Арифметические операции над действительными числами. Сложение действительных чисел


В данной статье собраны основные сведения про действительные числа . Сначала дано определение действительных чисел и приведем примеры. Дальше показано положение действительных чисел на координатной прямой. А в заключение разобрано, как действительные числа задаются в виде числовых выражений.

Навигация по странице.

Определение и примеры действительных чисел

Действительные числа в виде выражений

Из определения действительных чисел понятно, что действительными числами являются:

  • любое натуральное число ;
  • любое целое число ;
  • любая обыкновенная дробь (как положительная, так и отрицательная);
  • любое смешанное число;
  • любая десятичная дробь (положительная, отрицательная, конечная, бесконечная периодическая, бесконечная непериодическая).

Но очень часто действительные числа можно видеть в виде , и т.п. Более того, сумма, разность, произведение и частное действительных чисел также представляют собой действительные числа (смотрите действия с действительными числами ). К примеру, - это действительные числа.

А если пойти дальше, то из действительных чисел с помощью арифметических знаков, знаков корня, степеней, логарифмических, тригонометрических функций и т.п. можно составлять всевозможные числовые выражения, значения которых также будут действительными числами. Например, значения выражений и есть действительные числа.

В заключение этой статьи заметим, что следующим этапом расширения понятия числа является переход от действительных чисел к комплексным числам .

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 8 кл. общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).

Copyright by cleverstudents

Все права защищены.
Охраняется законом об авторском праве. Ни одну часть сайта www.сайт, включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.

Повторение неполной средней школы

Интеграл

Производная

Объемы тел

Тела вращения

Метод координат в пространстве

Прямоугольная система координат. Связь между координатами векторов и координатами точек. Простейшие задачи в координатах. Скалярное произведение векторов.

Понятие цилиндра. Площадь поверхности цилиндра. Понятие конуса.

Площадь поверхности конуса. Сфера и шар. Площадь сферы. Взаимное расположение сферы и плоскости.

Понятие объема. Объем прямоугольного параллелепипеда. Объем прямой призмы, цилиндра. Объем пирамиды и конуса. Объём шара.

Раздел III. Начала математического анализа

Производная. Производная степенной функции. Правила дифференцирования. Производные некоторых элементарных функций. Геометрический смысл производной.

Применение производной к исследованию функций Возрастание и убывание функции. Экстремумыфункции. Применение производной к построению графиков. Наибольшее, наименьшее значенияфункции.

Первообразная. Правила нахождения первообразных. Площадь криволинейной трапеции и интеграл. Вычисление интегралов. Вычисление площадей с помощью интегралов.

Учебно-тренировочные задания к экзаменам

Раздел I. Алгебра

Число - абстракция, используемая для количественной характеристики объектов. Числа возникли еще в первобытном обществе в связи с потребностью людей считать предметы. С течением времени по мере развития науки число превратилось в важнейшее математическое понятие.

Для решения задач и доказательства различных теорем необходимо понимать, какие бывают виды чисел. Основные виды чисел включают в себя: натуральные числа, целые числа, рациональные числа, действительные числа.

Натуральные числа – это числа, получаемые при естественном счёте предметов, а вернее при их нумерации («первый», «второй», «третий»...). Множество натуральных чисел обозначается латинской буквой N (можно запомнить, опираясь на английское слово natural). Можно сказать, что N ={1,2,3,....}

Дополнением натуральных чисел нулём и отрицательными числами (т.е. числами, противоположными натуральным) множество натуральных чисел расширяется до множества целых чисел.

Целые числа – это числа из множества {0, 1, -1, 2, -2, ....}. Это множество состоит из трех частей – натуральные числа, отрицательные целые числа (противоположные натуральным числам) и число 0 (нуль). Целые числа обозначаются латинской буквой Z. Можно сказать, что Z={1,2,3,....}. Рациональные числа – это числа, представимые в виде дроби , где m - целое число, а n - натуральное число.

Существуют рациональные числа, которые нельзя записать в виде конечной десятичной дроби, например . Если, например, попытаться записать число в виде десятичной дроби, используя известный алгоритм деления уголком, то получится бесконечная десятичная дробь . Бесконечную десятичную дробь называют периодической, повторяющуюся цифру 3 – её периодом. Периодическую дробь коротко записывают так: 0,(3); читается: «Ноль целых и три в периоде».



Вообще, периодическая дробь – это бесконечная десятичная дробь, у которой начиная с некоторого десятичного знака повторяется одна и та же цифра или несколько цифр – период дроби.

Например, десятичная дробь периодическая с периодом 56; читается «23 целых, 14 сотых и 56 в периоде».

Итак, каждое рациональное число можно представить в виде бесконечной периодической десятичной дроби.

Справедливо и обратное утверждение: каждая бесконечная периодическая десятичная дробь является рациональным числом, так как может быть представлена в виде дроби , где - целое число, - натуральное число.

Действительные (вещественные) числа – это числа, которое применяются для измерения непрерывных величин. Множество действительных чисел обозначается латинской буквой R. Действительные числа включают в себя рациональные числа и иррациональные числа. Иррациональные числа – это числа, которые получаются в результате выполнения различных операций с рациональными числами (например, извлечение корня, вычисление логарифмов), но при этом не являются рациональными. Примеры иррациональных чисел – это .

Любое действительное число можно отобразить на числовой прямой:

Для перечисленных выше множеств чисел справедливо следующее высказывание: множество натуральных чисел входит во множество целых чисел, множество целых чисел входит во множество рациональных чисел, а множество рациональных чисел входит во множество действительных чисел. Это высказывание можно проиллюстрировать с помощью кругов Эйлера.

Упражнения для самостоятельного решения

Если число α нельзя представить в виде несократимой дроби $$\frac{p}{q}$$, то его называют иррациональным.
Иррациональное число записывается в виде бесконечной непериодической десятичной дроби.

Факт существования иррациональных чисел продемонстрируем на примере.
Пример 1.4.1. Докажите, что не существует рационального числа, квадрат которого равен 2.
Решение. Предположим, что существует несократимая дробь $$\frac{p}{q}$$ такая, что $$(\frac{p}{q})^{2}=2$$
или $$p^{2}=2q^{2}$$. Отсюда следует, что $$p^{2}$$ кратно 2, а значит, и p кратно 2. В противном случае, если p не делится на 2, т.е. $$p=2k-1$$, то $$p^{2}=(2k-1)^{2}=4k^{2}-4k+1$$ также не делится на 2. Следовательно, $$p=2k$$ $$\Rightarrow$$ $$p^{2}=4k^{2}$$ $$\Rightarrow$$ $$4k^{2}=2q^{2}$$ $$\Rightarrow$$ $$q^{2}=2k^{2}$$.
Поскольку $$q^{2}$$ кратно 2, то и q кратно 2, т.е. $$q=2m$$.
Итак, числа p и q имеют общий множитель – число 2, а значит, дробь $$\frac{p}{q}$$ сократимая.
Это противоречие означает, что сделанное предположение неверно, тем самым утверждение доказано.
Множество рациональных и иррациональных чисел называется множеством действительных чисел.
В множестве действительных чисел аксиоматически вводятся операции сложения и умножения: любым двум действительным числам a и b ставится в соответствие число $$a+b$$ и произведение $$a\cdot b$$.
Кроме того, в этом множестве вводятся отношения "больше", "меньше" и равенства:
$$a>b$$ тогда и только тогда, когда a - b – положительное число;
$$a a = b тогда и только тогда, когда a - b = 0.
Перечислим основные свойства числовых неравенств.
1. Если $$a>b$$ и $$b>c$$ $$\Rightarrow$$ $$a>c$$.
2. Если $$a>b$$ и $$c>0$$ $$\Rightarrow$$ $$ac>bc$$.
3. Если $$a>b$$ и $$c<0$$ $$\Rightarrow$$ $$ac 4. Если $$a>b$$ и c – любое число $$\Rightarrow$$ $$a+c>b+c$$.
5. Если a, b, c, d – положительные числа такие, что $$a>b$$ и $$c>d$$ $$\Rightarrow$$ $$ac>bd$$.
Следствие. Если a и b – положительные числа и $$a>b$$ $$\Rightarrow$$ $$a^{2}>b^{2}$$.
6. Если $$a>b$$ и $$c>d$$ $$\Rightarrow$$ $$a+c>b+d$$.
7. Если $$a>0$$, $$b>0$$ и $$a>b$$ $$\Rightarrow$$ $$\frac{1}{a}<\frac{1}{b}$$.

Геометрическая интерпретация действительных чисел.
Возьмем прямую l , см. рис. 1.4.1, и зафиксируем на ней точку O – начало отсчета.
Точка O разбивает прямую на две части – лучи. Луч, направленный вправо, назовем положительным лучом, а луч, направленный влево – отрицательным. На прямой отметим отрезок, принятый за единицу длины, т.е. вводим масштаб.

Рис. 1.4.1. Геометрическая интерпретация действительных чисел.

Прямая с выбранным началом отсчета, положительным направлением и масштабом называется числовой прямой.
Каждой точке числовой прямой можно поставить в соответствие действительное число по следующему правилу:

– точке О поставим в соответствие нуль;
– каждой точке N на положительном луче поставим в соответствие положительное число a, где a – длина отрезка ON ;
– каждой точке M на отрицательном луче поставим в соответствие отрицательное число b, где $$b=-\left | OM \right |$$ (длина отрезка OM, взятая со знаком минус).
Таким образом, между множеством всех точек числовой прямой и множеством действительных чисел устанавливается взаимно–однозначное соответствие, т.е. :
1) каждой точке на числовой прямой поставлено в соответствие одно и только одно действительное число;
2) разным точкам поставлены в соответствие разные числа;
3) нет ни одного действительного числа, которое не соответствовало бы какой–либо точке числовой прямой.

Пример 1.4.2. На числовой прямой отметьте точки, соответствующие числам:
1) $$1\frac{5}{7}$$ 2) $$\sqrt{2}$$ 3) $$\sqrt{3}$$
Решение. 1) Для того, чтобы отметить дробное число $$\frac{12}{7}$$, надо построить точку, соответствующую $$\frac{12}{7}$$.
Для этого надо отрезок длины 1 разделить на 7 равных частей. Эту задачу решаем так.
Проводим произвольный луч из т.О и на этом луче отложим 7 равных отрезков. Получим
отрезок ОА, и из т. А проведем прямую до пересечения с 1.

Рис. 1.4.2. Деление единичного отрезка на 7 равных частей.

Прямые, проведенные параллельно прямой А1 через концы отложенных отрезков, делят отрезок единичной длины на 7 равных частей (рис.1.4.2). Это дает возможность построить точку, изображающую число $$1\frac{5}{7}$$ (рис.1.4.3).

Рис. 1.4.3. Точка числовой оси, соответствующая числу $$1\frac{5}{7}$$.

2) Число $$\sqrt{2}$$ можно получить так. Построим прямоугольный треугольник с единичными катетами. Тогда длина гипотенузы равна $$\sqrt{2}$$; этот отрезок откладываем от О на числовой прямой (рис.1.4.4).
3) Для построения точки, удаленной от т.О на расстояние $$\sqrt{3}$$ (вправо) надо построить прямоугольный треугольник с катетами длиной 1 и $$\sqrt{2}$$. Тогда его гипотенуза имеет длину $$\sqrt{2}$$, что позволяет указать искомую точку на числовой оси.
Для действительных чисел определено понятие модуля (или абсолютной величины).

Рис. 1.4.4. Точка числовой оси, соответствующая числу $$\sqrt{2}$$.

Модулем действительного числа a называется:
– само это число, если a – положительное число;
– нуль, если a – нуль;
-a , если a – отрицательное число.
Модуль числа a обозначается $$\left | a \right |$$.
Определение модуля (или абсолютной величины) можно записать в виде

$$\left | a \right |=\left\{\begin{matrix}a, a\geq0\\-a, a<0\end{matrix}\right.$$ (1.4.1)

Геометрически модуль числа a означает расстояние на числовой прямой от начала отсчета О до точки, соответствующей числу a .
Отметим некоторые свойства модуля.
1. Для любого числа a справедливо равенство $$\left | a \right |=\left | -a \right |$$.
2. Для любых чисел a и b справедливы равенства

$$\left | ab \right |=\left | a \right |\cdot \left | b \right |$$; $$\left | \frac{a}{b} \right |=\frac{\left | a \right |}{\left | b \right |}$$ $$(b\neq 0)$$; $$\left | a \right |^{2}=a^{2}$$.

3. Для любого числа a справедливо неравенство $$\left | a \right |\geq 0$$.
4. Для любого числа a справедливо неравенство $$-\left | a \right |\leq a\leq \left | a \right |$$.
5. Для любых чисел a и b справедливо неравенство

$$\left | a+b \right |\leq \left | a \right |+\left | b \right |$$

Рассмотрим следующие числовые множества.
Если $$a 1) отрезком называется множество всех действительных чисел α для каждого из которых справедливо: $$a\leq \alpha \leq b$$;
2) интервалом (a; b) называется множество всех действительных чисел α , для каждого из которых справедливо: $$a<\alpha 3) полуинтервалом (a; b] называется множество всех действительных чисел α для каждого из которых справедливо: $$a<\alpha \leq b$$.
Аналогично можно ввести полуинтервал .
В некоторых случаях говорят о "промежутках", понимая под этим либо луч, либо отрезок, либо интервал, либо полуинтервал.

Множество R всех действительных чисел обозначают так: $$(-\infty; \infty)$$.
Для любого действительного числа a вводится понятие степени с натуральным показателем n , а именно

$$a^{n}=\underbrace {a\cdot a\cdot a\cdot a...a}$$, $$n\geq 2$$ и $$a^{1}=a$$.

Пусть a – любое отличное от нуля число, тогда по определению $$a^{0}=1$$.
Нулевая степень нуля не определена.
Пусть a – любое отличное от нуля число, m – любое целое число. Тогда число $$a^{m}$$ определяется по правилу:

$$a^{m}=\left\{\begin{matrix}a, m=1;\\\underbrace{a\cdot a\cdot a\cdot a...a}, m\in N, m\geq2;\\1, m=0;\\\frac{1}{a^{n}}, m=-n, n\in N\end{matrix}\right.$$

при этом a m называется степенью с целым показателем.

Прежде, чем определить понятие степени с рациональным показателем, введем понятие арифметического корня.
Арифметическим корнем степени n (n ∈ N , n > 2 ) неотрицательного числа a называется неотрицательное число b такое, что b n = a . Число b обозначается как $$b\sqrt[n]{a}$$.
Свойства арифметических корней (a > 0 , b > 0 , n, m, k – натуральные числа.)

1. $$\sqrt[n]{ab}=\sqrt[n]{a}\cdot \sqrt[n]{b}$$ 5. $$\sqrt[n]{\sqrt[k]{a}}=\sqrt{a}$$
2. $$(a)^{\frac{k}{n}}=\sqrt[n]{a^{k}}$$ 6. $$\sqrt[n]{a^{m}}=\sqrt{a^{mk}}$$
3. $$(\sqrt[n]{a})^{k}=\sqrt[n]{a^{k}}$$ 7. $$\sqrt{a^{2}}=\left | a \right |$$
4. $$\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}} (b\neq 0)$$ 8. $$\sqrt{a^{2n}}=\left | a \right |$$

Пусть a < 0 , а n – натуральное число, большее 1. Если n – четное число, то равенство b n = a не выполняется ни при каком действительном значении b . Это значит, что в области действительных чисел нельзя определить корень четной степени из отрицательного числа. Если же n – нечетное число, то существует единственное действительное число b такое, что b n = a . Это число обозначают √n a и называют корнем нечетной степени из отрицательного числа.
Используя определение возведения в целую степень и определение арифметического корня, дадим определение степени с рациональным показателем.
Пусть a – положительное число и $$r=\frac{p}{q}$$ – рациональное число, причем q – натуральное число.

Положительное число

$$b=\sqrt[q]{a^{p}}$$

называется степенью числа a с показателем r и обозначается как

$$b=a^{r}$$, или $$a^{\frac{p}{q}}=\sqrt[q]{a^{r}}$$, здесь $$q\in N$$, $$q\geq2$$.

Рассмотрим основные свойства степени с рациональным показателем.

Пусть a и b – любые положительные числа, r 1 и r 2 – любые рациональные числа. Тогда справедливы следующие свойства:

1. $$(ab)^{r_{1}}=a^{r_{1}}\cdot b^{r_{1}}$$
2. $$(\frac{a}{b})^{r_{1}}=\frac{a^{r_{1}}}{b^{r_{1}}}$$
3. $$a^{r_{1}}\cdot a^{r_{2}}=a^{r_{1}+r_{2}}$$
4. $$\frac{a^{r_{1}}}{a^{r_{2}}}=a^{r_{1}-r_{2}}$$
5. $$(a^{r_{1}})^{r_{2}}=a^{r_{1}r_{2}}$$ (1.4.2)
6. $$a^{0}=1$$
7. Если $$a>1$$ и $$r_{1}>0\Rightarrow a^{r_{1}}> 1$$
8. Если $$0< a< 1$$ и $$r_{1}>0\Rightarrow 0< a^{r_{1}}< 1$$
9. Если $$a>1$$ и $$r_{1}>r_{2}\Rightarrow a^{r_{1}}> a^{r_{2}}$$
10. Если $$0< a< 1$$ и $$r_{1}>r_{2}\Rightarrow a^{r_{1}}> a^{r_{2}}$$

Понятие степени положительного числа обобщается для любого действительного показателя α .
Определение степени положительного числа a с действительными показателями α .

1. Если $$\alpha > 0$$ и

1) $$\alpha=m$$, $$m\in N \Rightarrow a^{\alpha}=\left\{\begin{matrix}a, m=1\\\underbrace{a\cdot a\cdot a\cdot a....a}, m\geq 2\end{matrix}\right.$$

2) $$\alpha=\frac{p}{q}$$, где p и q - натуральные числа $$\Rightarrow a^{\alpha}=\sqrt[q]{a^{p}}$$

3) α - иррациональное число, тогда

а) если a > 1, то a α - число большее, чем a r i и меньшее, чем a r k , где r i α с недостатком, r k - любое рациональное приближение числа α с избытком;
b) если 0 < a < 1, то a α - число большее, чем a r k и меньшее, чем a r i ;
c) если a = 1, то a α = 1.

2. Если $$\alpha=0$$, то a α = 1.

3. Если $$\alpha<0$$, то $$a^{\alpha}=\frac{1}{a^{\left | \alpha \right |}}$$.

Число a α называется степенью, число a – основание степени, число α – показатель степени.
Степень положительного числа с действительным показателем обладает теми же свойствами, что и степень с рациональным показателем.

Пример 1.4.3. Вычислите $$\sqrt{81}\cdot\sqrt{\frac{16}{6}}$$.

Решение. Воспользуемся свойством корней:

$$\sqrt{81}\cdot\sqrt{\frac{16}{6}}=\sqrt{\frac{81\cdot16}{6}}=\sqrt{\frac{3^{4}\cdot2^{4}}{3\cdot2}}=\sqrt{3^{3}\cdot2^{3}}=6$$

Ответ. 6.

Пример 1.4.4. Вычислите $$6,25^{1,5}-2,25^{1,5}$$

1) 4 2) 8 3) 8,25 4) 12,25

Но всегда ли эти дроби периодические? Ответ на этот вопрос отрицателен: существуют отрезки, длины которых нельзя выразить бесконечной периодической дробью (т.е. положительным рациональным числом) при выбранной единице длины. Это было важнейшим открытием в математике, из которого следовало, что рациональных чисел недостаточно для измерения длин отрезков.


Если единицей длины является длина стороны квадрата, то длина диагонали этого квадрата не может быть выражена положительным рациональным числом.


Из данного утверждения следует, что существуют отрезки, длины которых нельзя выразить положительным числом (при выбранной единице длины), или, другими словами, записать в виде бесконечной периодической дроби. И значит, получаемые при измерении длин отрезков бесконечные десятичные дроби могут быть непериодическими.


Считают, что бесконечные непериодические десятичные дроби являются записью новых чисел - положительных иррациональных чисел. Так как часто понятия числа и его записи отождествляют, то говорят, что бесконечные периодические десятичные дроби - это и есть положительные иррациональные числа.


Множество положительных иррациональных чисел обозначают символом J+.


Объединение двух множеств чисел: положительных рациональных и положительных иррациональных называют множеством положительных действительных чисел и обозначают символом R+.


Любое положительное действительное число может быть представлено бесконечной десятичной дробью - периодической (если оно является рациональным) либо непериодической (если оно является иррациональным).


Действия над положительными действительными числами сводятся к действиям над положительными рациональными числами. В связи с этим для каждого положительного действительного числа вводят его приближенные значения по недостатку и по избытку.


Пусть даны два положительных действительных числа a и b , an и bn - соответственно их приближения по недостатку, a¢n и b¢n - их приближения по избытку.


Суммой действительных чисел a и b a + b n удовлетворяет неравенству an + bn a + b < a¢n + b¢n.


Произведением действительных чисел a и b называется такое действительное число a × b , которое при любом натуральном n удовлетворяет неравенству an × bn a b × b¢n.


Разностью положительных действительных чисел a и b называется такое действительное число с , что a = b + с.


Частным положительных действительных чисел a и b называется такое действительное число с , что a = b × с.


Объединение множества положительных действительных чисел с множеством отрицательных действительных чисел и нулем есть множество R всех действительных чисел.


Сравнение действительных чисел и действия над ними выполняются по правилам, известным из школьного курса математики.


Задача 60. Найти три первых десятичных знака суммы 0,333… + 1,57079…


Решение. Возьмем десятичные приближения слагаемых с четырьмя десятичными знаками:


0,3333 < 0,3333… < 0,3334


1,5707 < 1,57079… < 1,5708.


Складываем: 1,9040 ≤ 0,333… + 1,57079… < 1,9042.


Следовательно, 0,333… + 1,57079…= 1,904…


Задача 61. Найти два первых десятичных знака произведения a × b , если а = 1,703604… и b = 2,04537…


Решение. Берем десятичные приближения данных чисел с тремя десятичными знаками:


1,703 < a <1,704 и 2,045 < b < 2,046. По определению произведения действительных чисел имеем:


1,703 × 2,045 ≤ a × b < 1,704 × 2,046 или 3,483 ≤ ab < 3,486.


Таким образом, a × b = 3,48…


Упражнения для самостоятельной работы


1. Запишите десятичные приближения иррационального числа π = 3,1415… по недостатку и по избытку с точностью до:


а) 0,1; б) 0,01; в) 0,001.


2. Найдите первые три десятичных знака суммы a + b , если:


а) а = 2,34871…, b = 5,63724…; б) а = , b = π; в) а = ; b = ; г) а = ; b = .