Живое вещество и его функции. Живое вещество

«На земной поверхности нет химической силы , более постоянно действующей , а потому и более могущест­венной по своим конечным последствиям , чем живые организ­мы , взятые в целом» , - писал В. И. Вернадский о живом ве­ществе биосферы.

Живое вещество, по словам Вернадского, выполняет косми­ческую функцию, связывая Землю с космосом и осуществляя процесс фотосинтеза. Используя солнечную энергию, живое ве­щество выполняет гигантскую химическую работу.

По Вернадскому, который впервые рассмотрел функции жи­вого вещества в своей знаменитой книге «Биосфера», таких функций девять: газовая, кислородная, окислительная, кальцие­вая, восстановительная, концентрационная, функция разруше­ния органических соединений, функция восстановительного раз­ложения, функция метаболизма и дыхания организмов.

В настоящее время с учетом новых исследований различают следующие функции.

Энергетическая функция

Поглощение солнечной энергии при фотосинтезе и химической энергии при разложении энергонасыщенных ве­ществ, передача энергии по пищевым цепям.

В результате осуществляется связь биосферно-планетарных явлений с космическим излучением, преимущественно с солнечной радиацией. За счет накопленной солнечной энергии протекают все жизненные явления на Земле. Недаром Вернадский назвал зеле­ные хлорофилльные организмы главным механизмом биосферы.

Поглощенная энергия распределяется внутри экосистемы между живыми организмами в виде пищи. Частично энергия рассеивается в виде тепла, а частично накапливается в отмер­шем органическом веществе и переходит в ископаемое состоя­ние. Так образовались залежи торфа, каменного угля, нефти и других горючих полезных ископаемых.

Деструктивная функция

Эта функция состоит в разложении, минерализа­ции мертвого органического вещества, химическом разложении горных пород, вовлечении образовавшихся минералов в биоти­ческий круговорот, т.е. обусловливает превращение живого ве­щества в косное. В результате образуются также биогенное и биокосное вещество биосферы.

Особо следует сказать о химическом разложении горных по­род. «Мы не имеем на Земле более могучего дробителя мате­рии , чем живое вещество» , - писал Вернадский. Пионеры

жизни на скалах - бактерии, синезеленые водоросли, грибы и лишайники - оказывают на горные породы сильнейшее хими­ческое воздействие растворами целого комплекса кислот - угольной, азотной, серной и разнообразных органических. Раз­лагая с их помощью те или иные минералы, организмы избира­тельно извлекают и включают в биотический круговорот важ­нейшие питательные элементы - кальций, калий, натрий, фос­фор, кремний, микроэлементы.

Концентрационная функция

Так называется избирательное накопление в ходе жизнедеятельности определенных видов веществ для построе­ния тела организма или удаляемых из него при метаболизме. В результате концентрационной функции живые организмы из­влекают и накапливают биогенные элементы окружающей сре­ды. В составе живого вещества преобладают атомы легких эле­ментов: водорода, углерода, азота, кислорода, натрия, магния, кремния, серы, хлора, калия, кальция. Концентрация этих эле­ментов в теле живых организмов в сотни и тысячи раз выше, чем во внешней среде. Этим объясняется неоднородность хими­ческого состава биосферы и ее существенное отличие от состава неживого вещества планеты. Наряду с концентрационной функ­цией живого организма вещества выделяется противоположная ей по результатам - рассеивающая . Она проявляется через трофическую и транспортную деятельность организмов. Напри­мер, рассеивание вещества при выделении организмами экскре­ментов, гибели организмов при разного рода перемещениях в пространстве, смене покровов. Железо гемоглобина крови рас­сеивается, например, через кровососущих насекомых.

Средообразующая функция

Преобразование физико-химических параметров среды (литосферы, гидросферы, атмосферы) в результате про­цессов жизнедеятельности в условиях, благоприятных для суще­ствования организмов. Эта функция является совместным ре­зультатом рассмотренных выше функций живого вещества: энергетическая функция обеспечивает энергией все звенья био­логического круговорота; деструктивная и концентрационная способствуют извлечению из природной среды и накоплению рассеянных, но жизненно важных для живых организмов эле­ментов. Очень важно отметить, что в результате средообразующей функции в географической оболочке произошли следующие важнейшие события: был преобразован газовый состав первич­ной атмосферы, изменился химический состав вод первичного океана, образовалась толща осадочных пород в литосфере, на поверхности суши возник плодородный почвенный покров. «Ор­ганизм имеет дело со средой , к которой не только он приспо­соблен , но которая приспособлена к нему» , - так характеризо­вал Вернадский средообразующую функцию живого вещества.

Рассмотренные четыре функции живого вещества являются главными, определяющими функциями. Можно выделить еще некоторые функции живого вещества, например:

- газовая функция обусловливает миграцию газов и их пре­вращения, обеспечивает газовый состав биосферы. Преобладаю­щая масса газов на Земле имеет биогенное происхождение. В про­цессе функционирования живого вещества создаются основные га­зы: азот, кислород, углекислый газ, сероводород, метан и др. Хорошо видно, что газовая функция является совокупностью двух основопо­лагающих функций - деструктивной и средообразующей;

- окислительно - восстановительная функция заключается в химическом превращении главным образом тех веществ, кото­рые содержат атомы с переменной степенью окисления (соеди­нения железа, марганца, азота и др.). При этом на поверхности Земли преобладают биогенные процессы окисления и восста­новления. Обычно окислительная функция живого вещества в биосфере проявляется в превращении бактериями и некоторы­ми грибами относительно бедных кислородом соединений в поч­ве, коре выветривания и гидросфере в более богатые кислоро­дом соединения. Восстановительная функция осуществляется при образовании сульфатов непосредственно или через биоген­ный сероводород, производимый различными бактериями. И здесь мы видим, что данная функция является одним из про­явлений средообразующей функции живого вещества;

- транспортная функция - перенос вещества против си­лы тяжести и в горизонтальном направлении. Еще со времен Ньютона известно, что перемещение потоков вещества на нашей планете определяется силой земного тяготения. Неживое веще­ство само по себе перемещается по наклонной плоскости исклю­чительно сверху вниз. Только в этом направлении движутся ре­ки, ледники, лавины, осыпи.

Живое вещество - единственный фактор, обусловливающий обратное перемещение вещества - снизу вверх, из океана - на континенты.

За счет активного передвижения живые организмы могут пе­ремещать различные вещества или атомы в горизонтальном на­правлении, например за счет различных видов миграций. Пере­мещение, или миграцию, химических веществ живым веществом Вернадский назвал биогенной миграцией атомов или вещества .

Огромной заслугой В. И. Вернадского является обоснование нового содержания представлений о живом веществе. Живым веществом Вернадский называл «совокупность организмов, сведенных к их весу, химическому составу и энергии». Живое вещество по своей массе представляет собой ничтожную часть биосферы. Если все живое вещество Земли равномерно распределить по ее поверхности, то оно покроет нашу планету слоем толщиной 2 см. Однако именно живое вещество, по мнению В. И. Вернадского, выполняет ведущие функции в формировании земной коры.

Живое вещество обладает рядом специфических свойств:

1. Живое вещество характеризуется огромной свободной энергией.

2. В живом веществе химические реакции протекают в тысячи (иногда и в миллионы) раз быстрее, чем в неживом веществе. Поэтому для характеристики изменений в живом веществе пользуются понятием исторического, а в косном веществе – геологического времени.

3. Химические соединения, входящие в состав живого вещества (ферменты, белки и др.), устойчивы только в живых организмах.

4. Живому веществу присуще произвольное движение – пассивное, обусловленное ростом и размножением, и активное – в виде направленного перемещения организмов. Первое является свойством всех живых организмов, второе характерно для животных и в редких случаях – для растений.

5. Для живого вещества характерно гораздо большее химическое и морфологическое разнообразие, чем для неживого.

6. Живое вещество в биосфере Земли находится в виде дисперсных тел – индивидуальных организмов. Размеры и масса живых организмов сильно колеблются (диапазон более 109).

7. Живое вещество возникает только из живого и существует на Земле в форме непрерывного чередования поколений.

Живые организмы в пределах биосферы распределены очень неравномерно. На большой высоте и глубинах гидросферы и литосферы организмы встречаются достаточно редко. Жизнь сосредоточена главным образом на поверхности земли, в почве и поверхностном слое Мирового океана.

В. И. Вернадский выделил две формы концентрации живого вещества: жизненные пленки, занимающие огромные площади, и сгущения жизни, представленные небольшими площадями (например, пруд). Вся остальная часть биосферы является зоной разряжения живого вещества.

В океане можно выделить две жизненные пленки – планктонную и донную, которые находятся на границе раздела фаз. Планктонная лежит на границе атмосферы и гидросферы, донная – на границе гидросферы и литосферы. Сгущения жизни в океане различают трех типов: прибрежные, саргассовые и рифовые.

На суше также имеются различные формы концентрации жизни. Верхняя пленка жизни на суше – наземная, расположенная на границе атмосферы и литосферы. Под ней находится почвенная пленка жизни, представляющая собой сложную систему, населенную огромным количеством бактерий, простейших и других представителей живых организмов.


Сгущения жизни представлены на суше береговыми, пойменными и тропическими формами.

Важная закономерность наблюдается в соотношении видового состава живых организмов на Земле. Растения составляют 21 % от общего числа видов, образуя 99 % общей биомассы. Среди животных 96 % видов представлены беспозвоночными и только 4 % – позвоночные, из которых только 10 % – млекопитающие.

Таким образом, организмы, стоящие на относительно низком уровне эволюционного развития, в количественном отношении значительно преобладают.

Масса живого вещества очень мала по сравнению с массой неживого вещества и составляет всего 0,01-0,02 % от косного вещества биосферы. В то же время живое вещество играет главенствующую роль в геохимических процессах. Ежегодно благодаря жизнедеятельности растений и животных воспроизводится около 10 % биомассы. Живым веществом в биосфере выполняются важные функции:

1. Энергетическая функция – поглощение солнечной энергии и энергии при хемосинтезе, дальнейшая передача энергии по пищевой цепи.

2. Концентрационная функция – избирательное накопление определенных химических веществ.

3. Средообразующая функция – преобразование физико-химических параметров среды.

4. Транспортная функция – перенос веществ в вертикальном и горизонтальном направлениях.

5. Деструктивная функция – минерализация необиогенного вещества, разложение неживого неорганического вещества.

Живые организмы осуществляют миграцию химических элементов в биосфере в процессе дыхания, питания, обмена веществ и энергии.

Главная функция биосферы заключается в обеспечении круговорота химических элементов, который выражается в циркуляции веществ между атмосферой, почвой, гидросферой и живыми организмами

Земная поверхность не содержит более могущественной, постоянно действующей, динамичной силы, чем живые организмы. Согласно учению о живом веществе, за данной оболочкой закрепляется космическая функция, выступающая связующим звеном между Землей и космическим пространством. Участвуя в процессе фотосинтеза, обмена и преобразования естественных веществ, живое вещество осуществляет невообразимую химическую работу.

Концепция живого вещества В. И. Вернадского

Понятие о живом веществе разработано прославленным ученым В. И. Вернадским, который отдельно рассмотрел биологическую массу среди совокупности других типов органических веществ, формирующих биосферу земного шара. По мнению исследователя, живые организмы составляют ничтожную долю биосферы. Однако именно их жизнедеятельность наиболее ощутимо отражается на формировании окружающего мира.

Согласно концепции ученого, живое вещество биосферы состоит как из органических, так и неорганических веществ. Главной специфической особенностью живого вещества выступает наличие огромного энергетического потенциала. В плане высвобождения свободной энергии в неорганической среде планеты с живым веществом могут сравниться лишь вулканические лавовые потоки. Основным различием между неживым и живым веществом выступает скорость течения химических реакций, которые в последнем случае происходят в миллионы раз быстрее.

Исходя из учения профессора Вернадского, присутствие живого вещества в земной биосфере может проявляться в нескольких формах:

  • биохимической (участие в обмене химических веществ, формирование геологических оболочек);
  • механической (непосредственное воздействие биомассы на преобразование материального мира).

Биохимическая форма «деятельности» биомассы планеты проявляется в непрерывном обмене веществ между окружающей средой и организмами в ходе переваривания пищи, построения тела. Механическое воздействие живого вещества на окружающий мир заключается в циклическом перемещении веществ в ходе жизнедеятельности организмов.

Биохимические принципы

Получить полное представление о том «объеме работы», которую осуществляет живое вещество в процессе жизнедеятельности, позволяют несколько научных положений, известных под названием биохимические принципы:

  • движение атомов химических веществ при биогенной миграции всегда тяготеет к достижению максимально возможных проявлений;
  • эволюционное преобразование видов движется в направлении, способствующем усилению миграции атомов элементов;
  • существование биомассы обусловлено наличием солнечной энергии;
  • живое вещество планеты заключено в непрерывный круговорот обмена химическими веществами с космической средой.

Отражение жизнедеятельности живого вещества на функционировании биосферы

Жизнь возникла в форме биосферы благодаря способности органической массы к размножению, росту и эволюции форм. Изначально живая оболочка планеты представляла собой комплекс органических веществ, образующих круговорот элементов. В ходе развития и преобразования живых организмов живое вещество получило способность функционировать не только в виде непрерывного потока энергии, но и эволюционировать как комплексная система.

Новые виды органической оболочки Земного шара не просто находят свои корни в предшествующих формах. Их возникновение обусловлено течением специфических биогенных процессов в естественной среде, что, в свою очередь, влияет на все живое вещество, клетки живых организмов. Каждая стадия эволюции биосферы характеризуется заметными изменениями в ее материально-энергетической структуре. Таким образом, возникают новые системы косного и живого вещества планеты.

Рост воздействия биомассы на изменение косных систем планеты заметен при исследовании всех без исключения эпох. Обусловлено это, в первую очередь, повышением аккумуляции солнечной энергии, а также ростом интенсивности и емкости биологического круговорота элементов. Изменение среды всегда предопределяет возникновение новых сложноорганизованных форм жизни.

Функции живого вещества в биосфере

Впервые функции биомассы были рассмотрены все тем же Вернадским при написании знаменитого труда под названием «Биосфера». Здесь ученый выделяет девять функций живого вещества: кислородную, кальциевую, газовую, окислительную, восстановительную, разрушающую, концентрационную, восстановительную, метаболическую, дыхательную.

Разработка современных концепций о живом веществе биосферы привела к существенному сокращению количества функций живого вещества и их объединению в новые группы. Именно о них пойдет речь далее.

Энергетические функции живого вещества

Если говорить об энергетических функциях живого вещества, то положены они, прежде всего, на растения, которые обладают способностью к фотосинтезу и преобразованию солнечной энергии в разнообразные органические соединения.

Энергетические потоки, исходящие от Солнца, являются для растений настоящим даром электромагнитной природы. Более 90% энергии, поступающей в биосферу планеты, поглощается литосферой, атмосферой и гидросферой, а также принимает непосредственное участие в течении химических процессов.

Функции живого вещества, направленные на преобразование энергии зелеными растениями, являются основным механизмом живого вещества. Без наличия процессов передачи и накопления солнечной энергии развитие жизни на планете оказалось бы под вопросом.

Деструктивные функции живых организмов

Способность к минерализации органических соединений, химическое разложение пород, отмершей органики, вовлечение минералов в круговорот движения биомассы - все это деструктивные функции живого вещества в биосфере. Главной движущей силой деструктивных функций биосферы являются бактерии, грибы и прочие микроорганизмы.

Омертвелые органические соединения разлагаются до состояния веществ неорганического характера (воды, аммиака, углекислого газа, метана, сероводорода), возвращаясь в изначальный круговорот материи.

Отдельное внимание заслуживает деструктивное воздействие организмов на горные породы. Благодаря круговороту веществ, земная кора пополняется минеральными составляющими, высвобождаемыми из литосферы. Участвуя в разложении минералов, живые организмы тем самым включают в круговорот биосферы целый комплекс важнейших химических элементов.

Концентрационные функции

Избирательное накопление веществ в природе, их распределение, круговорот живого вещества - все это формирует концентрационные функции биосферы. Среди наиболее активных концентраторов химических элементов особая роль отводится микроорганизмам.

Построение скелетов отдельных представителей животного мира обусловлено использованием рассеянных минеральных веществ. Яркими примерами применения концентрированных естественных элементов выступают моллюски, диатомовые и известковые водоросли, кораллы, радиолярии, кремневые губки.

Газовые функции

Основой газового свойства живого вещества выступает распределение живыми организмами газообразных веществ. Отталкиваясь от типа преобразуемых газов, выделяют целый ряд отдельных газовых функций:

  1. Кислородообразующую - восстановление кислородного запаса планеты в свободном виде.
  2. Диоксидную - формирование биогенных угольных кислот в результате дыхания представителей животного мира.
  3. Озонную - образование озона, что способствует предохранению биомассы от деструктивного воздействия солнечной радиации.
  4. Азотную - создание свободного азота при разложении веществ органического происхождения.

Средообразующие функции

Биомасса обладает способностью к преобразованию физических и химических параметров окружающей среды для создания условий, соответствующих потребностям живых организмов. В качестве примера можно выделить растительную среду, жизнедеятельность которой способствует повышению влажности воздуха, регуляции поверхностных стоков, обогащению атмосферы кислородом. В определенной степени средообразующие функции являются результатом всех вышеупомянутых свойств живого вещества.

Роль человека в формировании биосферы

Появление человека в качестве отдельного вида отразилось на возникновении революционного фактора эволюции биологической массы - осознанном преобразовании окружающего мира. Технический и научный прогресс является не просто явлением социальной жизни человеческого существа, но в некотором роде относится к естественным процессам эволюции всего живого.

Человечество испокон веков преобразовывало живое вещество биосферы, что отразилось на повышении скорости миграции атомов химической среды, трансформации отдельных геосфер, накоплении энергетических потоков в биосфере, изменении облика Земного шара. В настоящее время человек рассматривается не просто как вид, но также сила, способная изменять оболочки планеты, что в свою очередь является специфическим фактором эволюции.

Естественное стремление к росту численности вида привело человеческий вид к активному использованию возобновимых и невозобновимых ресурсов биосферы, источников энергии, веществ, захороненных в оболочках планеты. Вытеснение отдельных представителей животного мира из естественных ареалов обитания, уничтожение видов с потребительской целью, техногенное преобразование параметров окружающей среды - все это влечет за собой исчезновение важнейших элементов биосферы.

Все экологические процессы протекают в системах, включающих в свой состав живое вещество, поэтому важно уметь отличать живое вещество от других видов веществ (неорганических, косных, биокосных и др.).

Живое вещество - это то, что образует совокупность тел всех независимо от их принадлежности к той или иной систематической группе. Общая масса (в сухом виде) живого вещества на планете Земля составляет (2,4-3,6) * 10 12 тонн.

Живое вещество неотделимо от и является его функцией, а также одной из самых могущественных геологических сил на . Оно представляет собой неразрывное молекулярно-биологическое единство, системное целое с характерными признаками, общими для всей эпохи его существования, а также для каждой отдельной геологической эпохи. Уничтожение отдельных компонентов живого вещества может привести к нарушению системы в целом, т. е. к экологической катастрофе и гибели системы живого вещества в целом.

Рассмотрим некоторые наиболее общие вещества вне зависимости от геологической эпохи его существования.

1. Система, состоящая из живого вещества (организм), способна к росту, т. е. она увеличивается в размерах.

2. Организм (живой) в течение времени своего существования сохраняет свои наиболее типичные признаки и способен передавать эти признаки по наследству, т. е. является носителем и передатчиком .

3. Живой организм в процессе своей жизни способен к развитию, которое делится на два периода - эмбриональное и постэмбриональное.

4. Живое вещество как отдельный организм, способно к размножению, благодаря чему обеспечивается существование данного вида в течение длительного (с исторических позиций) времени.

5. Для живого вещества характерен направленный обмен веществ.

Уровни организации живого вещества

Живое вещество как совокупность всех организмов, живущих на Земле, состоит из нескольких царств (Прокариоты, Животные, Растения, Грибы), которые находятся в сложных взаимоотношениях. Живое вещество имеет сложное строение и разные уровни организации. Рассмотрим некоторые из них в порядке усложнения.

1. Молекулярно-генный (суборганизменный) - особая форма организации живого, присущая всем без исключения организмам, представляющая собой совокупность различных органических и неорганических веществ, связанных между собой определенной структурой и системой биохимических процессов, позволяющих сохранять данную совокупность соединений как целостную систему, способную к росту, развитию, самосохранению и размножению в течение всего времени существования этого организма, т. е. до смерти.

2. Клеточный - все живое (кроме неклеточных форм жизни) образовано особыми структурами - клетками, которые имеют строго определенное строение, присущее как организмам из царства Растения, так и организмам из царств Животные и Грибы; некоторые организмы состоят из одной клетки, поэтому такие организмы при клеточном уровне соответствуют и новому уровню организации - организменному (см. пятый уровень организации).

3. Тканевый - характерен для сложных многоклеточных организмов, у которых произошла специализация клеток по выполняемым функциям, что привело к образованию тканей - совокупности клеток, имеющих одинаковое происхождение, близкое строение и выполняющих одинаковые или близкие по характеру функции; различают растительные и животные так, у растений выделяют покровные, основные, механические, проводящие ткани и меристемы (ткани роста); у животных - покровные, нервные, мышечные и соединительные ткани.

4. Органный - у высокоорганизованных организмов ткани образуют структуры, предназначенные для выполнения определенных функций, которые называются органами, а органы объединяются в системы органов (например, желудок входит в состав пищеварительной системы).

5. Организменный - системы органов объединены в , при функционировании которого реализуется жизнедеятельность конкретного живого существа; известно, что в природе существует большое число одноклеточных организмов.

6. Популяционно-видовой - особи одного вида образуют особые группировки, живущие на данной конкретной территории и занимающие определенную экологическую нишу, которые называются популяциями, а популяции одинаковых организмов образуют подвиды и виды.

7. Биогеоценотический - этот уровень организации живого вещества связан с тем, что на данной территории проживает определенное количество популяций различных видов (как животных, так и растений, грибов, прокариотов и неклеточных форм жизни), которые взаимосвязаны друг с другом различными связями, в том числе и пищевыми.

8. Биосферный - это высший уровень организации живого на планете Земля, представляющий собой всю совокупность живых существ, живущих на ней, которые взаимосвязаны друг с другом планетарным круговоротом химических элементов и химических соединений; нарушение этого круговорота может привести к глобальной катастрофе и даже к гибели всего живого.

Следовательно, 1-5 уровни организации характерны для отдельно взятого организма, а 6-8 - для совокупности организмов. Необходимо помнить, что человек - это составная часть живого вещества на планете Земля, но его деятельность из-за наличия разума значительно отличается от деятельности других организмов, и, тем не менее, он составная часть природы, а не ее «царь».

Краткая характеристика химического состава живого вещества

Живое вещество представляет собой сложную систему биоорганических, органических и неорганических соединений. В составе живого вещества обнаружены практически все устойчивые химические элементы, известные человеку, но в разных количествах. Эти подразделяют на биогенные и небиогенные, исходя из их роли в живых организмах.

Основу живого вещества составляют биоорганические и органические соединения. К биоорганическим веществам относят , нуклеиновые кислоты, витамины, и . Эти вещества называют биоорганическими потому, что эти соединения вырабатываются в организмах и без этих веществ жизнь принципиально невозможна (особенно это относится к белкам и нуклеиновым кислотам). Примером органических веществ, входящих в состав живого вещества, являются органические кислоты (яблочная, уксусная, молочная и др.), мочевина и другие химические соединения.

Общая характеристика клеточных организмов, их классификация по наличию ядра в клетке

Клеточные организмы преобладают над неклеточными и имеют сложную классификацию. При изучении строения клетки было обнаружено, что большинство клеточных форм организмов в составе клеток обязательно содержит особый органоид - ядро. Однако в клетках некоторых организмов ядро отсутствует. Поэтому клеточные организмы разделяют на две большие группы - ядерные (или эукариоты) и безъядерные (или прокариоты). В данном подразделе рассмотрим прокариоты.

Прокариотами (безъядерными) называют организмы, клетки которых не имеют отдельно сформированного ядра.

К безъядерным организмам относятся бактерии и сине-зеленые водоросли, которые образуют царство Дробянки, входящее в надцарство Доядерные, или Прокариоты. В практическом отношении наибольшее значение имеют бактерии.

Тело бактерий состоит из одной клетки разной формы, которая имеет оболочку и цитоплазму. Ярко выраженные органоиды отсутствуют; в клетке содержится одна молекула ДНК; она замкнута в кольцо, место ее нахождения в цитоплазме называется нуклеоидом.

По форме клетки бактерии разделяют на кокки (шарообразные), бациллы (палочкообразные), вибрионы (дугообразно изогнутые), спириллы (изогнутые в форме спирали).

Бактерии размножаются обычным делением (в благоприятных условиях каждое деление осуществляется за 20-30 минут). При наступлении неблагоприятных условий клетка бактерии превращается в спору, обладающую высокой устойчивостью к воздействию различных факторов - температуры, влажности, радиации. Попадая в благоприятные условия, споры набухают, их оболочки разрываются и бактериальные клетки становятся жизненно активными.

По отношению к кислороду различают анаэробные (живут в средах, где нет молекулярного кислорода) и аэробные (для их жизни необходим О 2), существуют также бактерии, которые могут жить и в аэробной, и в анаэробной среде.

Вид, его критерии и экологическая характеристика

Живое вещество в природе существует в виде отдельных дискретных таксономических единиц - видов (биологических видов).

Биологический вид (вид) - совокупность особей, обладающих общими морфофизиологическими признаками, биохимическим, генетическим (наследственным) сходством, свободно скрещивающихся друг с другом и дающих плодовитое потомство, приспособленных к сходным условиям существования, занимающих в природе определенный ареал (область распространения), т. е. занимающих одну и ту же экологическую нишу.

Виды образованы популяциями и подвидами (последнее характерно не для всех видов). Биологический вид характеризуется следующими критериями:

1) генетическим, т.е. все особи данного вида обладают одинаковым набором хромосом;

2) биохимическим, т. е. для всех особей этого вида характерны одинаковые химические соединения ( , нуклеиновые кислоты и др.), которые отличаются от аналогичных соединений других видов;

3) морфофизиологическим, т. е. организмы одного вида имеют общие признаки внешнего и внутреннего строения и характеризуются одинаковыми процессами, обеспечивающими их жизнедеятельность;

4) экологическим, т. е. особи данного вида вступают в одинаковые (отличные от других видов) взаимоотношения с природной средой;

5) историческим - особи данного вида имеют одинаковое происхождение и в процессе внутриутробного развития проходят одинаковый цикл этого развития согласно биогенетическому закону;

6) географическим - особи данного вида проживают на определенной территории и приспособлены к существованию на данной территории.

В науке «экология» широко используют следующие разновидности термина «вид».

1. Вид вредный - наносящий человеку хозяйственный урон или вызывающий заболевания; понятие относительное, так как любой вид, живущий на планете, занимает определенную экологическую нишу и выполняет определенную экологическую роль; например, волк может наносить большой урон хозяйственной деятельности человека, но он является «санитаром» природы, играет большую роль в «отбраковке» нежизнеспособных особей тех видов, которыми он питается.

2. Вымерший вид - это вид, который исчез в результате процессов эволюции, например, птеродактиль.

3. Вымирающий вид - такой вид, свойства которого не соответствуют современным условиям существования и генетические возможности к приспособлению к жизни в новых условиях практически исчерпаны; такие виды могут сохраниться только в результате полного его окультивирования (заносится в Красную книгу).

4. Исчезающий вид - вид организмов, находящихся под угрозой вымирания за счет того, что численность сохранившихся особей недостаточна для воспроизводства вида, но генетически вид имеет благоприятные возможности для приспособления к условиям внешней среды (заносится в Красную книгу как вид, находящийся под угрозой).

5. Охраняемый вид - вид, преднамеренное нанесение вреда особям которого и нарушение среды его обитания запрещено определенными законодательными актами разного ранга (международными, государственными, местными), например соболь и др.

Структура вида состоит в том, что он образован отдельными особями, объединенными в популяции и подвиды. Наличие подвидов характерно только для тех видов, которые имеют большие ареалы, характеризующиеся разнообразными условиями.

Популяция - группа особей данного вида, способных к скрещиванию и производству полноценного потомства, проживающих на данной территории, имеющей естественные границы с другими территориями, что затрудняет скрещивание особей данной популяции с особями другой. Следует помнить, что экологической единицей вида является популяция.

Популяции разных видов, проживающих на данной территории, образуют биоценоз, в котором эти популяции связаны друг с другом различными связями, в том числе и пищевыми.

Неорганические вещества и их роль в живом веществе

Живое вещество, как и любое другое вещество, образовано атомами химических элементов, входящих в состав неорганических и органических соединений, совокупность которых образует живое вещество, качественно отличающееся и от неорганических, и от органических индивидуальных химических соединений.

Неорганическими называют вещества, в составе которых отсутствуют атомы углерода (кроме самого углерода, его оксидов, угольной кислоты, ее солей, родана, родановодорода, роданидов, циана, циановодорода, цианидов).

В состав организмов входят вода, некоторые соли натрия, калия, кальция и других химических элементов.

Краткая характеристика роли некоторых оксидов, гидроксидов и солей в живом веществе

Из оксидов в организмах большое значение имеет углекислый газ (углекислота, оксид углерода (IV), диоксид (двуокись) углерода). Это вещество является одним из продуктов дыхания (для всех организмов!). При растворении в воде (например, в цитоплазме, плазме крови и т. д.) углекислый газ образует угольную кислоту, которая при диссоциации распадается на гидрокарбонат-ионы (НСО 3) и карбонат-ионы (СО 2- 3), образующие (совместно) карбонатную буферную систему, стабилизирующую реакцию среды. Избыток СO 2 удаляется из организма в результате процессов, протекающих при (у всех организмов: и у растений, и у животных).

Важнейшими гидроксидами, содержащимися в живом веществе, являются угольная (Н 2 СO 3), фосфорная (Н 3 РO 4) и некоторые другие кислоты. Как указано выше (на примере угольной кислоты), эти гидроксиды способствуют созданию буферных систем в водных растворах, что приводит к стабилизации реакции среды в протоплазме или в других жидких средах, содержащихся в организме. Фосфорная кислота играет огромную роль в образовании различных фосфорсодержащих соединений (например, в образовании АДФ из АМФ или АТФ из АДФ; АТФ - аденозинтрифосфат, АДФ - аденозиндифосфат, АМФ - аденозинмонофосфат; эти вещества играют большую роль в процессах диссимиляции и ассимиляции).

Важна для организмов и хлороводородная (соляная) кислота (НСI). Она содержится в желудочном соке или в растворах, которые способствуют перевариванию пищи (например, в желудке человека).

В организмах находятся в диссоциированном состоянии, т. е. в виде ионов. Рассмотрим биологическую роль некоторых анионов (отрицательно заряженных ионов) и катионов (положительно заряженных ионов) в живом веществе.

Краткая характеристика биологической роли катионов

В живом веществе наибольшее значение имеют следующие катионы: К + , Са 2+ , Na + , Mg 2+ , Fе 2+ , Мn 2+ и некоторые другие.

1. Катионы натрия (Nа +). Эти ионы создают определенное осмотическое давление (Осмотическое давление возникает в водных растворах и является силой, под воздействием которой осуществляется осмос, т.е. односторонняя диффузия веществ через полупроницаемую мембрану). Кроме того, совместно с катионами калия (К+) за счет различной проницаемости клеточной мембраны, они создают мембранное равновесие, при котором возникает разность биохимических потенциалов, что обеспечивает проводимость клеток и тканей организма; участвуют в водном и ионном обмене организма в целом. В организм (клетку) поступают в виде водного раствора хлорида натрия. У животных и человека в результате потоотделения может теряться большое количество хлорида натрия, что резко снижает их работоспособность. Данные ионы совместно с некоторыми органическими и неорганическими анионами регулируют кислотно-щелочное равновесие (например, с ионами НСO — 3 , СН 3 СОО — и др.).

2. Катионы К + . Эти ионы совместно с ионами Nа + создают мембранное равновесие. Они активизируют белкового синтеза, а в организмах высших животных и человека влияют на биоритмы сердца. Ионы К + входят в состав макроудобрений - калийных и существенно влияют на продуктивность сельскохозяйственных растений.

3. Катионы Са 2+ . Данные ионы являются антагонистами ионов К + (т. е. проявляют противоположное действие по сравнению с последними). Они входят в состав мембранных структур, образуют пектиновые вещества, которые образуют межклеточное вещество в растительных организмах. Эти ионы в составе солей кальция участвуют в образовании важнейшей соединительной ткани - костной, которая образует скелет позвоночных животных и человека и некоторых др. организмов (например, кишечнополостных и др.). Осуществляют регуляцию процессов образования клеток, участвуют в реализации мышечных сокращений, играют большую роль в свертывании крови и в др. процессах.

4. Катионы Мg 2+ . Роль этих ионов аналогична (в ряде случаев) роли ионов Са 2+ и они содержатся в организмах в определенных соотношениях. Кроме того, ионы Мg 2+ входят в состав важнейшего фотосинтезирующего пигмента растений - хлорофилла, активизируют синтез ДНК и участвуют в реализации энергетического обмена.

5. Ионы Fе 2+ . Играют большую роль в жизни многих животных, так как входят в состав важнейшего дыхательного пигмента - гемоглобина, участвующего в процессе дыхания. Они входят в состав мышечного белка - миоглобина, принимают участие в синтезе хлорофилла, т.е. ионы Fе 2+ являются основой соединений, посредством которых реализуются многие окислительно-восстановительные процессы.

6. Ионы Си 2+ , Мn 2+ , Сг 3+ и ряд других ионов также принимают участие в окислительно-восстановительных процессах, реализующихся в различных организмах (эти ионы входят в состав сложных металлоорганических соединений).

Краткая характеристика биологической роли некоторых анионов

Наибольшее значение имеют анионы Н 2 РО — 4 , НРО 2- 4 , Сl — , I — , РО 3- 4 , Вг — , F — , НСО — 3 , NO — 3 , SО 2- 4 и ряд др. Кратко рассмотрим роль некоторых из этих ионов в различных организмах.

1. Нитрат- и нитрит-ионы (NO — 3 , NO — 2 , соответственно).

Ионы, содержащие азот, играют большую роль в организмах растений, так как в своем составе содержат связанный азот и используются (наряду с катионами аммония - NH + 4) для синтеза азотсодержащих «веществ жизни» - белков и нуклеиновых кислот. При поступлении избытка этих ионов в организм растения они накапливаются в них и, попадая (в составе пищи) в организм человека и животных, могут вызывать нарушения в обмене веществ этих организмов («нитратное и нитритное отравление»). Это делает необходимым оптимальное использование азотных удобрений при их внесении в почву.

2. Гидро- и дигидрофосфат-ионы (НРО 2- 4 , Н 2 РО 4 - соответственно).

Эти ионы участвуют в обмене веществ и являются необходимыми при синтезе нуклеиновых кислот, моно-, ди- и триаденозин-фосфатов, играющих большую роль в энергетическом обмене и синтезе органических веществ в различных организмах (растительных, животных и др.). Данные ионы участвуют в поддержании кислотно-основного равновесия, сохраняя в определенных пределах постоянство реакции среды.

3. Сульфат-ионы (SO 2 4) - источник серы, необходимый для синтеза серосодержащих природных альфа-аминокислот, используемых при получении белков. Необходимы для процессов синтеза некоторых витаминов, ферментов (в организмах растений). В организмах животных сульфат-ионы являются продуктом реакций обезвреживания химических соединений, образующихся в печени.

4. Галогенид-ионы (Сl — - хлорид-ионы, Вг - бромид-ионы, I — - иодид-ионы, F — - фторид-ионы). Они являются противоионами для катионов (особенно Сl —), то есть создают нейтральную систему с катионами. Система ионов (катионов и анионов) создает вместе с водой осмотическое давление и тургор; хлорид-ионы относятся к макроэлементам для животных, а остальные галогенид-ионы являются микроэлементами, т.е. необходимы любым организмам в небольших (микро-) количествах. Значение иодид-ионов состоит в том, что они входят в состав важнейшего гормона - тироксина, а избыток и недостаток этих ионов приводит к появлению различных заболеваний у человека (миксидема и базедова болезнь). Фторид-ионы влияют на обмен в костной ткани зубов, бромид-ионы входят в состав химических соединений, содержащихся в гипофизе.

Общая характеристика и классификация органических соединений, входящих в состав живого вещества, и их экологическая роль

Вещества, в состав которых входят атомы углерода (исключая углерод, его оксиды, угольную кислоту, ее соли, родан, родано-водород, роданиды, циан, циановодород, цианиды, карбонилы и карбиды), называются органическими.

Органические вещества имеют очень сложную классификацию. Некоторые из этих веществ не содержатся в организмах (ни в живых, ни в мертвых). Они были получены искусственным путем и в природе не встречаются. Ряд органических соединений не «усваивается» организмами, т.е. не разлагается в природе под воздействием редуцентов и детритофагов. К таким соединениям относят полиэтилен, СМС (синтетические моющие средства), некоторые ядохимикаты и др. Поэтому при использовании органических веществ, полученных человеком химическим путем, необходимо учитывать их способность подвергаться различным превращениям в природных условиях, т. е. «усвоение» этих веществ биосферой.

Органические вещества, содержащиеся в организме, имеют большое экологическое значение, недостаток, избыток или отсутствие того или иного вещества приводят либо к различным заболеваниям, либо к гибели данного организма. Наибольшее значение имеют , нуклеиновые кислоты, углеводы, жиры и витамины.

Определение термина биосфера.

Биосфе́ра (от др.-греч. βιος - жизнь и σφαῖρα - сфера, шар) - оболочка Земли, заселённая живыми организмами, находящаяся под их воздействием и занятая продуктами их жизнедеятельности; «плёнка жизни»; глобальная экосистема Земли.

Биосфера - оболочка Земли, заселённая живыми организмами и преобразованная ими. Биосфера начала формироваться не позднее, чем 3,8 млрд. лет назад, когда на нашей планете стали зарождаться первые организмы. Она проникает во всю гидросферу, верхнюю часть литосферы и нижнюю часть атмосферы, то есть населяет экосферу. Биосфера представляет собой совокупность всех живых организмов. В ней обитает более 3 000 000 видов растений, животных, грибов и бактерий. Человек тоже является частью биосферы, его деятельность превосходит многие природные процессы и, как сказал В. И. Вернадский: «Человек становится могучей геологической силой».

Французский учёный-естествоиспытатель Жан Батист Ламарк в начале XIX в. впервые предложил по сути дела концепцию биосферы, ещё не введя даже самого термина. Термин «биосфера» был предложен австрийским геологом и палеонтологом Эдуардом Зюссом в 1875 году.

Целостное учение о биосфере создал биогеохимик и философ В. И. Вернадский. Он впервые отвёл живым организмам роль главнейшей преобразующей силы планеты Земля, учитывая их деятельность не только в настоящее время, но и в прошлом.

Существует и другое, более широкое определение: Биосфера - область распространения жизни на космическом теле. При том, что существование жизни на других космических объектах, помимо Земли пока неизвестно, считается, что биосфера может распространяться на них в более скрытых областях, например, в литосферных полостях или в подлёдных океанах. Так, например, рассматривается возможность существования жизни в океане спутника Юпитера Европы.

Понятие живого вещества.

Живое вещество - вся совокупность живых организмов в биосфере, вне зависимости от их систематической принадлежности. Термин введён В. И. Вернадским.



Это понятие не следует путать с понятием «биомасса», которое является частью биогенного вещества.

1 Характеристики живого вещества

2 Значение и функции живого вещества

3 См. также

4 Литература

5 Примечания

Характеристики живого вещества[править вики-текст]

В состав живого вещества входят как органические (в химическом смысле), так и неорганические, или минеральные, вещества. Вернадский писал: Идея о том, что явления жизни можно объяснить существованием сложных углеродистых соединений – живых белков, бесповоротно опровергнута совокупностью эмпирических фактов геохимии... Живое вещество – это совокупность всех организмов.

Масса живого вещества сравнительно мала и оценивается величиной 2,4-3,6·1012 т (в сухом весе) и составляет менее 10−6 массы других оболочек Земли. Но это одна «из самых могущественных геохимических сил нашей планеты».

Живое вещество развивается там, где может существовать жизнь, то есть на пересечении атмосферы, литосферы и гидросферы. В условиях, не благоприятных для существования, живое вещество переходит в состояние анабиоза.

Специфика живого вещества заключается в следующем:

Живое вещество биосферы характеризуется огромной свободной энергией. В неорганическом мире по количеству свободной энергии с живым веществом могут быть сопоставлены только недолговечные незастывшие лавовые потоки.

Резкое отличие между живым и неживым веществом биосферы наблюдается в скорости протекания химических реакций: в живом веществе реакции идут в тысячи и миллионы раз быстрее.

Отличительной особенностью живого вещества является то, что слагающие его индивидуальные химические соединения – белки, ферменты и пр. – устойчивы только в живых организмах (в значительной степени это характерно и для минеральных соединений, входящих в состав живого вещества).

Произвольное движение живого вещества, в значительной степени саморегулируемое. В. И. Вернадский выделял две специфические формы движения живого вещества: а) пассивную, которая создается размножением и присуща как животным, так и растительным организмам; б) активную, которая осуществляется за счет направленного перемещения организмов (она характерна для животных и в меньшей степени для растений). Живому веществу также присуще стремление заполнить собой все возможное пространство.

Живое вещество обнаруживает значительно большее морфологическое и химическое разнообразие, чем неживое. Кроме того, в отличие от неживого абиогенного вещества живое вещество не бывает представлено исключительно жидкой или газовой фазой. Тела организмов построены во всех трех фазовых состояниях.

Живое вещество представлено в биосфере в виде дисперсных тел – индивидуальных организмов. Причем, будучи дисперсным, живое вещество никогда не находится на Земле в морфологически чистой форме – в виде популяций организмов одного вида: оно всегда представлено биоценозами.

Живое вещество существует в форме непрерывного чередования поколений, благодаря чему современное живое вещество генетически связано с живым веществом прошлых эпох. При этом характерным для живого вещества является наличие эволюционного процесса, т. е. воспроизводство живого вещества происходит не по типу абсолютного копирования предыдущих поколений, а путем морфологических и биохимических изменений.

Значение и функции живого вещества[править вики-текст]

Работа живого вещества в биосфере достаточно многообразна. По Вернадскому, работа живого вещества в биосфере может проявляться в двух основных формах:

а) химической (биохимической) – I род геологической деятельности; б) механической – II род транспортной деятельности.

Биогенная миграция атомов I рода проявляется в постоянном обмене вещества между организмами и окружающей средой в процессе построения тела организмов, переваривания пищи. Биогенная миграция атомов II рода заключается в перемещении вещества организмами в ходе его жизнедеятельности (при строительстве нор, гнезд, при заглублении организмов в грунт), перемещении самого живого вещества, а также пропускание неорганических веществ через желудочный тракт грунтоедов, илоедов, фильтраторов.

Для понимания той работы, которую совершает живое вещество в биосфере очень важными являются три основных положения, которые В. И. Вернадский назвал биогеохимическими принципами:

Биогенная миграция атомов химических элементов в биосфере всегда стремится к максимальному своему проявлению.

Эволюция видов в ходе геологического времени, приводящая к созданию устойчивых в биосфере форм жизни, идет в направлении, усиливающем биогенную миграцию атомов.

Живое вещество находится в непрерывном химическом обмене с космической средой, его окружающей, и создается и поддерживается на нашей планете лучистой энергией Солнца.

Функции живого вещества:

1. Энергетическая функция

Поглощение солнечной энергии при фотосинтезе и химической энергии при разложении энергонасыщенных ве­ществ, передача энергии по пищевым цепям.

В результате осуществляется связь биосферно-планетарных явлений с космическим излучением, преимущественно с солнечной радиацией. За счет накопленной солнечной энергии протекают все жизненные явления на Земле. Недаром Вернадский назвал зеленые хлорофилльные организмы главным механизмом биосферы.

Поглощенная энергия распределяется внутри экосистемы между живыми организмами в виде пищи. Частично энергия рассеивается в виде тепла, а частично накапливается в отмершем органическом веществе и переходит в ископаемое состояние. Так образовались залежи торфа, каменного угля, нефти и других горючих полезных ископаемых.

2. Деструктивная функция

Эта функция состоит в разложении, минерализации мертвого органического вещества, химическом разложении горных пород, вовлечении образовавшихся минералов в биотический круговорот, т.е. обусловливает превращение живого вещества в косное. В результате образуются также биогенное и биокосное вещество биосферы.

Особо следует сказать о химическом разложении горных по­род. «Мы не имеем на Земле более могучего дробителяматерии, чем живое вещество», - писал Вернадский. Пионеры

жизни на скалах - бактерии, синезеленые водоросли, грибы и лишайники - оказывают на горные породы сильнейшее химическое воздействие растворами целого комплекса кислот - угольной, азотной, серной и разнообразных органических. Разлагая с их помощью те или иные минералы, организмы избирательно извлекают и включают в биотический круговорот важнейшие питательные элементы - кальций, калий, натрий, фосфор, кремний, микроэлементы.

3. Концентрационная функция

Так называется избирательное накопление в ходе жизнедеятельности определенных видов веществ для построения тела организма или удаляемых из него при метаболизме. В результате концентрационной функции живые организмы извлекают и накапливают биогенные элементы окружающей среды. В составе живого вещества преобладают атомы легких элементов: водорода, углерода, азота, кислорода, натрия, магния, кремния, серы, хлора, калия, кальция. Концентрация этих элементов в теле живых организмов в сотни и тысячи раз выше, чем во внешней среде. Этим объясняется неоднородность химического состава биосферы и ее существенное отличие от состава неживого вещества планеты. Наряду с концентрационной функцией живого организма вещества выделяется противоположная ей по результатам - рассеивающая. Она проявляется через трофическую и транспортную деятельность организмов. Например, рассеивание вещества при выделении организмами экскрементов, гибели организмов при разного рода перемещениях в пространстве, смене покровов. Железо гемоглобина крови рассеивается, например, через кровососущих насекомых.

4. Средообразующая функция

Преобразование физико-химических параметров среды (литосферы, гидросферы, атмосферы) в результате про­цессов жизнедеятельности в условиях, благоприятных для существования организмов. Эта функция является совместным результатом рассмотренных выше функций живого вещества: энергетическая функция обеспечивает энергией все звенья биологического круговорота; деструктивная и концентрационная способствуют извлечению из природной среды и накоплению рассеянных, но жизненно важных для живых организмов элементов. Очень важно отметить, что в результате средообразующей функции в географической оболочке произошли следующие важнейшие события: был преобразован газовый состав первичной атмосферы, изменился химический состав вод первичного океана, образовалась толща осадочных пород в литосфере, на поверхности суши возник плодородный почвенный покров. «Ор­ганизм имеет дело со средой, к которой не только он приспособлен, но котораяприспособлена к нему», - так характеризовал Вернадский средообразующую функцию живого вещества.

Рассмотренные четыре функции живого вещества являются главными, определяющими функциями. Можно выделить еще некоторые функции живого вещества, например:

Газовая функция обусловливает миграцию газов и их превращения, обеспечивает газовый состав биосферы. Преобладающая масса газов на Земле имеет биогенное происхождение. В процессе функционирования живого вещества создаются основные газы: азот, кислород, углекислый газ, сероводород, метан и др. Хорошо видно, что газовая функция является совокупностью двух основополагающих функций - деструктивной и средообразующей;

Окислительно-восстановительная функция заключается в химическом превращении главным образом тех веществ, которые содержат атомы с переменной степенью окисления (соединения железа, марганца, азота и др.). При этом на поверхности Земли преобладают биогенные процессы окисления и восстановления. Обычно окислительная функция живого вещества в биосфере проявляется в превращении бактериями и некоторыми грибами относительно бедных кислородом соединений в почве, коре выветривания и гидросфере в более богатые кислородом соединения. Восстановительная функция осуществляется при образовании сульфатов непосредственно или через биогенный сероводород, производимый различными бактериями. И здесь мы видим, что данная функция является одним из проявлений средообразующей функции живого вещества;

Транспортная функция - перенос вещества против силы тяжести и в горизонтальном направлении. Еще со времен Ньютона известно, что перемещение потоков вещества на нашей планете определяется силой земного тяготения. Неживое вещество само по себе перемещается по наклонной плоскости исключительно сверху вниз. Только в этом направлении движутся реки, ледники, лавины, осыпи.

Живое вещество охватывает и перестраивает все химические процессы биосферы. Живое вещество есть самая мощная геологическая сила, растущая с ходом времени. Воздавая должное памяти великого основоположника учения о биосфере, следующее обобщение А. И. Перельман предложил назвать «законом Вернадского»:

«Миграция химических элементов на земной поверхности и в биосфере в целом осуществляется или при непосредственном участии живого вещества (биогенная миграция) или же она протекает в среде, геохимические особенности которой (О2, СО2, H2S и т. д.) преимущественно обусловлены живым веществом как тем, которое в настоящее время населяет данную систему, так и тем, которое действовало на Земле в течение всей геологической истории».

За счет активного передвижения живые организмы могут перемещать различные вещества или атомы в горизонтальном направлении, например за счет различных видов миграций. Перемещение, или миграцию, химических веществ живым веществом Вернадский назвал биогенной миграцией атомов или вещества.