычайно велико: межатомное расстояние составляет всего несколько ангстремов, и объем, приходящийся на один атом, оказывается всего ~ 10 -22 см 3 . Если наш образец имеет, для определенности, объем 1 см 3 , то для него n ≈ 10 22 . Поэтому численно оказывается δE ≈ 10 -22 · ΔE ≈ 10 -41 Дж. Эта величина столь мала, что всегда можно пренебречь квантованием энергии внутри зоны и считать, что в пределах зоны разрешены любые значения энергии.

Итак, в кристалле уровни энергии размываются в зоны, имеющие ширину, сравнимую с расстоянием между ними. Разрешенными для электронов являются состояния внутри зоны, и здесь электроны могут иметь практически любую энергию (разумеется, в пределах ширины зоны). Но очень важно, что число мест в каждой зоне строго ограничено и равно удвоенному числу атомов, составляющих кристалл. И это обстоятельство, совместно с принципом минимума энергии, определяет распределение электронов по зонам. Теперь у нас все готово, чтобы наконец понять, почему литий проводит ток. Взглянем опять на рисунок 3. Что же получилось? Пока атомы были сами по себе, все электроны находились во вполне определенных состояниях, строго одинаковых для всех атомов. Теперь атомы объединились в кристалл. Сами атомы в кристалле не только одинаковы, но и совершенно одинаково расположены относительно соседей (за исключением, конечно, тех, которые попали на поверхность кристалла). А все электроны имеют теперь разные энергии. Это может быть только в том случае, если электроны больше не принадлежат отдельным атомам, а каждый электрон «поделили» между собой все атомы. Другими словами, электроны свободно передвигаются внутри идеального кристалла, образуя как бы жидкость, которая заполняет весь объем образца. И электрический ток - это направленный поток этой жидкости, аналогичный текущей по трубам воде.

Чтобы заставить воду течь по трубе, надо создать разность давлений у концов трубы. Тогда под действием внешних сил молекулы приобретут направленную скорость - вода потечет. Очень важно здесь появление именно направленной скорости, ведь сами по себе молекулы хаотически движутся с громадными скоростями - при комнатной температуре средняя скорость теплового движения молекулы порядка 10 3 м/с. Так что дополнительная энергия, приобретаемая молекулой в потоке, мала по сравнению с энергией теплового движения.

Дополнительная энергия, которую надо сообщить электрону, чтобы он участвовал в общем направленном движении электронов в кристалле (а это и есть ток), также мала по сравнению с собственной энергией электрона. В этом нетрудно убедиться. Мы уже говорили, что энергия электрона по порядку величины равна 1 эВ = 1,6·10 -19 Дж. Если вспомнить, что для свободного электрона \(~E = \dfrac{m \upsilon^2}{2}\) и m = 9,1·10 -31 кг, то легко найти скорость: υ ~ 10 6 м/с. Предположим, что все электроны участвуют в токе, а их в 1 м 3 проводника n ~ 10 28 Z (Z - заряд ядра). Тогда в проводе с поперечным сечением S = 10 -6 м 2 при токе I ≈ 10 А (при большем токе провод расплавится) направленная скорость электронов равна \(~\upsilon_H = \dfrac{I}{neS} \approx 10^{-2} - 10^{-3}\) м/с. Значит, энергия электрона, участвующего в токе, больше энергии Е свободного электрона всего на 10 -8 Е , т. е. на 1,6·10 -27 Дж.

И тут мы сталкиваемся с удивительным фактом: оказывается,электроны, которые расположены в нижней зоне, называемой обычно валентной, не могут изменить свою энергию на малую величину. Ведь если какой-то электрон увеличит свою энергию, то это значит, что он должен перейти на другой уровень, а все соседние уровни в валентной зоне уже заняты. Свободные места есть только в следующей зоне. Но чтобы туда попасть, электрон должен изменить свою энергию сразу на несколько электрон-вольт. Вот так и сидят электроны в валентной зоне и ждут журавля в небе - энергичного кванта. А кванты нужной энергии бывают у видимого или ультрафиолетового света.

Итак, жидкость есть, а течь она не может. И если бы у лития было всего два электрона в атоме, т. е. если бы мы строили картинку для атомов лития, то получили бы мы изолятор. Но твердый гелий - действительно изолятор, так что мы можем уже поздравить себя с некоторым успехом: мы еще не объяснили, почему в металлах может течь ток, зато поняли, почему диэлектрики, где электронов полным-полно и все они «размазаны» по всему кристаллу, не проводят ток.

А что же литий? Да ведь у него есть вторая зона, которая заполнена только наполовину. Энергию, разделяющую занятые и свободные уровни внутри этой зоны, называют энергией Ферми E ф. Как мы уже говорили, разность энергий между уровнями в зоне очень невелика. Электрону, который расположен в зоне возле уровня Ферми, достаточно чуть-чуть увеличить свою энергию - и он на свободе, там, где состояния не заняты. Электронам из приграничной полосы ничто не мешает увеличить энергию под действием электрического поля и приобрести направленную скорость. А ведь это и есть ток! Но так же легко этим электронам и потерять направленную скорость, столкнувшись с атомами-примесями (которые всегда есть) или с другими нарушениями идеальной структуры кристалла. Этим объясняется сопротивление току.

Кажется, ясно, почему гелий - изолятор, а литий - проводник. Попробуем-ка наши представления применить к следующему элементу - бериллию. И тут - осечка, модель не сработала. У бериллия - четыре электрона, и, казалось бы, должны быть полностью заняты первая и вторая зоны, а третья обязана быть пустой. Получается изолятор, в то время как бериллий - металл.

Дело вот в чем. Если ширина зон достаточно велика, то они могут налезть друг на друга. Про такое явление говорят, что зоны перекрываются. У бериллия так и происходит: минимальная энергия электронов в третьей зоне меньше, чем максимальная во второй. Поэтому электронам оказывается энергетически выгодно оставить пустой часть второй зоны и занять состояния внизу третьей. Вот и получается металл.

А что будет с другими элементами? Перекрываются зоны или нет, заранее сказать нельзя, для этого нужны громоздкие расчеты на ЭВМ, и то не всегда можно получить достоверный ответ. Но вот что примечательно: из нашей схемы следует, что если брать элементы с нечетным числом электронов, то всегда должен получаться металл, если только структурной единицей в кристалле является отдельный атом. А вот водород, например, азот и фтор не желают кристаллизоваться в такую решетку. Они предпочитают сначала объединиться попарно, а уже молекулы, содержащие по четному числу электронов, выстраиваются в кристалл. И законы квантовой механики не мешают ему быть диэлектриком.

Итак, мы теперь знаем, что такое металл с точки зрения физики, и разобрались в самой сути явления, поняв, почему в принципе существуют изоляторы и проводники. Мы увидели, что нельзя предложить простой способ объяснения, почему какое-то конкретное вещество оказалось диэлектриком или металлом. Сделать это можно, лишь вооружившись всей мощью аппарата современной квантовой механики и вычислительной техники, но это уже задача специалистов.

Вам известно, что большинство химических элементов от носят к металлам - 92 из 114 известных элементов.

Металлы — это химические элементы, атомы ко торых отдают электроны внешнего (а некоторые — и предвнешнего) электронного слоя, превращаясь я положительные ионы.

Это свойство атомов металлов, как вы знаете, определяется тем, что они имеют сравнительно большие радиусы и малое число электронов (в основном от 1 до 3) на внешнем слое.

Исключение составляют лишь 6 металлов: атомы германия, олова, свинца на внешнем слое имеют 4 электрона, атомы сурьмы, висмута -5, атомы полония — 6.

Для атомов металлов характерны небольшие значения электроотрицательности (от 0,7 до 1,9) и исключительно восстановительные свойства, то есть способность отдавать электроны.

Вы уже знаете, что в Периодической системе химических алементов Д. И. Менделеева металлы находятся ниже диагонали бор—астат, я также выше нее в побочных подгруппах. В периодах и глинных подгруппах действуют известные вам закономерности в изменении металлических, и значит, восстановительных свойств атомов элементов.

Химические элементы, расположенные вблизи диагонали бор -астат, обладают двойственними свойствами: в одних своих соединениях ведут себя как металлы, в других — проявляют свойства неметалла.

В побочных подгруппах восстановительные свойства металлов с увеличением порядкового номера чаще всего уменьшаются. Сравните активность известных вам металлов I группы побочной подгруппы: Сu, Аg, Аu; II группы побочной подгруппы — и вы убедитесь в этом сами.

Простые вещества, образованные химическими элементами — металлами, н сложные металлсодержащие вещества играют важнейшую роль в минеральной и органической «жизни» Земли. Достаточно вспомнить, что атомы (ноны) элементов-металлов являются составной частью соединений, определяющих обмен веществ в организме человека, животных, растений.

Например, ионы натрия регулируют содержание воды в организме, передачу нервного импульса. Его недостаток приводит к головной боли, слабости, слабой памяти, потери аппетита, а избыток — к повышению артериального давления, гипертонии, заболеваниям сердца. Специалисты по питанию рекомендуют потреблять в день не более 5 г (1 чайная ложка) поваренной соли (NaСl) на взрослого человека. О влиянии металлов на состояние животных и растений можно узнать из таблицы 16.

Простые вещества — металлы
С развитием производства металлов (простых веществ) и сплавов связало возникновение цивилизации («бронзовый век», железный век).

На рисунке 38 изображена схема кристаллической решетки металла натрия. В ней каждый атом натрия окружен восемью соседними. У атомов натрия, как и у всех металлов, имеется много свободных валентных орбиталей и мало валентных электронов.

Единственный валентный электрон атома натрия Зs 1 может занимать любую из девяти свободных орбиталей, ведь они не очень отличаются по уровню энергии. При сближении атомов, когда образуется кристаллическая решетка, валентные орбитали соседних атомов перекрываются, благодаря чему электроны свободно перемещаются с одной орбитали на другую, осуществляя связь между всеми атомами кристалла металла.

Такой тип химической связи называют металлической. Металлическую связь образуют элементы, атомы которых на внешнем слое имеют мало валентных электронов по сравнению с большим числом внешних энергетически близких орбиталей. Их валентные электроны слабо удерживаются в атоме. Электроны, осуществляющие связь, обобществлены и перемещаются по всей кристаллической решетке в целом нейтрального металла.

Веществам с металлической связью присущи металлические кристаллические решетки, которые обычно изображают схематически тик, как показано на рисунке узлах находятся катионы и атомы металлов. Обобществленные электроны электростатически притягивают катионы металлов, расположенные в узлах их кристаллической решетки, обеспечивая ее стабильность и прочность (обобществленные электроны изображены в виде черных маленьких шариков).
Металлическая связь — это связь в металлах и сплавах между атом-ионами металле, расположенными в узлах кристаллической решетки, которая осуществляется обобществленными валентными электронами.

Некоторые металлы кристаллизуются в двух или более кристаллических формах. Это свойство веществ — существовать а нескольких кристаллических модификациях — называют полиморфизмом. Полиморфизм для простых веществ вам известен под названием аллотропия.

Олово имеет две кристаллические модификации:
. альфа - устойчива ниже 13,2 ºС с плотностью р - 5.74 г/см3. Это серое олово. Оно имеет кристаллическую решетку типа алмаза (атомную):
. бетта — устойчива выше 13.2 ºС с плотностью р - 6,55 г/см3. Это белое олово.

Белое олово - очень мягкий металл. При охлаждении ниже 13,2 ºС он рассыпается в серый порошок, так как при переходе |1 » п значительно увеличивается его удельный объем. Это явление получило название оловянной чумы. Конечно, особый вид химической связи и тип кристаллической решетки металлов должны определять и объяснять их физические свойства.

Каковы же они? Это металлический блеск, пластичность, высокая электрическая проводимость и теплопроводность, рост злектрн чес кого сопротивления при повышении температуры, а также такие практически значимые свойства, как плотность, температуры плавления и кипения, твердость, магнитные свойства.
Давайте попробуем объяснить причины, определяющие основные физические свойства металлов. Почему металлы пластичны?

Механическое воздействие на кристалл с металлической кристаллической решеткой вызывает смещение слоев ион-атомов относительно друг друга, в так как электроны перемещаются но всему кристаллу, разрыв связей не происходит, поэтому дли металлов характерна большая пластичность.

Аналогичное воздействие на твердое вещество с ковалентными связями (атомной кристаллической решеткой) приводит к разрыву ковалентных связей. Разрыв связей в ионной решетке приводит к взаимному отталкиванию одноименно заряженных ионов (рис. 40). Поэтому вещества с атомными и ионными кристаллическими решетками хрупкие.

Наиболее пластичные металлы — это Аu, Af, Cu, Sn, РЪ, Zn. Они легко вытягиваются в проволоку, поддаются ковке, прессованию, прокатыванию в листы- Например, из золота можно изготовить золотую фольгу толщиной 0,008нм, в из 0,5 г этого металла можно вытянуть нить длинной 1 км.

Даже ртуть, к ото рея, как вы знаете, при комнатной температуре жидкая, при низких температурах я твердом состоянии становится ковкой, как свинец. Не обладают пластичностью лишь Bi и Мn, они хрупкие.

Почему металлы имеют характерный блеск, также непрозрачны?
Электроны, заполняющие межатомное пространство, отражают световые лучи (а не пропускают, как стекло), причем большинство металлов в равной степени рассеивают все лучи видимой части спектра. Поэтому они имеют серебристо-белый или серый цвет. Стронций, золото и медь в большей степени поглощают короткие волны (близкие к фиолетовому цвету) и отражают длинные волны светового спектра, поэтому имеют соответственно светло-желтый, желтый и медный цвета.

Хотя на практике, вы знаете, металл не всегда нам кажется светлым телом. Во-первых, его поверхность может окисляться и терять блеск. Поэтому самородная медь выглядит зеленоватым камнем. А во-вторых, и чистый металл может не блестеть. Очень тонкие листки серебра и золота имеют совершенно неожиданный вид — они имеют голубовато-зеленый цвет. А мелкие порошки металлов кажутся темно серыми, даже черными.

Наибольшую отражательную способность имеют серебро, алюминий, палладий. Их используют при изготовлении зеркал, в том числе и в прожекторах.
Почему металлы имеют высокую электрическую проводимость и теплопроводны?

Хаотически движущиеся электроны в металле под воздействием приложенного электрического Напряжения приобретают направленное движение, то есть проводят электрический ток. При повышении температуры мета-тля возрастают амплитуды колебании находящихся в узлах кристаллической решетки атомов и ионов. Это затрудняет перемещение электронов, электрическая проводимость металла падает. При низких температурах колебательное движение, наоборот, сильно уменьшается и электрическая проводимость металлов резко возрастает. Около абсолютного нуля сопротивление у металлов практически отсутствует, у большинства металлов появляется сверх проводимость.

Следует отметить, что неметаллы, обладающие электрической проводимостью (например, графит), при низких температурах, наоборот, не проводят электрический ток из-за отсутствия свободных электронов. И только с повышением температуры и разрушением некоторых ковалентных связей их электрическая проводимость начинает возрастать.

Наибольшую электрическую проводимость имеют серебро, медь, в также золото, алюминии, наименьшую — марганец, свинец, ртуть.

Чаще всего с той же закономерностью, как и электрическая проводимость, изменяется теплопроводность металлов.

Они обусловлена большой подвижностью свободных электронов, которые, сталкиваясь с колеблющимися ионами и атомами, обмениваются с ними энергией. Поэтому происходит выравнивание температуры по всему куску металла.

Механическая прочность, плотность, температура плавления у металлов очень сильно отличаются. Причем с увеличением числя электронов, связывающих ион-атомы, и уменьшением межатомного расстояния в кристаллах показатели этих свойств возрастают.

Так, щелочные металлы, атомы которых имеют один валентный электрон, мягкие (режутся ножом), с небольшой плотностью (литий — самый легкий металл с р - 0.53 г/см3) и плавятся при невысоких температурах (например, температура плавления цезия 29 "С). Единственный металл, жидкий при обычных условиях. — ртуть — имеет температуру плавления, равную 38.9 "С.

Кальций, имеющий два электрона ни внешнем энергетическом уровне атомов, гораздо более тверд и плавится при более высокой температуре (842º С).

Еще более арочной является кристаллическая решетка, образованная атомами скандия, которые имеют три валентных электрона.

Но самые прочные кристаллические решетки, большие плотности и температуры плавления наблюдаются у металлов побочных подгрупп V, VI, VII, VIII групп. Это объясняется тем. что для металлов побочных подгрупп, имеющих неспасенные валентные электроны на d-подуровне, характерно образование очень прочных ковалентных связей между атомами, помимо металлической, осуществляемой электронами внешнего слоя с s-орбиталей.

Вспомните, что самый тяжелый металл — это осмий (компонент сверхтвердых и износостойких сплавов), самый тугоплавкий металл -это вольфрам (применяется для изготовления нитей накаливания ламп), самый твердый металл - это хром Сг (царапает стекло). Они входят в состав материалов, из которых изготавливают металлорежущий инструмент, тормозные колодки тяжелых машин и др.

Металлы различаются по отношению к магнитным полям. Но этому признаку их делят на три группы:
. ферромагнитные Способны намагничиваться под действием даже слабых магнитных полей (железо — альфа-форма, кобальт, никель, гадолиний);

Парамагнитные проявляют слабую способность к намагничиванию (алюминий, хром, титан, почти все лантаноиды);

Диамагнитные не притягиваются к магниту, лаже слегка отталкиваются от него (олово, мель, висмут).

Напомним, что при рассмотрении электронного строения металлов мы подразделили металлы на металлы главных подгрупп (к- и р-элементы) и металлы побочных подгрупп.

В технике принято классифицировать металлы по различным физическим свойствам:

а) плотности - легкие (р < 5 г/см3) и тяжелые (все остальные);

б) температуре плавления - легкоплавкие и тугоплавкие.

Существуют классификации металлов по химическим свойствам.
Металлы с низкой химической активностью называют благородными (серебро, золото, платина и ее аналога — осмий, иридий, рутений, палладий, родий).
По близости химических свойств выделяют щелочные (металлы I группы главной подгруппы), щелочноземельные (кальций, стронций, барий, радий), а также редкоземельные металлы (скандий, иттрий, лантан и лантаноиды, актиний и актиноиды).

Общие химические свойства металлов
Атомы металлов сравнительно легко отдают валентные электроны и переходят в положительно заряженные ноны, то есть окисляются. В этом, как вам известно, заключается главное общее свойство и атомов, и простых веществ-металлов.

Металлы в химических реакциях всегда восстановителе. Восстановительная способность атомов простых веществ — металлов, образованных химическими элементами одного периода или одной главной подгруппы Периодической системы Д. И. Менделеева, изменяется закономерно.

Восстановительную активность металла в химических реакциях, которые протекают в водных растворах, отражает его положение в электрохимическом ряду напряжений металлов.

1. Чем левее стоит металл я этом ряду, тем более сильным восстановителем он является.
2. Каждый металл способен вытеснять (восстанавливать) из солей в растворе те металлы, которые в ряду напряжений стоят после него (правее).
3. Металлы, находящиеся в ряду напряжений левее водорода, способны вытеснять его из кислот в растворе.
4. Металлы, являющиеся самыми сильными восстановителями (щелочные и щелочноземельные), в любых водных растворах взаимодействуют прежде всего с водой.

Восстановительная активность металла, определенная по электрохимическому ряду, не всегда соответствует положению его в Периодической системе. Это объясняется тем. Что при определении положения металла в ряду напряжений учитывают не только энергию отрыва электронов от отдельных атомов, но и энергию, затрачиваемую на разрушение кристаллической решетки, а также энергию, выделяющуюся при гидратации ионов.

Рассмотрев общие положения, характеризующие восстановительные свойства металлов, перейдем к конкретным химическим реакциям.

Взаимодействие с простыми веществами-неметаллами
1. С кислородом большинство металлов образуют оксиды — основные и амфотерные.

Литий и щелочноземельные металлы взаимодействуют с кислородом воздуха, образуя основные оксиды.
2. С галогенами металлы образуют соли галогеноводородных кислот.

3. С водородом самые активные металлы образуют гидриды — ионные солен од обные вещества, в которых водород имеет степень окисления -1, например:гидрид кальция.

4. С серой металлы образуют соли — сульфиды.

5. С азотом металлы реагируют несколько труднее, так как химическая связь в молекуле азота Г^г очень прочна, при этом образуются нитриды. При обычной температуре взаимодействует с азотом только литий.
Взаимодействие со сложными веществами
1. С водой. Щелочные и щелочноземельные металлы при обычных условиях вытесняют водород из воды и образуют растворимые основания-щелочи.

Другие металлы, стоящие в ряду напряжений до водорода, тоже могут при определенных условиях вытеснять водород из воды. Но алюминий бурно взаимодействует с водой, только если удалить с его поверхности оксидную пленку.
Магний взаимодействует с водой только при кипячении, при этом также выделяется водород. Если горящий магний внести в воду, то горение продолжается, так как протекает реакция: горит водород. Железо взаимодействует с водой только в раскаленном виде.
2. С кислотами в растворе взаимодействуют металлы, стоящие в ряду напряжений до водорода. При этом образуются соль и водород. А вот свинец (и некоторые другие металлы), несмотря на его положение в ряду напряжений (слева от водорода), почти не растворяется в разбавленной серной кислоте, так как образующийся сульфат свинца PbSO, нерастворим и создает на поверхности металла защитную пленку.

3. С солями менее активных металлов в растворе. В результате такой реакции образуется соль более активного металла и выделяется менее активный металл в свободном виде.

4. С органическими веществами. Взаимодействие с органическими кислотами аналогично реакциям с минеральными кислотами. Спирты же могут проявлять слабые кислотные свойства при взаимодействии со щелочными металлами.
Металлы участвуют в реакциях с галогеналканами, которые используют для получения низших циклоалкн нов и для синтезов, в ходе которых происходит усложнение углеродного скелета молекулы (реакция А. Вюрца):

5. Со щелочами в растворе взаимодействуют металлы, гидроксиды которых амфотерны.
6. Металлы могут образовывать химические соединения друг с другом, которые получили общее название — интерметаллические соединения. В них чаще всего не проявляются степени окисления атомов, которые характерны для соединений металлов с неметаллами.

Интерметаллические соединения обычно не имеют постоянного состава, химическая связь в них в основном металлическая. Образование этих соединений более характерно для металлов побочных подгрупп.

Оксиды и гидроксиды металлов
Оксиды, образованные типичными металлами, относят к солеобраяующим, основным по характеру свойств.

Оксиды и гидроксиды некоторых металлов амфотерны, то есть могут проявлять и основные, и кислотные свойства в зависимости от веществ, с которыми они взаимодействуют.

Например:

Многие металлы побочных подгрупп, имеющие в соединениях переменную степень окисления, могут образовывать несколько оксидов и гидроксидов, характер которых зависит от степени окисления металла.

Например, хром в соединениях проявляет три степени окисления: +2, +3, +6, поэтому он образует три ряда оксидов и гидроксидов, причем с увеличением степени окисления усиливается кислотный характер и ослабляется основный.

Коррозия металлов
При взаимодействии металлов с веществами окружающей среды на их поверхности образуются соединения, обладающие совершенно иными свойствами, чем сами металлы. В обычной жилки мы часто употребляем слова «ржавчина», «ржавление», видя коричнево-рыжий налет на изделиях из железа и его сплавов. Ржавление зто частый случай коррозии.

Коррозия — это процесс самопроизвольного разрушения металлов и сплавов под влиянием внешней среды (от лат. — разъедание).

Однако разрушению подвергаются практически все металлы, н результате чего многие их свойства ухудшаются (или совсем теряются): уменьшаются прочность, пластичность, блеск, снижается электропроводность, а также возрастает трение между движущимися деталями машин, изменяются размеры деталей и т. д.

Коррозия металлов бывает сплошной и местной.

Наиболее часто встречающиеся виды коррозии: химическая и электрохимическая.

I. Химическая коррозия происходит в не проводящей электрический ток среде. Такой вид коррозии проявляется в случае взаимодействии металлов с сухими газами или жидкостями — неэлектролитами (бензином, керосином и др.) Такому разрушению подвергаются детали и узлы двигателей, газовых турбин, ракетных установок. Химическая коррозия часто наблюдается в процессе обработки металлов при высоких температурах.

Большинство металлов окисляется кислородом воздуха, образуя на поверхности оксидные пленки. Если эта пленка прочная, плотная, хорошо связана с металлом, то она защищает металл от дальнейшего разрушения. У железа она рыхлая, пористая, легко отделяется от поверхности и потому не способна защитить металл от дальнейшего разрушения.

II. Электрохимическая коррозия происходит в токопроводящей среде (в электролите) с возникновением внутри системы электрического тока. Как правило, металлы и сплавы неоднородны, содержат включения различных примесей. При контакте их с электролитами одни участки поверхности начинают выполнять роль анода (отдают электроны), а другие — роль катода (принимают электроны).

В одном случае будет наблюдаться выделение газа (Нг). В другом — образование ржавчины.

Итак, электрохимическая коррозия — реакция, происходящая в средах, проводящих ток (в отличие от химической коррозии). Процесс происходит при соприкосновении двух металлов или на поверхности металла, содержащего включения, которые являются менее активными проводниками (это может быть и неметалл).

На аноде (более активном металле) идет окисление атомов металла с образованием катионов (растворение).

На катоде (менее активном проводнике) идет восстановление ионов водорода или молекул кислорода с образованием соответственно Н2 или гидроксид-ионов ОН-.

Катионы водорода и растворенный кислород важнейшие окислители, вызывающие электрохимическую коррозию.

Скорость коррозии тем больше, чем сильнее отличаются металлы (металл и примеси) по своей активности (для металлов - чем дальше друг от друга они расположены в ряду напряжений). Значительно усиливается коррозия при увеличении температуры.

Электролитом может служить морская вода, речная вода, конденсированная влага и конечно же хорошо известные всем электролиты — растворы солей, кислот, щелочей.

Вы, очевидно, помните, что зимой для удаления снега и льда с тротуаров используют техническую соль (хлорид натрия, иногда хлорид кальция и др.)- Образующиеся растворы стекают в канализационные трубопроводы, создавая тем самым благоприятную среду для электрохимической коррозии подземных коммуникаций.

Способы защиты от коррозии
Уже при проектировании металлических конструкций их изготовлении предусматривают меры защиты от коррозии.

1. Шлифование поверхностей изделия, чтобы на них не задерживалась влага.

2. Применение легированных сплавов, содержащих специальные добавки: хром, никель, которые ири высокой температуре на поверхности металла образуют устойчивый оксидный слой. Общеизвестны легированные стали — нержавейки, нз которых изготавливают предметы домашнего обихода (ножн. вилки, ложки), детали машин, инструменты.

3. Нанесение защитных покрытии. Рассмотрим их виды.

Неметаллические - неокисляющиеся масла, специальные лаки, краски. Правда, они недолговечны, но зато дешевы.

Химические — искусственно создаваемые поверхностные пленки: оксидные, цитрндные, силицидные, полимерные и др. Например, все стрелковое оружие В детали многих точных приборов подвергают воронению — это процесс получения тончайшей пленки оксидов железа на поверхности стального изделия. Получаемая искусственная оксидная пленка очень прочная и придает изделию красивый черный цвет и синий отлив. Полимерные покрытия изготавливают нз полиэтилена, полихлорвинила, полиамидных смол. Наносят их двумя способами: нагретое изделие помещают в порошок полимера, который плавится и приваривается к металлу, или поверхность металла обрабатывают раствором полимера в низкокииящем растворителе, который быстро испаряется, а полимерная пленка остается на изделии.

Металлические — это покрытия другими металлами, на поверхности которых под действием окислителей образуются устойчивые защитные пленки.

Нанесение хрома на поверхность — хромирование, никеля — никелирование, цинка — цинкование, олова — лужение и т. д. Покрытием может служить и пассивный в химическом отношении металл — золото, серебро, медь.

4. Электрохимические методы защиты.

Протекторная (анодная) — к защищаемой металлической конструкции присоединяют кусок более активного металла (протектор), который служит анодом и разрушается в присутствии электролита. В качестве протектора при защите корпусов судов, трубопроводов, кабелей и других стильных изделий используют магний, алюминий, цинк;

Катодная - металлоконструкцию подсоединяют к катоду внешнего источника тока, что исключает возможность ее анодного разрушения

5. Специальная обработка электролита или той среды, в которой находится защищаемая металлическая конструкция.

Известно, что дамасские мастера для снятия окалины и
ржавчины пользовались растворами серной кислоты с добавлением пивных дрожжей, муки, крахмала. Эти принеси и были одними из первых ингибиторов. Они не позволяли кислоте действовать на оружейный металл, в результате растворялись лишь окалина и ржавчина. Уральские оружейники применяли для этих целей травильные супы — растворы серной кислоты с добавкой мучных отрубей.

Примеры использования современных ингибиторов: соляная кислота при перевозке и хранении прекрасно «укрощается» производными бутиламина. а серная кислота - азотной кислотой; летучий диэтиламин впрыскивают в различные емкости. Отметим, что ингибиторы действуют только на металл, делая его пассивным по отношению к среде, например к раствору кислоты. Науке известно более 5 тыс. ингибиторов коррозии.

Удаление растворенного в воде кислорода (деаэрация). Этот процесс используют при подготовке воды, поступающей в котельные установки.

Способы получения металлов
Значительная химическая активность металлов (взаимодействие с кислородом воздуха, другими неметаллами, водой, растворами солей, кислотами) приводит к тому, что в земной коре они встречаются главным образом в виде соединений: оксидов, сульфидов, сульфатов, хлоридов, карбонатов и т. д.
В свободном виде встречаются металлы, расположенные в ряду напряжений правее водорода, хотя гораздо чаще медь и ртуть в природе можно встретить в виде соединений.

Минералы и горные породы, содержащие металлы и их соединения, из которых выделение чистых металлов технически возможно и экономически целесообразно, называют рудами.

Получение металлов из руд — задача металлургии.
Металлургия — это и наука о промышленных способах получения металлов из руд. и отрасль промышленности.
Любой металлургический процесс — это процесс восстановления ионов металла с помощью различных восстановителей.

Чтобы реализовать этот процесс, надо учесть активность металла, подобрать восстановитель, рассмотреть технологическую целесообразность, экономические и экологические факторы. В соответствии с этим существуют следующие способы получения металлов: пирометаллургический. гидрометаллургический, электрометаллургический.

Пирометаллургия - восстановление металлов из руд ори высоких температурах с помощью углерода, оксида углс-рода(П). водорода, металлов.- алюминия, магния.

Например, олово восстанавливают из касситерита, а медь — из куприта прокаливанием с углем (коксом). Сульфидные руды предварительно подвергают обжигу при доступе воздуха, а затем полученный оксид восстанавливают углем. Из карбонатных руд металлы выделяют также путем накачивания а углем, так как карбонаты при нагревании разлагаются, превращаясь в оксиды, а последние восстанавливаются углем.
Гидрометаллургия — это восстановление металлов им их солей в растворе. Процесс проходит в 2 этапа: 1) природное соединение растворяют в подходящем реагенте для получении раствори соли этого металле; 2) из полученного раствора данный металл вытесняют более активным или восстанавливают электролизом. Например чтобы получить медь на руды, содержащей оксид меди СиО ее обрабатывают разбавленной серной кислотой.

Затек медь извлекают из растворе соли либо:электролизом, либо вытесняют из сульфата железом. Таким способом получают серебро, цинк, молибден, золото, уран.

Электрометаллургия — восстановление металлов в процессе электролиза растворов или расплавов их соединений.

Электролиз
Если в раствор или расплав электролита опустить электроды и пропустить постоянный электрический ток, то ионы будут двигаться направленно: катионы — к катоду (отрицательно заряженному электроду), анионы - к аноду (положительно заряженному электроду).

Па катоде катионы принимают электроны и восстанавливаются на аноде анионы отдают электроны и окисляются. Этот процесс называют электролизом.
Электролиз это окислительно-восстановительныи процесс, протекающий на электродах при прохождении электрического тока через раствор или раствор электролита.

Простейший пример таких процессов электролиз расплавленных солей. Рассмотрим процесс электролиза расплава хлорида натрия. В расплаве идет процесс термической диссоциации. Под действием алектрического тока катионы движутся к катоду и принимают от него электроны.
На катоде образуется металлический натрий, на аноде — газообразный хлор.

Главное, что вы должны помнить: в процессе электролиза за счет электрической энергии осуществляется химическая реакция, которая самопроизвольно идти не может.

Сложнее дело обстоит в случае электролиза растворов электролитов.

В растворе соли, кроме ионов металла и кислотного остатка, присутствуют молекулы воды. Поэтому при рассмотрении процессов на электродах необходимо учитывать их участие в электролизе.

Для определения продуктов электролиза водных ре створов электролитов существуют следующие правила.

1. Процесс на катоде зависит не от материала катода, на которого он сделан, а от положения металла (катиона электролита) в электрохимическом ряду напряжений, при этом если:
1.1. Катион электролита расположен в ряду напряжений а начале ряда (по Аl включительно), то на катоде идет процесс восстановления воды (выделяется водород). Катионы металла не восстанавливаются, они остаются в растворе.
1.2. Катион электролита находится в ряду напряжений между алюминием и водородом, то на катоде восстанавливаются одновременно и ноны металла, и молекулы воды.

1.3. Катион электролита находится в ряду напряжений после водорода, то на катоде восстанавливаются катионы металла.
1.4. В растворе содержится катионы разных металлов, то скачала восстанавливается катион металла, стоящего в ряду напряжений
Эти правили отражены на схеме 10.

2. Процесс на аноде зависит от материала анода и от природы анода (схема 11).
2.1. Коли анод растворяется (железо, цинк. медь, серебро и все металлы, которые окисляются в процессе электролиза), то окисляется металл анода, несмотря на природу аниона. 2. Если анод не растворяется (его называют инертным — графит, золото, платина), то:
а) при электролизе растворов солей бескислородных кислот (про ме фторидов) на аноде идет процесс окисления аниона;
б) при электролизе растворов солей кислородсодержащих кисяот и фторидов на аноде идет процесс окисления воды. Анионы не окисляются, они остаются в растворе;


Электролиз расплавов н растворов веществ широко используют в промышленности:
1. Для получения металлов (алюминии, магний, натрий, кадмий получают только электролизом).
2. Для получения водорода, галогенов, щелочей.
3. Для очистки металлов — рафинирования (очистку меди, никеля, свинца проводят электрохимическим методом).
4. Для защиты металлов от коррозии — нанесения защитных покрытий в виде тонкого слоя другого металла, устойчивого к коррозии (хроме, никеля, меди, серебра, золота) — гальваностегия.

5. Получение металлических копий, пластинок — гальванопластика.
1. Как связаны строение металлов к расположение их в главных и побочных подгруппах Периодической системы химических элементов Д. И. Менделеева?
2. Почему щелочные и щелочноземельные металлы имеют в соединениях единственную степень окисления: (+1) и (+2) соответственно, а металлы побочных подгрупп, как правило, проявляют в соединениях разные степени окисления? 8. Какие степени окисления может проявлять марганец? Какие оксиды и гидроксиды соответствуют марганцу в этих степенях окисления? Каков их характер?
4. Сравните электронное строение атомов элементов VII группы: марганца и хлора. Объясните различие в их химических свойствах и наличие разных степенен окисления атомов у обоих элементов.
5. Почему положение металлов в электрохимическом ряду напряжений не всегда соответствует их положению в Периодической системе Д. И. Менделеева?
9. Составьте уравнения реакций натрия и магния с уксусной кислотой. В каком случае и почему скорость реакции будет больше?
11. Какие способы получения металлов вы знаете? В чем состоит сущность всех способов?
14. Что такое коррозия? Какие виды коррозии вы знаете? Какой из них представляет собой физико-химический процесс?
15. Можно ли считать коррозией следующие процессы: а) окисление железа при электросварке, б) взаимодействие цинка с соляной кислотой при получении травленой кислоты для паяния? Дайте обоснованный ответ.
17. Изделие из марганца находится в воде н контактирует с медным изделием. Сохранятся ли оба они в неизменном виде?
18. Будет ли защищена железная конструкция от электрохимической коррозии в воде, если на ней укрепить пластину из другого металла: а) магния, б) свинца, в) никеля?

19. С какой целью поверхность цистерн для хранения нефтепродуктов (бензина, керосина) окрашивают серебрином — смесью алюминиевой пудры с одним из растительных масел?

Общие сведения о металлах

Вам известно, что большинство химических элементов от носят к металлам - 92 из 114 известных элементов.

Металлы - это химические элементы, атомы ко торых отдают электроны внешнего (а некоторые - и предвнешнего) электронного слоя, превращаясь я положительные ионы.

Это свойство атомов металлов, как вы знаете, определяется тем, что они имеют сравнительно большие радиусы и малое число электронов (в основном от 1 до 3) на внешнем слое.

Исключение составляют лишь 6 металлов: атомы германия, олова, свинца на внешнем слое имеют 4 электрона, атомы сурьмы, висмута -5, атомы полония - 6.

Для атомов металлов характерны небольшие значения электроотрицательности (от 0,7 до 1,9) и исключительно восстановительные свойства, то есть способность отдавать электроны.

Вы уже знаете, что в Периодической системе химических алементов Д. И. Менделеева металлы находятся ниже диагонали бор-астат, я также выше нее в побочных подгруппах. В периодах и глинных подгруппах действуют известные вам закономерности в изменении металлических, и значит, восстановительных свойств атомов элементов.

Химические элементы, расположенные вблизи диагонали бор -астат, обладают двойственними свойствами: в одних своих соединениях ведут себя как металлы, в других - проявляют свойства неметалла.

В побочных подгруппах восстановительные свойства металлов с увеличением порядкового номера чаще всего уменьшаются. Сравните активность известных вам металлов I группы побочной подгруппы: Сu, Аg, Аu; II группы побочной подгруппы - и вы убедитесь в этом сами.

Это можно объяснить тем, что на прочность связи валентных электронов с ядром у атомов этих металлов в большей степени влияет величина заряда ядра, а не радиус атома. Величина заряда ядра значительно увеличивается, притяжение электронов к ядру усиливается. Радиус атома при этом хотя и увеличивается, но не столь значительно, как у металлов главных подгрупп.

Простые вещества, образованные химическими элементами - металлами, н сложные металлсодержащие вещества играют важнейшую роль в минеральной и органической «жизни» Земли. Достаточно вспомнить, что атомы (ноны) элементов-металлов являются составной частью соединений, определяющих обмен веществ в организме человека, животных, растений. Например, в крови человека найдено 76 элементов и из них только 14 не являются металлами. В организме человека некоторые элементы-металлы (кальций, калий, натрий, магний) присутствуют в большом количестве, то есть являются макроэлементами. А такие металлы, как хром, марганец, железо, кобальт, медь, цинк, молибден, присутствуют в небольших количествах, то есть это микроэлементы. Если вес человека 70 кг, то в его организме содержится (в граммах): кальция - 1700, калия - 250, натрия - 70, магния - 42, железа - 5. цинка - 3. Все металлы чрезвычайно важны, проблемы со здоровьем возникают и при их недостатке, и при избытке.

Например, ионы натрия регулируют содержание воды в организме, передачу нервного импульса. Его недостаток приводит к головной боли, слабости, слабой памяти, потери аппетита, а избыток - к повышению артериального давления, гипертонии, заболеваниям сердца. Специалисты по питанию рекомендуют потреблять в день не более 5 г (1 чайная ложка) поваренной соли (NaСl) на взрослого человека. О влиянии металлов на состояние животных и растений можно узнать из таблицы 16.



Простые вещества - металлы

С развитием производства металлов (простых веществ) и сплавов связало возникновение цивилизации («бронзовый век», железный век).

Начавшаяся примерно 100 лет назад научно-техническая революция, затронувшая и промышленность, и социальную сферу, также тесно связана с производством металлов. На основе вольфрама, молибдена, титана и других металлов начали создавать коррозионностойкие, сверхтвердые, тугоплавкие сплавы, применение которых сильно расширило возможности машиностроения. В ядерной и космической технике из сплавов вольфрама и рения делают детали, работающие при температурах до 3000 ºС. в медицине используют хирургические инструменты из сплавов тантала и платины, уникальной керамики на основе оксидов титана и циркония.


И конечно же мы не должны забывать, что в большинстве сплавов используют давно известный металл железо (рис. 37), а основу многих легких сплавов составляют сравнительно «молодые» металлы: алюминий и магний.

Сверхновыми стали композиционные материалы, представляющие, например, полимер или керамику, которые внутри (как бетон железными прутьями) упрочнены металлическими волокнами, которые могут быть из вольфрама, молибдена, стали и других металлов и сплавов - все зависит от поставленной цели, необходимых для ее достижения свойств материала.

Вы уже имеете представление о природе химической связи в кристаллах металлов. Напомним на примере одного из них - натрия, как она образуется.
На рисунке 38 изображена схема кристаллической решетки металла натрия. В ней каждый атом натрия окружен восемью соседними. У атомов натрия, как и у всех металлов, имеется много свободных валентных орбиталей и мало валентных электронов.

Единственный валентный электрон атома натрия Зs 1 может занимать любую из девяти свободных орбиталей, ведь они не очень отличаются по уровню энергии. При сближении атомов, когда образуется кристаллическая решетка, валентные орбитали соседних атомов перекрываются, благодаря чему электроны свободно нере-мещаются с одной орбитали на другую, осуществляя связь между всеми атомами кристалла металла.

Такой тип химической связи называют металлической. Металлическую связь образуют элементы, атомы которых на внешнем слое имеют мало валентных электронов по сравнению с большим числом внешних энергетически близких орбиталей. Их валентные электроны слабо удерживаются в атоме. Электроны, осуществляющие связь, обобществлены и перемещаются по всей кристаллической решетке в целом нейтрального металла.


Веществам с металлической связью присущи металлические кристаллические решетки, которые обычно изображают схематически тик, как показано на рисунке узлах находятся катионы и атомы металлов. Обобществленные электроны электростатически притягивают катионы металлов, расположенные в у ал их кристаллической решетки, обеспечивая ее стабильность и прочность (обобществленные электроны изображены в виде черных маленьких шариков).

Металлическая связь - это связь в металлах и сплавах между атом-ионами металле, расположенными в уллах кристаллической решетки, которая осуществляется обобществленными валентными электронами.

Некоторые металлы кристаллизуются в двух или более кристаллических формах. Это свойство веществ - существовать а нескольких кристаллических модификациях - называют полиморфизмом. Полиморфизм для простых веществ вам известен под названием аллотропия.

Олово имеет две кристаллические модификации:
альфа - устойчива ниже 13,2 ºС с плотностью р - 5.74 г/см3. Это серое олово. Оно имеет кристаллическую решетку типа алмаав (атомную):
бетта - устойчива выше 13.2 ºС с плотностью р - 6,55 г/см3. Это белое олово.

Белое олово - очень мягкий металл. При охлаждении ниже 13,2 ºС он рассыпается в серый порошок, так как при переходе |1 » п значительно увеличивается его удельный объем. Это явление получило название оловянной чумы. Конечно, особый вид химической связи и тип кристаллической решетки металлов должны определять и объяснять их физические свойства.

Каковы же они? Это металлический блеск, пластичность, высокая электрическая проводимость и теплопроводность, рост злектрн чес кого сопротивления при повышении температуры, а также такие практически значимые свойства, как плотность, температуры плавления и кипения, твердость, магнитные свойства.

Давайте попробуем объяснить причины, определяющие основные физические свойства металлов. Почему металлы пластичны?

Механическое воздействие на кристалл с металлической кристаллической решеткой вызывает смещение слоев ион-атомов относительно друг друга, в так как электроны перемещаются но всему кристаллу, разрыв связей не происходит, поэтому дли металлов характерна большая пластичность.

Аналогичное воздействие на твердое вещество с коннлент-кыми связями (атомной кристаллической решеткой) приводит к разрыву ковалентных связей. Разрыв связей в ионной решетке приводит к взаимному отталкиванию одноименно заряженных ионов (рис. 40). Поэтому вещества с атомными и ионными кристаллическими решетками хрупкие.

Наиболее пластичные металлы - это Аu, Af, Cu, Sn, РЪ, Zn. Они легко вытягиваются в проволоку, поддаются ковке, прессованию, прокатыванию в листы- Например, из золота можно изготовить золотую фольгу толщиной 0,008нм, в из 0,5 г этого металла можно вытянуть нить длинной 1 км.

Даже ртуть, к ото рея, как вы знаете, при комнатной температуре жидкая, при низких температурах я твердом состоянии становится ковкой, как свинец. Не обладают пластичностью лишь Bi и Мn, они хрупкие.

Почему металлы имеют характерный блеск, также непрозрачны?

Электроны, заполняющие межатомное пространство, отражают световые лучи (а не пропускают, как стекло), причем большинство металлов в равной степени рассеивают все лучи видимой части спектра. Поэтому они имеют серебристо-белый или серый цвет. Стронций, золото и медь в большей степени поглощают короткие волны (близкие к фиолетовому цвету) и отражают длинные волны светового спектра, поэтому имеют соответственно светло-желтый, желтый и медный цвета.

Хотя на практике, вы знаете, металл не всегда нам кажется светлым телом. Во-первых, его поверхность может окисляться и терять блеск. Поэтому самородная медь выглядит зеленоватым камнем. А во-вторых, и чистый металл может не блестеть. Очень тонкие листки серебра и золота имеют совершенно неожиданный вид - они имеют голубовато-зеленый цвет. А мелкие порошки металлов кажутся темно серыми, даже черными.

Наибольшую отражательную способность имеют серебро, алюминий, палладий. Их используют при изготовлении зеркал, в том числе и в прожекторах.

Почему металлы имеют высокую электрическую проводимость и теплопроводны?

Хаотически движущиеся электроны в металле под волдей-ствием приложенного электрического Напряжения приобретают направленное движение, то есть проводят электрический ток. При повышении температуры мета-тля возрастают амплитуды колебании находящихся в узлах кристаллической решетки атомов и ионов. Это затрудняет перемещение электронов, электрическая проводимость металла падает. При низких температурах колебательное движение, наоборот, сильно уменьшается и электрическая проводимость металлов резко возрастает. Около абсолютного нуля сопротивление у металлов практически отсутствует, у большинства металлов появляется сверх проводимость.

Следует отметить, что неметаллы, обладающие электрической проводимостью (например, графит), при низких температурах, наоборот, не проводят электрический ток из-за отсутствия свободных электронов. И только с повышением температуры и разрушением некоторых ковалентных связей их электрическая проводимость начинает возрастать.

Наибольшую электрическую проводимость имеют серебро, медь, в также золото, алюминии, наименьшую - марганец, свинец, ртуть.

Чаще всего с той же закономерностью, как и электрическая проводимость, изменяется теплопроводность металлов.

Они обусловлена большой подвижностью свободных электронов, которые, сталкиваясь с колеблющимися ионами и атомами, обмениваются с ними энергией. Поэтому происходит выравнивание температуры по всему куску металла.

Механическая прочность, плотность, температура плавления у металлов очень сильно отличаются. Причем с увеличением числя.оекгронов. связывающих ион-атомы, и уменьшением межатомного расстояния в кристаллах показатели этих свойств возрастают.

Так, щелочные металлы, атомы которых имеют один валентный электрон, мягкие (режутся ножом), с небольшой плотностью (литий - самый легкий металл с р - 0.53 г/см3) и плавятся при невысоких температурах (например, температура плавления цезия 29 "С). Единственный металл, жидкий при обычных условиях. - ртуть - имеет температуру плавления, равную 38.9 "С.

Кальций, имеющий два электрона ни внешнем энергетическом уровне атомов, гораздо более тверд и плавится при более высокой температуре (842º С).

Еще более арочной является кристаллическая решетка, образованная атомами скандия, которые имеют три валентных электрона.

Но самые ирочные кристаллические решетки, большие плотности и температуры плавления наблюдаются у металлов побочных подгрупп V, VI, VII, МП групп. Это объясняется тем. что для металлов побочных подгрупп, имеющих неспасенные валентные электроны на d-подуровне, характерно образование очень прочных ковалентных связей между атомами, помимо металлической, осуществляемой электронами внешнего слоя с s-орбиталей.

Вспомните, что самый тяжелый металл - это осмий (компонент сверхтвердых и износостойких сплавов), самый тугоплавкий металл -это вольфрам (применяется для изготовления нитей накаливания ламп), самый твердый металл - это хром Сг (царапает стекло). Они входят в состав материалов, из которых изготавливают металлорежущий инструмент, тормозные колодки тяжелых машин и др.

Металлы различаются по отношению к магнитным полям. Но этому признаку их делят на три группы:

Ферромагнитные Способны намагничиваться под действием даже слабых магнитных полей (железо - альфа-форма, кобальт, никель, гадолиний);

Парамагнитные проявляют слабую способность к намагничиванию (алюминий, хром, титан, почти все лантаноиды);

Диамагнитные не притягиваются к магниту, лаже слегка отталкиваются от него (олово, мель, висмут).

Напомним, что при рассмотрении электронного строения металлов мы подразделили металлы на металлы главных подгрупп (к- и р-элементы) и металлы побочных подгрупп.

В технике принято классифицировать металлы по различным физическим свойствам:

а) плотности - легкие (р < 5 г/см3) и тяжелые (все остальные);
б) температуре плавления - легкоплавкие и тугоплавкие.

Классификации металлов по химическим свойствам

Металлы с низкой химической активностью называют благородными (серебро, золото, платина и ее аналога - осмий, иридий, рутений, палладий, родий).
По близости химических свойств выделяют щелочные (металлы I группы главной подгруппы), щелочноземельные (кальций, стронций, барий, радий), а также редкоземельные металлы (скандий, иттрий, лантан и лантаноиды, актиний и актиноиды).

Общие химические свойства металлов

Атомы металлов сравнительно легко отдают валентные электроны и переходят в положительно заряженные ноны, то есть окисляются. В этом, как вам известно, заключается главное общее свойство и атомов, и простых веществ-металлов.


Металлы в химических реакциях всегда восстановителе. Восстановительная способность атомов простых веществ - металлов, образованных химическими элементами одного периода или одной главной подгруппы Периодической системы Д. И. Менделеева, изменяется закономерно.

Восстановительную активность металла в химических реакциях, которые протекают в водных растворах, отражает его положение в электрохимическом ряду напряжений металлов.

1. Чем левее стоит металл я этом ряду, тем более сильным восстановителем он является.
2. Каждый металл способен вытеснять (восстанавливать) иа солен в растворе те металлы, которые в ряду напряжений стоят после него (правее).
3. Металлы, находящиеся в ряду напряжений левее водорода, способны вытеснять его из кислот в растворе.
4. Металлы, являющиеся самыми сильными восстановителями (щелочные и щелочноземельные), в любых водных растворах взаимодействуют прежде всего с водой.

Восстановительная активность металла, определенная по электрохимическому ряду, не всегда соответствует положению его в Периодической системе. Это объясняется тем. Что при определении положения металла в ряду напряжений учитывают не только энергию отрыва электронов от отдельных атомов, но и энергию, затрачиваемую на разрушение кристаллической решетки, а также энергию, выделяющуюся при гидратации ионов.

Например, литий более активен в водных растворах, чем натрий (хотя по положению в Периодической системе Nа - более активный металл). Дело в том, что энергия гидратации ионов Li+ значительно больше, чем энергия гидратации ионов Na+. поэтому первый процесс является энергетически более выгодным.
Рассмотрев общие положения, характеризующие восстановительные свойства металлов, перейдем к конкретным химическим реакциям.

Взаимодействие с простыми веществами-неметаллами

1. С кислородом большинство металлов образуют оксиды - основные и амфотерпые. Кислотные оксиды переходных металлов, например оксид хрома или оксид марганца не образуются при прямом окислении металла кислородом. Их получают косвенным путем.

Щелочные металлы Nа, К активно реагируют с кислородом воздуха, образуя пероксиды.

Оксид натрия получают косвенным путем, при прокаливании пероксидов с соответствующими металлами:


Литий и щелочноземельные металлы взаимодействуют с кислородом воздуха, образуя основные оксиды.

Другие металлы, кроме золота и платиновых металлов, которые вообще не окисляются кислородом воздуха, взаимодействуют с ним менее активно или при нагревании.

2. С галогенами металлы образуют соли галогеноводородных кислот.

3. С водородом самые активные металлы образуют гидриды - ионные солен од обные вещества, в которых водород имеет степень окисления -1, например:
гидрид кальция.

Многие переходные металлы образуют с водородом гидриды особого типа - происходит как бы растворение или внедрение водорода в кристаллическую решетку металлов между атомами и ионами, при этом металл сохраняет свой внешний вид, но увеличивается в объеме. Поглощенный водород находится в металле, по-видимому, в атомарном виде. Существуют и гидриды металлов промежуточного характера.

4. С серой металлы образуют соли - сульфиды.

5. С азотом металлы реагируют несколько труднее, так как химическая связь в молекуле азота Г^г очень прочна, при этом образуются нитриды. При обычной температуре взаимодействует с азотом только литий.

Взаимодействие со сложными веществами

1. С водой. Щелочные и щелочноземельные металлы при обычных условиях вытесняют водород из воды и образуют растворимые основания-щелочи.

Другие металлы, стоящие в ряду напряжений до водорода, тоже могут при определенных условиях вытеснять водород из воды. Но алюминий бурно взаимодействует с водой, только если удалить с его поверхности оксидную пленку.

Магний взаимодействует с водой только при кипячении, при этом также выделяется водород. Если горящий магний внести в воду, то горение продолжается, так как протекает реакция: горит водород. Железо взаимодействует с водой только в раскаленном виде.

2. С кислотами в растворе взаимодействуют металлы, стоящие в ряду напряжений до водорода. При этом образуются соль и водород. А вот свинец (и некоторые другие металлы), несмотря на его положение в ряду напряжений (слева от водорода), почти не растворяется в разбавленной серной кислоте, так как образующийся сульфат свинца PbSO, нерастворим и создает на поверхности металла защитную пленку.

3. С солями менее активных металлов в растворе. В результате такой реакции образуется соль более активного металла и выделяется менее активный металл в свободном виде.

Нужно помнить, что реакция идет в тех случаях, когда образующаяся соль растворима. Вытеснение металлов из их соединений другими металлами впервые подробно изучал Н. Н. Бекетов - крупный русский физикохимик. Он расположил металлы по химической активности в «вьггеснительный ряд», ставший прототипом ряда напряжений металлов.

4. С органическими веществами. Взаимодействие с органическими кислотами аналогично реакциям с минеральными кислотами. Спирты же могут проявлять слабые кислотные свойства при взаимодействии со щелочными металлами.

Металлы участвуют в реакциях с галогеналканами, которые используют для получения низших циклоалкн нов и для синтезов, в ходе которых происходит усложнение углеродного скелета молекулы (реакция А. Вюрца):


5. Со щелочами в растворе взаимодействуют металлы, гидроксиды которых амфотерны.

6. Металлы могут образовывать химические соединения друг с другом, которые получили общее название - интерметаллические соединения. В них чаще всего не проявляются степени окисления атомов, которые характерны для соединений металлов с неметаллами.

Интерметаллические соединения обычно не имеют постоянного состава, химическая связь в них в основном металлическая. Образование этих соединений более характерно для металлов побочных подгрупп.

Оксиды и гидроксиды металлов

Оксиды, образованные типичными металлами, относят к солеобраяующим, основным по характеру свойств. Как вы знаете, им соответствуют гидроксиды. являющиеся основаниями, которые в случае щелочиых и щелочноземельных металлов растворимы в воде, являются сильными электролитами и называются щелочами.

Оксиды и гидроксиды некоторых металлов амфотерны, то есть могут проявлять и основные, и кислотные свойства в зависимости от веществ, с которыми они взаимодействуют.

Например:


Многие металлы побочных подгрупп, имеющие в соединениях переменную степень окисления, могут образовывать несколько оксидов и гидроксидов, характер которых зависит от степени окисления металла.

Например, хром нвсоединениях проявляет три степени окисления: +2, +3, +6, поэтому он образует три ряда оксидов и гидроксидов, причем с увеличением степени окисления усивается кислотный характер и ослабляется основный.

Коррозия металлов

При взаимодействии металлов с веществами окружающей среды нн их поверхности обриауются соединения, обладающие совершенно иными свойствами, чем сами металлы. В обычной жилки мы часто употребляем слова «ржавчина», «ржавление», видя коричнево-рыжий налет на изделиях из железа и его сплавов. Ржавление зто частый случай коррозии.

Коррозия - это процесс самопроимольного разрушения металлов и сплата not) алияішсм анешней среды (от лат. - разъедание).

Однако разрушению подвергаются практически все металлы, н результате чего многие их свойства ухудшаются (или совсем теряются): уменьшаются прочность, пластичность, блеск, снижается электропроводность, л также возрастает трение между движущимися деталями мншин, изменяются размеры деталей и т. д.

Коррозия металлов бывает сплошной и местной.

Нервен не так опасна, как вторая, ее проявления могут быть учтены при проектировании конструкций и аппаратов. Значительно опаснее местная коррозия, хотя потери металла здесь могут быть и небольшими. Один из наиболее опасных ее видов - точечная. Они заключается п образовании сквозных поражений, то есть точечных полостей - питтингов, при этом снижается прочность отдельных участков, уменьшается надежность конструкций, аппаратов, сооружений.

Коррозия металлов наносит большой экономический вред. Человечество несет огромные материальные потери в ре-эуньтате разрушения трубопроводов, деталей машин, судов, мостов, различного оборудования.

Коррозия приводит к уменьшению надежности работы металлоконструкций- Учитывая возможное разрушение, приходится завышать прочность некоторых изделий (например, деталей самолетов, лопастей турбин), а значит, увеличивать расход металла, а зто требует дополнительных экономических затрат.

Коррозия приводит к простоям производства из-за замены вышедшего из строя оборудования, к потерям сырья и продукции в результате разрушения гало-, нефте- и водопроводов. Нельзя не учитывать и ущерб природе, а значит, и здоровью человека, нанесенный в результате утечки нефтепродуктов и других химических веществ. Коррозия может приводить к загрязнении) продукции, а следовательно, к снижению ее качества. Затраты на возмещение потерь, связанных с коррозией, колоссальны. Они составляют около 30% годового производства металлов во всем мире.

Из всего сказанного следует, что очень важной проблемой является изыскание способов защиты металлов и сплавов от коррозии.

Они весьма разнообразны. Но для их выбора необходимо знать и учитывать химическую сущность процессов коррозии.

Но химической природе коррозия - это окнислительно-восстановительный процесс. В зависимости от среды, в которой он протекает, различают несколько видов коррозии.

Наиболее часто встречающиеся виды коррозии: химическая и электрохимическая.

I. Химическая коррозия происходит в не проводящей электрический ток среде. Такой вид коррозии проявляется в случае взаимодействии металлов с сухими газами или жидкостями - неэлектролитами (бензином, керосином и др.) Такому разрушению подвергаются детали и узлы двигателей, газовых турбин, ракетных установок. Химическая коррозия часто наблюдается в процессе обработки металлов при высоких температурах.

Большинство металлов окисляется кислородом воздуха, образуя на поверхности оксидные пленки. Если эта пленка прочная, плотная, хорошо связана с металлом, то она защищает металл от дальнейшего разрушения. У железа она рыхлая, пористая, легко отделяется от поверхности и потому не способна защитить металл от дальнейшего разрушения.

II. Электрохимическая коррозия происходит в токопроводящей среде (в электролите) с возникновением внутри системы электрического тока. Как правило, металлы и сплавы неоднородны, содержат включения различных примесей. При контакте их с электролитами одни участки поверхности начинают выполнять роль анода (отдают электроны), а другие - роль катода (принимают электроны).

В одном случае будет наблюдаться выделение газа (Нг). В другом - образование ржавчины.

Итак, электрохимическая коррозия - реакция, происходящая в средах, проводящих ток (в отличие от химической коррозии). Процесс происходит при соприкосновении двух металлов или на поверхности металла, содержащего включения, которые являются менее активными проводниками (это может быть и неметалл).

На аноде (более активном металле) идет окисление атомов металла с образованием катионов (растворение).

На катоде (менее активном проводнике) идет восстановление ионов водорода или молекул кислорода с образованием соответственно Н2 или гидроксид-ионов ОН-.

Катионы водорода и растворенный кислород важнейшие окислители, вызывающие электрохимическую коррозию.

Скорость коррозии тем больше, чем сильнее отличаются металлы (металл и примеси) по своей активности (для металлов - чем дальше друг от друга они расположены в ряду напряжений). Значительно усиливается коррозия при увеличении температуры.

Электролитом может служить морская вода, речная вода, конденсированная влага и конечно же хорошо известные всем электролиты - растворы солей, кислот, щелочей.

Вы, очевидно, помните, что зимой для удаления снега и льда с тротуаров используют техническую соль (хлорид натрия, иногда хлорид кальция и др.)- Образующиеся растворы стекают в канализационные трубопроводы, создавая тем самым благоприятную среду для электрохимической коррозии подземных коммуникаций.

Способы защиты от коррозии

Уже при проектировании металлических конструкций их изготовлении предусматривают меры защиты от коррозии.

1. Шлифование поверхностей изделия, чтобы на них не задерживалась влага.
2. Применение легированных сплавов, содержащих специальные добавки: хром, никель, которые ири высокой температуре на поверхности металла образуют устойчивый оксидный слой. Общеизвестны легированные стали - нержавейки, нз которых изготавливают предметы домашнего обихода (ножн. вилки, ложки), детали машин, инструменты.
3. Нанесение защитных покрытии.

Рассмотрим их виды.

Неметаллические - неокисляющиеся масла, специальные лаки, краски. Правда, они недолговечны, но зато дешевы.

Химические - искусственно создаваемые поверхностные пленки: оксидные, цитрндные, силицидные, полимерные и др. Например, все стрелковое оружие В детали многих точных приборов подвергают воронению - это процесс получения тончайшей пленки оксидов железа на поверхности стального изделия. Получаемая искусственная оксидная пленка очень прочная и придает изделию красивый черный цвет и синий отлив. Полимерные покрытия изготавливают нз полиэтилена, полихлорвинила, полиамидных смол. Наносят их двумя способами: нагретое изделие помещают в порошок полимера, который плавится и приваривается к металлу, или поверхность металла обрабатывают раствором полимера в низкокииящем растворителе, который быстро испаряется, а полимерная пленка остается на изделии.

Металлические - это покрытия другими металлами, на поверхности которых под действием окислителей образуются устойчивые защитные пленки.

Нанесение хрома на поверхность - хромирование, никеля - никелирование, цинка - цинкование, олова - лужение и т. д. Покрытием может служить и пассивный в химическом отношении металл - золото, серебро, медь.

4. Электрохимические методы защиты.

Протекторная (анодная) - к защищаемой металлической конструкции присоединяют кусок более активного металла (протектор), который служит анодом и разрушается в присутствии электролита. В качестве протектора при защите корпусов судов, трубопроводов, кабелей и других стильных изделий используют магний, алюминий, цинк;

Катодная - металлоконструкцию подсоединяют к катоду внешнего источника тока, что исключает возможность ее анодного разрушения

5. Специальная обработка электролита или той среды, в которой находится защищаемая металлическая конструкция.

Известно, что дамасские мастера для снятия окалины и
ржавчины пользовались растворами серной кислоты с добавлением пивных дрожжей, муки, крахмала. Эти принеси и были одними из первых ингибиторов. Они не позволяли кислоте действовать на оружейный металл, в результате растворялись лишь окалина и ржавчина. Уральские оружейники применяли для этих целей травильные супы - растворы серной кислоты с добавкой мучных отрубей.

Примеры использования современных ингибиторов: соляная кислота при перевозке и хранении прекрасно «укрощается» производными бутиламина. а серная кислота - азотной кислотой; летучий диэтиламин впрыскивают в различные емкости. Отметим, что ингибиторы действуют только на металл, делая его пассивным по отношению к среде, например к раствору кислоты. Науке известно более 5 тыс. ингибиторов коррозии.

Удаление растворенного в воде кислорода (деаэрация). Этот процесс используют при подготовке воды, поступающей в котельные установки.

Способы получения металлов

Значительная химическая активность металлов (взаимодействие с кислородом воздуха, другими неметаллами, водой, растворами солей, кислотами) приводит к тому, что в земной коре они встречаются главным образом в виде соединений: оксидов, сульфидов, сульфатов, хлоридов, карбонатов и т. д.

В свободном виде встречаются металлы, расположенные в ряду напряжений правее водорода, хотя гораздо чаще медь и ртуть в природе можно встретить в виде соединений.

Минералы и горные породы, содержащие металлы и их соединения, из которых выделение чистых ме таялов технически возможно и экономически целесообразно, называют рудами.

Получение металлов из руд - задача металлургии.
Металлургия - это и наука о промышленных способах получения металлов из руд. и отрасль промышленности.
Любой металлургический процесс - это процесс восстановления ионов металла с помощью различных восстановителей.

Чтобы реализовать этот процесс, надо учесть активность металла, подобрать восстановитель, рассмотреть технологическую целесообразность, экономические и экологические факторы. В соответствии с этим существуют следующие способы получения металлов: пирометаллургический. гидрометяллургический, электрометаллургический.

Пирометаллургия - восстановление металлов из руд ори высоких температурах с помощью углерода, оксида углс-рода(П). водорода, металлов - алюминия, магния.

Например, олово восстанавливают из касситерита, а медь - из куприта прокаливанием с углем (коксом). Сульфидные руды предварительно подвергают обжигу при доступе воздуха, а затем полученный оксид восстанавливают углем. Из карбонатных руд металлы выделяют также путем накачивания а углем, так как карбонаты при нагревании разлагаются, превращаясь в оксиды, а последние восстанавливаются углем.

Гидрометаллургия - это восстановление металлов им их солей в растворе. Процесс проходит в 2 этапа:

1) природное соединение растворяют в подходящем реагенте для получении раствори соли этого металле;
2) из полученного рахтворя данный металл вытесняют более активным или восстанавливают электролизом. Например чтобы получить медь на руды, содержащей оксид меди СиО ее обрабатывают разбавленной серной киглотой.

Затем медь извлекают из растворе соли либо:электролизом, либо вытесняют кз сульфата железом. Таким способом получают серебро, цинк, молибден, золото, уран.

Электрометаллургия - восстановление металлов в про цессе электролиза растворов или расплавов их соединений.

Электролиз

Если в раствор или расплав электролита опустить электроды и пропустить постоянный электрический ток, то ионы будут двигаться направленно: катионы - к катоду (отрицательно заряженному электроду), анионы - к аноду (положительно заряженному электроду).

Па катоде катионы принимают электроны и восстанавливаются на аноде анионы отдают электроны и окисляются. Этот процесс называют электролизом.
Электролиз это окислительно восстаногштель ныи процесс, протекающий на злсктроікія при прохождении электрического тока чсрсэ распяая или раствор электролита.

Простейший пример таких процессов электролиз расплавленных солей. Рассмотрим процесс электролиза расплава хлорида натрия. В расплаве идет процесс термической диссоциации. Под дейстиием алектрического тока катионы движутся к катоду и принимают от него электроны.
На катоде образуется металлический натрий, на аноде - газообразный хлор.

Главное, что вы должны помнить: в процессе электролиза за счет электрической энергии осуществляется химическая реакция, которая самопроизвольно идти не может.

Сложнее дело обстоит в случае электролиза растворов электролитов.

В растворе соли, кроме ионов металла и кислотного остатка, присутствуют молекулы воды. Поэтому при рассмотрении процессов на электродах необходимо учитывать их участие в электролизе.

Для определения продуктов электролиза водных растворов электролитов существуют следующие правила.

1. Процесс на катоде зависит не от материала катода, на которого он сделан, а от положения металла (катиона электролита) в электрохимическом ряду напряжений, при этом если:

1.1. Катион электролита расположен в ряду напряжений а начале ряда (по Аl включительно), то на катоде идет процесс восстановления воды (выделяется водород). Катионы металла не восстанавливаются, они остаются в растворе.
1.2. Катион электролита находится в ряду напряжений между алюминием и водородом, то на катоде восстанавливаются одновременно и ноны металла, и молекулы воды.
1.3. Катион электролита находится в ряду напряжений после водорода, то на катоде восстанавливаются катионы металла.
1.4. В растворе содержится катионы разных металлов, то скачала восстанавливается катион металла, стоящего в ряду напряжений

Эти правили отражены на схеме 10.

2. Процесс на аноде зависит от материала анода и от природы аннона (схема 11).

2.1. Коли анод растворяется (железо, цинк. медь, серебро и все металлы, которые окисляются в процессе электролиза), то окисляется металл анода, несмотря на природу аниона. 2.2. Если анод не растворяется (его называют инертным - графит, золото, платина), то:
а) при электролизе растворов солей бескислородных кислот (про ме фторидов) на аноде идет процесс окисления аниона;
б) при электролизе растворов солей кислородсодержащих кисяот и фторидов на аноде идет процесс окисления воды. Анионы не окисляются, они остаются в растворе;



Электролиз расплавов н растворов веществ широко используют в промышленности:

1. Для получения металлов (алюминии, магний, натрий, кадмий получают только электролизом).
2. Для получения водорода, галогенов, щелочей.
3. Для очистки металлов - рафинирования (очистку меди, никеля, свинца проводят электрохимическим методом).
4. Для защиты металлов от коррозии - нанесения защитных покрытий в виде тонкого слоя другого металла, устойчивого к коррозии (хроме, никеля, меди, серебра, золота) - гальваностегия.
5. Получение металлических копий, пластинок - гальванопластика.

Практическое задание

1. Как связаны строение металлов к расположение их в главных и побочных подгруппах Периодической системы химических элементов Д. И. Менделеева?
2. Почему щелочные и щелочноземельные металлы имеют в соединениях единственную степень окислення: (+1) и (+2) соответственно, а металлы побочных подгрупп, как правило, проявляют в соединениях разные степени окисления?
3. Какие степени окисления может проявлять марганец? Какие оксиды к гидрокенды соответствуют марганцу в этих степенях окисления? Каков их характер?
4. Сравните электронное строение атомов элементов VII группы: марганца и хлора. Объясните различие в их химических свойствах и наличие разных степенен окисления атомов у обоих элементов.
5. Почему положение металлов в электрохимическом ряду напряжений не всегда соответствует нх положению в Периодической системе Д. И. Менделеева?
9. Составьте уравнения реакций натрия и магния с уксусной кислотой. В каком случае и почему скорость реакции будет больше?
11. Какие способы получения металлов вы знаете? В чем состоит сущность всех способов?
14. Что такое коррозия? Какие виды коррозии вы знаете? Какой из них предстппляст собой физико-химический процесс?
15. Можно ли считать коррозией следующие процессы: а) окисление железа при электросварке, б) взаимодействие цинка с соляной кислотой при получении травленой кислоты для паяния? Дайте обоснованный ответ.
17. Изделие из марганца находится в воде н контактирует с медным изделием. Сохранятся ли оба они в неизменном виде?
18. Будет ли защищена железная конструкция от электрохимической коррозии в воде, если на ней украпить пластину из другого металла: а) магния, б) свинца, в) никеля?
19. С какой целью поверхность цистерн для хранения нефтепродуктов (бензина, керосина) окрашивают серебрином - смесью алюминиевой пудры с одним из растительных масел?
20. На поверхности закисленной почвы садового учпеткл находятся железные трубы со вставленными латунными кранами. Что будет подвергаться коррозии: труба иян кран? В каком месте разрушение наиболее выражено?
21. Чем отличается электролиз расплавов от электролиза водных растворов?
22*. Какие металлы можно получить электролизом расплавов их солей и нельзя получить электролизом водных растворов этих веществ?
23*. Составьте уравнения электролиза хлорида бария в: а) расплаве, б) растворе
28. К раствору, содержащему 27 г хлорида меди(II), добавили 1-4 г железных опилок. Какая масса медн выделилась в результате этой реакции?
Ответ: 12,8 г.
29. Какую массу сульфата цинка можно получить при взаимодействии избытки цинка с 500 мл 20%-ного раствора серной кислоты с плотностью 1.14 г/мл?
Ответ: 187.3 г.
31. При обработке 8 г смеси магния и оксида магния соляной кислотой выделилось 5.6 л водорода (н, у.). Какова массовая доля (в %) ИЮНЯ в исходной смеси?
Ответ: 75%.
34. Определите массовую долю (в процентах) углерода в стали (сплав железа с углеродом), если при сжигании ее навески массой 10 г в токе кислорода было собрано 0,28 л оксида углеродя(ІV) (н. у.).
Ответ: 1.5%.
35. Образец натрии массой 0.5 г поместили в воду. Ни нейтрализацию полученного раствора израсходовали 29,2 г 1,5%-ной соляной кислоты. Какова массовая доля (в процентах) натрия в образце?
Ответ: 55.2%.
36. Сплав меди и алюминия обработали избытком раствора гидроксидя натрия, при этом выделился газ объемом 1,344 л (н. у.), Остаток после реакции растворили в азотной кислоте, затем раствор выпарили и прокалили до постоянной массы, которая оказалась равной 0.4 г. Каков состав сплава? Ответ: 1.08 г Аl 0,32 г Сu или 77,14% Аl 22.86% Сu.
37. Какую массу чугуна, содержащего 94% железа, можно получить из 1 т красного железняка (Fe2О3), содержащего 20% примесей?
Ответ: 595.74 кг.

Металлы в природе

Если вы внимательно изучали химию в предыдущих классах, то вам известно, что таблица Менделеева насчитывает более девяноста видов металлов и приблизительно шестьдесят из них можно встретить в природной среде.

Встречающиеся в природе металлы можно условно разделить на такие группы:

Металлы, которые можно встретить в природе в свободном виде;
металлы, встречающиеся в виде соединений;
металлы, которые можно встретить в смешанном виде, то есть, они могут быть, как в свободном виде, так и в виде соединений.



В отличие от других химических элементов, металлы довольно часто встречаются в природе в виде простых веществ. Они, как правило, имеют самородное состояние. К таким металлам, которые представлены в виде простых веществ, можно отнести золото, серебро, медь, платину, ртуть и другие.

Но не все металлы, встречающиеся в природной среде, представлены в самородном состоянии. Некоторые металлы можно встретить в виде соединений и их называют минералами.

Кроме того, такие химические элементы, как серебро ртуть и медь, можно встретить, как в самородном состоянии, так и в состоянии имеющих вид соединений.

Все те минералы, из которых в дальнейшем можно получить металлы, называются рудами. В природе существуют руда, в состав которой входит железо. Такое соединение получило название железной руды. А если же в составе находится медь, но соответственно, такое соединение называется медной рудой.

Конечно же, наиболее распространенными в природе являются металлы, которые активно взаимодействуют с кислородом и серой. Их принято называть оксидами и сульфидами металлов.

Таким распространенным элементом, который образует металл, является алюминий. Алюминий содержится в глине, а также входит в состав таких драгоценных камней, как сапфир и рубин.



Вторым по популярности и распространению, является такой металл, как железо. Он, как правило, встречается в природе в виде соединений, а в самородном виде его можно встретить только в составе метеоритных камней.

Следующими по распространению в природной среде, вернее в земной коре, являются такие металлы, как магний, кальций, натрий, калий.

Держа в руке монеты, вы, наверное, замечали, что от них исходит характерный запах. Но, оказывается это не запах металла, а запах, который исходит от соединений, который образуется при соприкосновении металла с человеческим потом.

А знали ли вы, что в Швейцарии налажен выпуск золотых слитков в форме шоколадной плитки, которую можно разломать на дольки и использовать в качестве подарка или платежного средства? Такие шоколадные плитки компания производит из золота, серебра, платины и палладия. Если такую плитку разломать на дольки, то каждая из них весит всего один грамм.



А еще, довольно таки интересным свойством обладает такой металлический сплав, как нитинол. Он уникален тем, что обладает эффектом памяти и при нагреве деформированное изделие из этого сплава способно возвращаться к своей первозданной форме. Такие своеобразные материалы с так называемой памятью применяют для изготовления втулок. Они обладают свойством при низких температурах сжиматься, а при комнатной температуре эти втулки распрямляются и это соединение является даже надежнее, чем сварка. А происходит такое явление благодаря тому, что эти сплавы имеют структуру термоупругости.

А задумывались ли вы над тем, почему в золотые ювелирные изделия принято добавлять сплав серебра или меди? Оказывается, это происходит потому, что золото в чистом виде очень мягкое и его легко поцарапать даже с помощью ногтя.