Поле определение физика. Фундаментальные поля

). [ ]

Проще всего наглядно представить себе поле (когда речь идет, например, о фундаментальных полях, не имеющих очевидной непосредственной механической природы ) как возмущение (отклонение от равновесия, движение) некоторой (гипотетической или просто воображаемой) сплошной среды, заполняющей всё пространство. Например, как деформацию упругой среды, уравнения движения которой совпадают с или близки к полевым уравнениям того более абстрактного поля, которое мы хотим наглядно себе представить. Исторически такая среда называлась эфиром, однако впоследствии термин практически полностью вышел из употребления , а его подразумеваемая физически содержательная часть слилась с самим понятием поля. Тем не менее, для принципиального наглядного понимания концепции физического поля в общих чертах такое представление полезно, с учетом того, что в рамках современной физики такой подход обычно принимается по большому счету лишь на правах иллюстрации .

Физическое поле, таким образом, можно характеризовать как распределенную динамическую систему, обладающую бесконечным числом степеней свободы .

Роль полевой переменной для фундаментальных полей часто играет потенциал (скалярный, векторный, тензорный), иногда - величина, называемая напряжённостью поля. (Для квантованных полей в некотором смысле обобщением классического понятия полевой переменной также является соответствующий оператор).

Также полем в физике называют физическую величину , рассматриваемую как зависящую от места: как полный набор, вообще говоря, разных значений этой величины для всех точек некоторого протяженного непрерывного тела - сплошной среды , описывающий в своей совокупности состояние или движение этого протяженного тела . Примерами таких полей может быть:

  • температура (вообще говоря разная в разных точках, а также и в разные моменты времени) в некоторой среде (например, в кристалле, жидкости или газе) - (скалярное) поле температуры,
  • скорость всех элементов некоторого объёма жидкости - векторное поле скоростей,
  • векторное поле смещений и тензорное поле напряжений при деформации упругого тела.

Динамика таких полей также описывается дифференциальными уравнениями в частных производных , и исторически первыми, начиная с XVIII века, в физике рассматривались именно такие поля.

Современная концепция физического поля выросла из идеи электромагнитного поля , впервые осознанной в физически конкретном и сравнительно близком к современному виде Фарадеем , математически же последовательно реализованной Максвеллом - изначально с использованием механической модели гипотетической сплошной среды - эфира , но затем вышедшей за рамки использования механической модели.

Фундаментальные поля

Среди полей в физике выделяют так называемые фундаментальные. Это поля, которые, согласно с полевой парадигмой современной физики, составляют основу физической картины мира, все остальные поля и взаимодействия из них выводятся. Включают два основных класса взаимодействующих друг с другом полей:

  • фундаментальные фермионные поля , прежде всего представляющие физическую основу описания вещества ,
  • фундаментальные бозонные поля (включая гравитационное, представляющее собой тензорное калибровочное поле), являющиеся расширением и развитием концепции максвелловского электромагнитного и ньютоновского гравитационного полей; на них строится теория .

Существуют теории (например, теория струн , различные другие теории объединения), в которых роль фундаментальных полей занимают несколько другие, ещё более фундаментальные с точки зрения этих теорий, поля или объекты (а нынешние фундаментальные поля появляются или должны появляться в этих теориях в некотором приближении как «феноменологическое» следствие). Однако пока такие теории не являются достаточно подтвержденными или общепринятыми.

История

Исторически среди фундаментальных полей сначала были открыты (именно в качестве физических полей ) поля, ответственные за электромагнитное (электрическое и магнитное поля, затем объединенные в электромагнитное поле), и гравитационное взаимодействие. Эти поля были открыты и достаточно детально изучены уже в классической физике. Вначале эти поля (в рамках ньютоновской теории тяготения, электростатики и магнитостатики) выглядели для большинства физиков скорее как формальные математические объекты, вводимые для формального же удобства, а не как полноценная физическая реальность, несмотря на попытки более глубокого физического осмысления, остававшиеся однако довольно туманными или не приносящими слишком существенных плодов . Но начиная с Фарадея и Максвелла подход к полю (в данном случае - к электромагнитному полю) как к вполне содержательной физической реальности стал применяться систематически и очень плодотворно, включая и существенный прорыв в математическом оформлении этих идей.

С другой стороны, по мере развития квантовой механики становилось всё более ясно, что вещество (частицы) обладает свойствами, которые теоретически присущи именно полям.

Современное состояние

Таким образом, оказалось, что физическая картина мира может быть сведена в своем фундаменте к квантованным полям и их взаимодействию.

В какой-то мере, главным образом в рамках формализма интегрирования по траекториям и диаграмм Фейнмана , произошло и противоположное движение: поля стало можно в заметной мере представить как почти классические частицы (точнее - как суперпозицию бесконечного количества движущихся по всем мыслимым траекториям почти классических частиц), а взаимодействие полей друг с другом - как рождение и поглощение частицами друг друга (тоже с суперпозицией всех мыслимых вариантов такового). И хотя этот подход очень красив, удобен и позволяет во многом психологически вернуться к представлению о частице, имеющей вполне определённую траекторию, он, тем не менее, не может отменить полевой взгляд на вещи и даже не является полностью симметричной альтернативой ему (а поэтому всё же ближе к красивому, психологически и практически удобному, но всё же всего лишь формальному приему, чем к полностью самостоятельной концепции). Дело тут в двух ключевых моментах:

  1. процедура суперпозиции никак «физически» не объяснима в рамках по-настоящему классических частиц, она просто добавляется к почти классической «корпускулярной» картине, не являясь её органическим элементом; в то же время с полевой точки зрения эта суперпозиция имеет ясную и естественную интерпретацию;
  2. сама частица, движущаяся по одной отдельной траектории в формализме интеграла по траекториям, хотя и очень похожа на классическую, но всё-таки классическая не до конца: к обычному классическому движению по определённой траектории с определённым импульсом и координатой в каждый конкретный момент даже для одной-единственной траектории - приходится добавлять совершенно чуждое для этого подхода в его чистом виде понятие фазы (то есть некоторого волнового свойства), и этот момент (хотя он действительно сведен к минимуму и о нём довольно легко просто не думать) также не имеет какой-то органичной внутренней интерпретации; а в рамках обычного полевого подхода такая интерпретация опять есть, и она опять органична.

Таким образом, можно заключить, что подход интегрирования по траекториям есть хотя и очень психологически удобная (ведь, скажем, точечная частица с тремя степенями свободы гораздо проще, чем бесконечномерное поле, которое её описывает) и доказавшая практическую продуктивность, но всё же лишь некая переформулировка , пусть и довольно радикальная, полевой концепции, а не её альтернатива.

И хотя на словах на этом языке всё выглядит очень «корпускулярно» (например: «взаимодействие заряженных частиц объясняются обменом другой частицей - переносчиком взаимодействия» или «взаимное отталкивание двух электронов обусловлено обменом между ними виртуальным фотоном»), однако за этим стоят такие типично полевые реальности, как распространение волн, пусть и достаточно хорошо спрятанные ради создания эффективной схемы вычислений, да во многом и давая дополнительные возможности качественного понимания.

Список фундаментальных полей

Фундаментальные бозонные поля (поля - переносчики фундаментальных взаимодействий)

Эти поля в рамках стандартной модели являются калибровочными полями . Известны такие их типы:

  • Электрослабое
    • Электромагнитное поле (см. тж. Фотон)
    • Поле - переносчик слабого взаимодействия (см. тж. W- и Z-бозоны)
  • глюонное поле (см. тж. Глюон)

Гипотетические поля

Гипотетическими в широком смысле можно считать любые теоретические объекты (например, поля), которые описываются теориями, не содержащими внутренних противоречий, явно не противоречащими наблюдениям и способными в то же время дать наблюдаемые следствия, позволяющие сделать выбор в пользу этих теорий по сравнению с теми, которые приняты сейчас. Ниже мы будем говорить (и это в целом соответствует обычному пониманию термина) в основном о гипотетичности в этом более узком и строгом смысле, подразумевающем обоснованность и фальсифицируемость предположения, которое мы называем гипотезой.

В теоретической физике рассматривается множество различных гипотетических полей, каждое из которых является принадлежностью вполне конкретной определённой теории (по своему типу и математическим свойствам эти поля могут быть совсем или почти такими же, как известные не гипотетические поля, а могут более или менее сильно отличаться; в том и другом случае под их гипотетичностью имеется в виду то, что они пока не наблюдались в реальности, не были обнаружены экспериментально; в отношении части гипотетических полей может стоять вопрос о том, могут ли они наблюдаться в принципе, и даже могут ли они вообще существовать - например, если теория, в которой они присутствует, вдруг окажется внутренне противоречивой).

Вопрос о том, что следует считать критерием, позволяющим перенести некое конкретное поле из разряда гипотетических в разряд реальных, довольно тонок, поскольку подтверждения той или иной теории и реальности тех или иных объектов, в ней содержащихся, бывают зачастую более или менее косвенными. В этом случае дело сводится обычно к какому-то разумному соглашению научного сообщества (члены которого более или менее детально сознают, о какой степени подтвержденности на самом деле идет речь).

Даже в теориях, считающихся достаточно хорошо подтвержденными, находится место гипотетическим полям (тут речь идет о том, что разные части теории проверены с разной степенью тщательности, и некоторые поля, играющие в них в принципе важную роль, пока не проявились в эксперименте достаточно определённо, то есть пока выглядят именно как гипотеза, придуманная для тех или иных теоретических целей, в то время как другие поля, фигурирующие в той же теории, изучены уже достаточно хорошо, чтобы говорить о них как о реальности).

Примером такого гипотетического поля является поле Хиггса , являющееся важным в Стандартной модели , остальные поля которой отнюдь не являются гипотетическими, а сама модель, пусть и с неизбежными оговорками, считается описывающей реальность (по крайней мере, до той степени, в какой реальность известна).

Существует множество теорий, содержащих поля, которые (пока) никогда не наблюдались, а иногда сами же эти теории дают такие оценки, что их гипотетические поля по-видимому (из-за слабости их проявления, следующей из самой теории) и не могут в принципе быть обнаружены в обозримом будущем (например, торсионное поле). Такие теории (если не содержат, кроме практически непроверяемых, ещё и достаточного количества легче проверяемых следствий) не рассматриваются как представляющие практический интерес, если только не всплывет какой-то нетривиальный новый способ их проверки, позволяющий обойти очевидные ограничения. Иногда же (как, например, во многих альтернативных теориях гравитации - например, поле Дикке) вводятся такие гипотетические поля, о силе проявления которых сама теория вообще не может ничего сказать (например, константа связи этого поля с другими неизвестна и может быть как довольно большой, так и сколь угодно малой); с проверкой таких теорий обычно также не торопятся (поскольку таких теорий много, а своей полезности каждая из них ничем не доказала, и даже формально нефальсифицируема), за исключением случаев, когда какая-то из них не начинает по каким-то причинам казаться перспективной для разрешения каких-то текущих затруднений (впрочем, от отсеивания теорий на основании нефальсифицируемости - особенно из-за неопределенных констант - тут иногда отказываются, так как серьезная добротная теория иногда может быть проверена в надежде, что её эффект обнаружится, хотя гарантий этого и нет; особенно это верно, когда теорий-кандидатов вообще немного или некоторые из них выглядят особенно фундаментально интересными; также - в случаях, когда можно проверять теории широкого класса все сразу по известным параметрам, не тратя специальных усилий на проверку каждой в отдельности).

Следует также заметить, что принято называть гипотетическими лишь такие поля, которые совсем не имеют наблюдаемых проявлений (или имеют их недостаточно, как в случае с полем Хиггса). Если же существование физического поля твердо установлено по его наблюдаемым проявлениям, и речь идет лишь об улучшении его теоретического описания (например, о замене ньютоновского гравитационного поля на поле метрического тензора в ОТО), то говорить о том или другом как о гипотетических обычно не принято (хотя для ранней ситуации в ОТО можно было говорить о гипотетическом характере тензорной природы гравитационного поля).

В заключение упомянем о таких полях, сам тип которых достаточно необычен, то есть теоретически вполне мыслим, но никакие поля подобных типов никогда не наблюдались на практике (а в некоторых случаях на ранних этапах развития их теории могли возникать и сомнения в её непротиворечивости). К таким, прежде всего, следует отнести тахионные поля . Собственно, тахионные поля можно назвать скорее лишь потенциально гипотетическими (то есть не достигающими статуса обоснованного предположения ), так как известные конкретные теории, в которых они играют более или менее существенную роль, например, и спинорные поля.

  • Поле определено во всем пространстве, если это фундаментальное поле. Такие поля, как поле скорости течения жидкости или поле деформации кристалла, определены на области пространства, заполненной соответствующей средой.
  • В современном изложении это обычно выглядит как поле на (в) пространстве-времени , таким образом зависимость полевой переменной от времени рассматривается почти равноправно с зависимостью от пространственных координат.
  • Несмотря на наличие более или менее удаленных от её стандартного варианта альтернативных концепций или переинтерпретаций, которые однако не могут пока ни получить решительного перед ней преимущества или даже равенства с ней (не выходя, как правило, за пределы достаточно маргинальных явлений переднего края теоретической физики), ни, как правило, слишком далеко от неё удалиться, оставляя ей в целом всё же (пока) центральное место.
  • В отличие от упомянутого несколько ниже класса физических полей из физики сплошных сред, имеющих достаточно наглядную природу сами по себе, упоминаемых в статье дальше.
  • По разным историческим причинам, не последней из которых была та, что концепция эфира психологически подразумевала достаточно конкретную реализацию, которая могла бы дать экспериментально проверяемые следствия, однако в реальности физически наблюдаемых нетривиальных следствий некоторых из подобных моделей не было обнаружено, следствия же из других прямо противоречили эксперименту, поэтому концепция физически реального эфира постепенно была признана излишней, а вместе с ней вышел из употребления в физике и сам термин. Не последнюю роль в этом сыграла такая причина: в момент пика обсуждения применимости концепции эфира к описанию электромагнитного поля «материя», «частицы» считались объектами принципиально другой природы, поэтому их движение через пространство, заполненное эфиром, представлялось немыслимым или представимым с огромными трудностями; впоследствии эта причина по сути перестала иметь место в связи с тем, что материя и частицы стали описываться также как полевые объекты, но к этому времени слово эфир было уже почти забыто в качестве актуального понятия теоретической физики.
  • Хотя в некоторых работах современных теоретиков иногда использование понятия эфира бывает глубже - см. Поляков А. М. «Калибровочные поля и струны».
  • Под состоянием и движением может иметься в виду макроскопическое положение и механическое движение элементарных объёмов тела, а также это могут быть зависимости от пространственных координат и изменения со временем величин такого характера, как электрический ток, температура, концентрация того или иного вещества итд.
  • Вещество было, конечно, известно даже раньше, но долгое время было совершенно не очевидно, что концепция поля может иметь отношение к описанию вещества (которое описывалось преимущественно «корпускулярно»). Таким образом, сама концепция физического поля и соответствующий математический аппарат был исторически развит сначала применительно к электромагнитному полю и гравитации.
  • За исключением случаев, когда и самые туманные соображения приводили к серьезным открытиям, так как служили стимулом к экспериментальным исследованиям, приводившим к фундаментальным открытиям, как при открытии Эрстедом порождения магнитного поля электрическим током.
  • Peter Galison. Einstein"s clocks, Poincaré"s maps: empires of time. - 2004. - P. 389. - ISBN 9780393326048 .
    См. статью Пуанкаре «Динамика электрона», раздел VIII (А. Пуанкаре. Избранные труды, т. 3. М., Наука, 1974.), доклад М. Планка (М. Планк. Избранные труды. М., Наука, 1975.) и статью Эйнштейна и Лаубе «О пондемоторных силах», § 3 «Равенство действия и противодействия» (А. Эйнштейн. Собрание научных трудов, т. 1. М., Наука, 1965.) (все за 1908 год).
  • Часть свойств полевых уравнений удалось прояснить исходя из достаточно общих принципов, таких как лоренц-инвариантность и принцип причинности . Так принцип причинности и принцип конечности скорости распространения взаимодействий требуют, чтобы дифференциальные уравнения, описывающие фундаментальные поля, принадлежали к гиперболическому типу.
  • Эти утверждения справедливы в отношении фундаментальных полей тахионного типа. Макроскопические системы, обладающие свойствами тахионных полей не являются чем-то необычным; то же можно предположить и о некоторых типах возбуждений в кристаллах итп (в том и другом случае место скорости света - занимает другая величина).
  • Это описание того положения, которое существует на настоящий момент. Конечно же, они не означает принципиальной невозможности появления вполне достаточно мотивированных теорий, включающих такого рода экзотические поля в будущем (впрочем, вряд ли следует считать такую возможность и слишком вероятной).
  • параметров их движения (скорость, импульс, момент импульса), меняют их энергию, совершают работу и т.д. И это в общем-то было наглядно и понятно. Однако с изучением природы электричества и магнетизма возникло понимание, что взаимодействовать между собой электрические заряды могут без непосредственного контакта. В этом случае мы как бы переходим от концепции близкодействия к бесконтактному дальнодействию. Это и привело к понятию поля.

    Формальное определение этого понятия звучит так: физическим полем называется особая форма материи, связывающая частицы (объекты) вещества в единые системы и передающая с конечной скоростью действие одних частиц на другие. Правда, как мы уже отмечали, такие определения слишком общие и не всегда определяют глубинную да и конкретно-практическую сущность понятия. Физики с трудом отказывались от идеи физического контактного взаимодействия тел и вводили для объяснения различных явлений такие модели как электрическую и магнитную «жидкость», для распространения колебаний использовали представление о механических колебаниях частичек среды - модели эфира, оптических флюидов, теплорода, флогистона в тепловых явлениях, описывая их тоже с механической точки зрения, и даже биологи вводили «жизненную силу» для объяснения процессов в живых организмах. Все это ни что иное, как попытки описать передачу действия через материальную («механическую») среду.

    Однако работами Фарадея (экспериментально), Максвелла (теоретически) и многих других ученых было показано, что существуют электромагнитные поля (в том числе и в вакууме) и именно они передают электромагнитные колебания. Выяснилось, что и видимый свет есть эти же электромагнитные колебания в определенном диапазоне частот колебаний. Было установлено, что электромагнитные волны делятся на несколько видов в шкале колебаний: радиоволны (10 3 - 10 -4), световые волны (10 -4 - 10 -9 м), ИК (5 ×10 -4 - 8 ×10 -7 м), УФ (4 ×10 -7 - 10 -9 м), рентгеновское излучение (2 ×10 -9 - 6 ×10 -12 м), γ-излучение (< 6 ×10 -12 м).

    Считается, что гравитационные и электрические поля действуют независимо и могут сосуществовать в любой точке пространства одновременно, не влияя друг на друга. Суммарная сила, действующая на пробную частицу с зарядом q и массой m, может быть выражена векторной суммой и . Суммировать векторы и не имеет смысла, поскольку они имеют разную размерность. Введение в классической электродинамике понятия электромагнитного поля с передачей взаимодействия и энергии путем распространения волн через пространство, позволило отойти от механического представления эфира. В старом представлении понятие эфира как некой среды, объясняющей передачу контактного действия сил, было опровергнуто как экспериментально опытами Майкельсона по измерению скорости света, так и, главным образом, теорией относительности Эйнштейна. Через поля оказалось возможным описывать физические взаимодействия, для чего собственно и были сформулированы общие для разных типов полей характеристики, о которых мы здесь говорили. Правда следует отметить, что сейчас идея эфира отчасти возрождается некоторыми учеными на базе понятия физического вакуума.

    Так после механической картины сформировалась новая к тому времени электромагнитная картина мира. Ее можно рассматривать как промежуточную по отношению к современной естественнонаучной. Отметим некоторые общие характеристики этой парадигмы. Поскольку она включает не только представления о полях, но и появившиеся к тому времени новые данные об электронах, фотонах, ядерной модели атома, закономерностях химического строения веществ и расположения элементов в периодической системе Менделеева и ряд других результатов по пути познания природы, то, конечно, в эту концепцию вошли также идеи квантовой механики и теории относительности, о которых речь еще будет идти дальше.

    Главным в таком представлении является возможность описать большое количество явлений на основе понятия поля. Было установлено, в отличие от механической картины, что материя существует не только в виде вещества, но и поля. Электромагнитное взаимодействие на основе волновых представлений достаточно уверенно описывает не только электрические и магнитные поля, но и оптические, химические, тепловые и механические явления. Методология полевого представления материи может быть использована и для понимания полей иной природы. Сделаны попытки увязать корпускулярную природу микрообъектов с волновой природой процессов. Было установлено, что «переносчиком» взаимодействия электромагнитного поля является фотон, который подчиняется уже законам квантовой механики. Делаются попытки найти гравитон, как носитель гравитационного поля.

    Однако несмотря на существенное продвижение вперед в познании окружающего нас мира, электромагнитная картина не свободна от недостатков. Так, в ней не рассматриваются вероятностные подходы, по существу вероятностные закономерности не признаются фундаментальными, сохранены детерминистический подход Ньютона к описанию отдельных частиц и жесткая однозначность причинно-следственных связей (что сейчас оспаривается синергетикой), ядерные взаимодействия и их поля объясняются не только электромагнитными взаимодействиями между заряженными частицами. В целом такое положение понятно и объяснимо, так как каждое проникновение в природу вещей углубляет наши представления и требует создания новых адекватных физических моделей.

    М. Фарадей вошел в науку исключительно благодаря таланту и усердию в самообразовании. Выходец из бедной семьи, он работал в переплетной мастерской, где познакомился с трудами ученых, философов. Известный английский физик Г.Дэви (1778-1829), который способствовал вхождению М. Фарадея в научное сообщество, однажды сказал, что самым крупным его достижением в науке является «открытие» им М. Фарадея. М. Фарадей изобрел электродвигатель и электрогенератор, т. е. машины для производства электричества. Ему принадлежит идея о том, что электричество имеет единую физическую природу, т. е. независимо от того, каким образом оно получено: движением магнита или прохождением электрически заряженных частиц в проводнике. Для объяснения взаимодействия между электрическими зарядами на расстоянии М. Фарадей ввел понятие физического поля. Физическое поле он представлял как свойство самого пространства вокруг электрически заряженного тела оказывать физическое воздействие на другое заряженное тело, помещенное в это пространство. С помощью металлических частиц он показал расположение и наличие сил, действующих в пространстве вокруг магнита (магнитных сил) и электрического заряженного тела (электрических). Свои идеи о физическом поле М. Фарадей изложил в письме-завещании, которое было вскрыто лишь в 1938 г. в присутствии членов Лондонского Королевского общества. В этом письме было обнаружено, что М. Фарадей владел методикой изучения свойств поля и в его теории электромагнитные волны распространяются с конечной скоростью. Причины, по которым он изложил свои идеи о физическом поле в форме письма- завещания, возможно, следующие. Представители французской физической школы требовали от него теоретического доказательства связи электрических и магнитных сил. Кроме того, понятие физического поля, по М. Фарадею, означало, что распространение электрических и магнитных сил осуществляется непрерывным образом от одной точки поля к другой и, следовательно, эти силы имеют характер близкодействующих сил, а не дальнодействующих, как полагал Ш. Кулон. М. Фарадею принадлежит еще одна плодотворная идея. При изучении свойств электролитов он обнаружил, что электрический заряд частиц, образующих электричество, не является дробным. Эта идея была подтверждена



    определением заряда электрона уже в конце XIX в.

    Теория электромагнитных сил Д. Максвелла

    Подобно И. Ньютону Д. Максвелл придал всем результатам исследований электрических и магнитных сил теоретическую форму. Произошло это в 70-х годах XIX в. Он сформулировал свою теорию на основе законов связи взаимодействия электрических и магнитных сил, содержание которых можно представить таким образом:

    1. Любой электрический ток вызывает или создает магнитное поле в окружающем его пространстве. Постоянный электрический ток создает постоянное магнитное поле. Но постоянное магнитное поле (неподвижный магнит) не может создавать электрическое поле вообще (ни постоянное, ни переменное).

    2. Образовавшееся переменное магнитное поле создает переменное электрическое поле, которое, в свою очередь, создает переменное магнитное поле,

    3. Силовые линии электрического поля замыкаются на электрических зарядах.

    4. Силовые линии магнитного поля замкнуты сами на себя и никогда не кончаются, т. е. не существует в природе магнитных зарядов.

    В уравнениях Д. Максвелла присутствовала некоторая постоянная величина С, которая указывала, что скорость распространения электромагнитных волн в физическом поле является конечной и совпадает со скоростью распространения света в вакууме, равной 300 тыс. км/с.

    Основные понятия и принципы электромагнетизма.

    Теория Д. Максвелла была воспринята некоторыми учеными с большим сомнением. Например, Г. Гельмгольц (1821-1894) придерживался точки зрения, согласно которой электричество является «невесомым флюидом», распространяющимся с бесконечной скоростью. По его просьбе Г. Герц (1857-

    1894) занялся экспериментом, доказывающим флюидную природу электричества.

    К этому времени О. Френель (1788-1827) показал, что свет распространяется не как продольные, а как поперечные волны. В 1887 г. Г. Герцу удалось построить эксперимент. Свет в пространстве между электрическими зарядами распространялся поперечными волнами со скоростью 300 тыс. км/с. Это позволило ему говорить о том, что его эксперимент устраняет сомнения в тождественности света, теплового излучения и волнового электромагнитного движения.

    Этот эксперимент стал основой для создания электромагнитной физической картины мира, одним из приверженцев которой был Г. Гельмгольц. Он полагал, что все физические силы, господствующие в природе, должны быть объяснены на основе притяжения и отталкивания. Однако создание электромагнитной картины мира столкнулось с трудностями.

    1. Основным понятием механики Галилея - Ньютона было понятие вещества,

    имеющего массу, но оказалось, что вещество может обладать зарядом.

    Заряд - это физическое свойство вещества создавать вокруг себя физическое поле, оказывающее физическое воздействие на другие заряженные тела, вещества (притяжение, отталкивание).

    2. Заряд и масса вещества могут иметь разную величину, т. е. являются дискретными величинами. В то же время понятие физического поля предполагает передачу физического взаимодействия непрерывно от одной его точки к другой. Это означает, что электрические и магнитные силы являются близкодействующими силами, поскольку в физическом поле нет пустого пространства, не заполненного электромагнитными волнами.

    3. В механике Галилея - Ньютона возможна бесконечно большая скорость

    физического взаимодействия, здесь же утверждается, что электромагнитные

    волны распространяются с большой, но конечной скоростью.

    4. Почему сила гравитации и сила электромагнитного взаимодействия действуют независимо друг от друга? При удалении от Земли сила тяжести уменьшается, ослабевает, а электромагнитные сигналы действуют в космическом корабле точно таким же образом, как и на Земле. В XIX в. можно было привести столь же убедительный пример без космического корабля.

    5. Открытие в 1902г. П.Лебедевым (1866-1912) - профессором Московского университета - светового давления обострило вопрос о физической природе света: является ли он потоком частиц или только электромагнитными волнами определенной длины? Давление, как физическое явление, связано с понятием вещества, с дискретностью - точнее. Таким образом, давление света свидетельствовало о дискретной природе света как потока частиц.

    6. Сходство убывания гравитационных и электромагнитных сил - по закону

    «обратно пропорционально квадрату расстояния» - вызывало законный вопрос: почему квадрат расстояния, а, например, не куб? Некоторые ученые стали говорить об электромагнитном поле как об одном из состояний «эфира», заполняющего пространство между планетами и звездами.

    Все эти трудности происходили из-за отсутствия в тот период знаний о строении атома, но М. Фарадей был прав, говоря, что, не зная, как устроен атом, мы можем изучать явления, в которых выражается его физическая природа. Действительно электромагнитные волны несут существенную информацию о процессах, происходящих внутри атомов химических элементов и молекул вещества. Они представляют информацию о далеком прошлом и настоящем Вселенной: о температуре космических тел, их химическом составе, расстоянии до них и т. д.

    7. В настоящее время используется следующая шкала электромагнитных волн:

    радиоволны с длиной волны от 104 до 10 -3 м;

    инфракрасные волны - от 10-3 до 810-7 м;

    видимый свет - от 8 10-7 до 4 10-7 м;

    ультрафиолетовые волны - от 4 10-7 до 10-8 м;

    рентгеновские волны (лучи) - от 10-8 до 10-11 м;

    гамма-излучение - от 10-11 до 10-13 м.

    8. Что касается практических аспектов изучения электрических и магнитных сил, то оно осуществлялось в XIX в. быстрыми темпами: первая телеграфная линия между городами (1844), прокладка перового трансатлантического кабеля (1866), телефон (1876), лампа накаливания (1879), радиоприемник (1895).

    Минимальной порцией электромагнитной энергии является фотон. Это самое малое неделимое количество электромагнитного излучения.

    Сенсацией начала XXI в. является создание российскими учеными из г. Троицка (Подмосковье) полимера из атомов углерода, который обладает свойствами магнита. Обычно считалось, что наличие металлов в веществе ответственно за магнитные свойства. Проверка этого полимера на металличность показала, что в нем нет присутствия металлов.

    Поле физическое

    Область пространства , где проявляют себя физические, достоверно зарегистрированные и точно измеренные силы, называется физическим полем. В рамках современной физики рассматриваются четыре их вида: гравитационное (см. здесь); сильных взаимодействий (см. здесь) - ядерное; слабых взаимодействий (см. здесь) и электромагнитное (см. здесь) - магнитное и электрическое. С точки зрения квантовой теории взаимодействие материальных объектов на расстоянии обеспечивается их взаимным обменом квантами полей, характерными для каждого из перечисленных взаимодействий. Свойства любого из физических полей описываются строгими математическими выражениями.

    Последние несколько десятков лет физики не прекращают попыток создать общую, единую теорию поля. Ожидается, что она опишет все названные поля как различные проявления одного – «единого физического поля».

    Предполагать существование каких-либо других, кроме перечисленных выше, силовых полей нет никаких теоретических или экспериментальных оснований.

    гравитационное

    Гравитационное поле проявляет себя силовым влиянием друг на друга любых физических объектов. Сила гравитационного взаимодействия прямо пропорциональна их массам и обратно пропорциональна возведенной во вторую степень величине расстояния между ними. Она количественно описывается законом Ньютона . Гравитационные силы проявляются при любых расстояниях между объектами.

    Квантами поля гравитационного взаимодействия являются гравитоны. Их массы покоя равны нулю. Несмотря на то, что в свободном состоянии они пока не обнаружены, необходимость существования гравитонов вытекает из самых общих теоретических предпосылок и не вызывает сомнений.

    Гравитационное поле играет огромную роль в большинстве процессов во Вселенной .

    О природе гравитационного поля см. также Относительности теория, общая .

    сильных взаимодействий (ядерное )

    Поле сильных взаимодействий проявляет себя силовым влиянием на нуклоны - элементарные частицы, составляющие атомные ядра. Оно способно объединить имеющие одноименные электрические заряды протоны, т.е. преодолеть электрические силы их отталкивания.

    Связанная с этим полем сила притяжения обратно пропорциональна возведенной в четвертую степень величине расстояния между нуклонами, т.е. она эффективна только на малых дистанциях. На расстояниях менее 10 -15 метра между частицами поле сильных взаимодействий уже в десятки раз мощнее, чем электрическое поле.

    Квантами поля сильного взаимодействия являются элементарные частицы - глюоны. Типичное время жизни глюона порядка 10 -23 секунды.

    Действие поля сильных взаимодействий немаловажно и для макропроцессов во Вселенной, хотя бы потому, что без этого поля ядра атомов, а значит и сами атомы, просто не могли бы существовать.

    слабых взаимодействий

    Поле слабых взаимодействий - взаимодействие слабых токов - проявляет себя при взаимодействиях элементарных частиц на расстояниях 10 -18 метра между ними.

    Квантами поля слабого взаимодействия являются элементарные частицы - промежуточные бозоны. Типичное время жизни промежуточного бозона порядка 10 -25 секунды.

    В рамках попыток построения единой теории поля в настоящее время доказано, что поле слабых взаимодействий и электромагнитное (см. здесь) поле могут быть описаны совместно, а значит имеют родственную природу.

    Влияние поля слабых взаимодействий играет свою роль на уровне процессов распадов и рождений элементарных частиц, без которых Вселенная не могла бы существовать в своем нынешнем виде. Особую роль это физическое поле играло в начальный период Большого взрыва .

    электромагнитное

    Электромагнитное поле проявляет себя во взаимодействии электрических зарядов, покоящихся - электрическое поле - или движущихся - магнитное поле. Оно обнаруживается при любых расстояниях между заряженными телами. Квантами поля электромагнитного взаимодействия являются фотоны. Их массы покоя равны нулю.

    Электрическое поле проявляет себя силовым влиянием друг на друга объектов, обладающих некоторым свойством, называемым электрическим зарядом. Природа электрических зарядов неизвестна, однако их величины являются параметрами меры взаимодействия обладающих указанным свойством, т.е. заряженных образований.

    Носителями минимальных величин зарядов являются электроны - имеют отрицательный заряд, протоны - имеют положительный заряд - и некоторые другие, очень короткоживущие, элементарные частицы. Физические объекты приобретают положительный электрический заряд при превышении количества содержащихся в них протонов над электронами или - в противоположном случае - отрицательный заряд.

    Сила взаимодействия заряженных физических объектов, в том числе элементарных частиц, прямо пропорциональна их электрическим зарядам и обратно пропорциональна возведенной во вторую степень величине расстояния между ними. Она количественно описывается законом Кулона. Одноименно заряженные объекты отталкиваются, разноименно заряженные - притягиваются.

    Магнитное поле проявляет себя силовым влиянием друг на друга тел или образований, например, плазменных, обладающих магнитными свойствами. Эти свойства порождаются текущими в них электрическими токами - упорядоченным движением носителей электрических зарядов. Параметрами меры взаимодействия являются интенсивности текущих электрических токов, которые определяются количеством электрических зарядов, перемещенных за единицу времени через поперечные сечения проводников. Постоянные магниты тоже обязаны своим эффектом возникающим в них внутренним кольцевым молекулярным токам. Таким образом, магнитные силы имеют электрическую природу. Интенсивность магнитного взаимодействия объектов - магнитная индукция - прямо пропорциональна интенсивностям текущих в них электрических токов и обратно пропорциональна возведенной во вторую степень величине расстояния между ними. Она описывается законом Био - Савара - Лапласа.

    Электромагнитное поле играет важнейшую роль в любых процессах, протекающих во Вселенной с участием плазмы .

    Поле (физика)

    Физическое поле, таким образом, можно характеризовать как распределенную динамическую систему, обладающую бесконечным числом степеней свободы .

    Роль полевой переменной для фундаментальных полей часто играет потенциал (скалярный, векторный, тензорный), иногда - величина, называемая напряжённостью поля. (Для квантованных полей в некотором смысле обобщением классического понятия полевой переменной также является соответствующий оператор).

    Также полем в физике называют физическую величину , рассматриваемую как зависящую от места, как полный набор вообще говоря разных значений для всех точек некоторого протяженного непрерывного тела - сплошной среды , описывающий в своей совокупности состояние или движение этого протяженного тела . Примером такого поля может быть

    • температура (вообще говоря разная в разных точках, а также и в разные моменты времени) в некоторой среде (например, в кристалле, жидкости или газе) - (скалярное) поле температуры,
    • скорость всех элементов некоторого объема жидкости - векторное поле скоростей,
    • векторное поле смещений и тензорное поле напряжений при деформации упругого тела.
    Динамика таких полей также описывается дифференциальными уравнениями в частных производных , и исторически первыми, начиная с XVIII века, в физике рассматривались именно такие поля.

    Современная концепция физического поля выросла из идеи электромагнитного поля , впервые осознанной в физически конкретном и сравнительно близком к современному виде Фарадеем , математически же последовательно реализованной Максвеллом - изначально с использованием механической модели гипотетической сплошной среды - эфира , но затем вышедшей за рамки использования механической модели.

    Фундаментальные поля

    Среди полей в физике выделяют так называемые фундаментальные. Это поля, которые, согласно с полевой парадигмой современной физики, составляют основу физической картины мира, все остальные поля и взаимодействия из них выводятся. Включают два основных класса взаимодействующих друг с другом полей:

    • фундаментальные фермионные поля, прежде всего представляющие физическую основу описания вещества ,
    • фундаментальные бозонные поля (включая гравитационное, представляющее собой тензорное калибровочное поле), являющиеся расширением и развитием концепции максвелловского электромагнитного и ньютоновского гравитационного полей; на них строится теория фундаментальных взаимодействий .

    Существуют теории (например, теория струн , различные другие теории объединения), в которых роль фундаментальных полей занимают несколько другие, еще более фундаментальные с точки зрения этих теорий, поля или объекты (а нынешние фундаментальные поля появляются или должны появляться в этих теориях в некотором приближении, как "феноменологическое" следствие). Однако пока такие теории не являются достаточно подтвержденными или общепринятыми.

    История

    Исторически среди фундаментальных полей сначала были открыты (именно в качестве физических полей ) поля, ответственные за электромагнитное (электрическое и магнитное поля, затем объединенные в электромагнитное поле), и гравитационное взаимодействие. Эти поля были открыты и достаточно детально изучены уже в классической физике. Вначале эти поля (в рамках ньютоновской теории тяготения, электростатики и магнитостатики) выглядели для большинства физиков скорее как формальные математические объекты, вводимые для формального же удобства, а не как полноценная физическая реальность, несмотря на попытки более глубокого физического осмысления, остававшиеся однако довольно туманными или не приносящими слишком существенных плодов . Но начиная с Фарадея и Максвелла подход к полю (в данном случае - к электромагнитному полю) как к вполне содержательной физической реальности стал применяться систематически и очень плодотворно, включая и существенный прорыв в математическом оформлении этих идей.

    С другой стороны, по мере развития квантовой механики, становилось всё более ясно, что вещество (частицы) обладает свойствами, которые теоретически присущи именно полям.

    Современное состояние

    Таким образом, оказалось, что физическая картина мира может быть сведена в своем фундаменте к квантованным полям и их взаимодействию.

    В какой-то мере, главным образом в рамках формализма интегрирования по траекториям и диаграмм Фейнмана , произошло и противоположное движение: поля стало можно в заметное мере представить как почти классические частицы (точнее - как суперпозицию бесконечного количества движущихся по всем мыслимым траекториям почти классических частиц), а взаимодействие полей друг с другом - как рождение и поглощение частицами друг друга (тоже с суперпозицией всех мыслимых вариантов такового). И хотя этот подход очень красив, удобен и позволяет во многом психологически вернуться представлению о частице как о старой доброй классической частице, имеющей вполне определенную траекторию, он, тем не менее, не может отменить полевой взгляд на вещи и даже не является полностью симметричной альтернативой ему (а поэтому всё же ближе к красивому, психологически и практически удобному, но всё же всего лишь формальному приему, чем к полностью самоcтоятельной концепции). Дело тут в двух ключевых моментах:

    1. процедура суперпозиции никак «физически» не объяснима в рамках по-настоящему классических частиц, она просто добавляется к почти классической «корпускулярной» картине, не являясь ее органическим элементом; в то же время с полевой точки зрения эта суперпозиция имеет ясную и естественную интерпретацию;
    2. сама частица, движущаяся по одной отдельной траектории в формализме интеграла по траекториям, хотя и очень похожа на классическую, но всё-таки классическая не до конца: к обычному классическому движению по определенной траектории с определенным импульсом и координатой в каждый конкретный момент даже для одной-единственной траектории - приходится добавлять совершенно чуждое для этого подхода в его чистом виде понятие фазы (то есть некоторого волнового свойства), и этот момент (хотя он действительно сведен к минимуму и о нем довольно легко просто не думать) также не имеет какой-то органичной внутренней интерпретации; а в рамках обычного полевого подхода такая интерпретация опять есть, и она опять органична.

    Таким образом, можно заключить, что подход интегрирования по траекториям есть хотя и очень психологически удобная (ведь, скажем, точечная частица с тремя степенями свободы гораздо проще, чем бесконечномерное поле, которое ее описывает) и доказавшая практическую продуктивность, но всё же лишь некая переформулировка , пусть и довольно радикальная, полевой концепции, а не ее альтернатива.

    И хотя на словах на этом языке всё выглядит очень «корпускулярно» (например: «взаимодействие заряженных частиц объясняются обменом другой частицей - переносчиком взаимодействия» или «взаимное отталкивание двух электронов обусловлено обменом между ними виртуальным фотоном»), однако за этим стоят такие типично полевые реальности, как распространение волн, пусть и достаточно хорошо спрятанные ради создания эффективной схемы вычислений, да во многом и давая дополнительные возможностеи качественного понимания.

    Список фундаментальных полей

    Еще более экзотические (например, лоренц-неинвариантные - нарушающие принцип относительности) поля (при том, что абстрактно-теоретически вполне мыслимы) в современной физике можно отнести к стоящим уже достаточно далеко за рамками аргументированного предположения, то есть, строго говоря, их не рассматривают даже в качестве гипотетических .

    Традиционные варианты употребления термина поле

    См. также

    Примечания

    • Адрон (Адронная материя)
      • Барион +электрон (Барионная материя)
        • Атом , элемент (Химическое вещество)
    • Антивещество
      • Нейтронное вещество
  • Вещества с атомоподобным строением
  • Докварковые сверхплотные материальные образования
  • Поле

    • Поле ядерных сил

    Квантовые поля
    Материя неясной физической природы