Происхождение вселенной гипотеза о веществолизации. Немецкий космолог выдвинул гипотезу о нерасширении вселенной Гипотеза расширения вселенной подтверждается


Имеются свидетельства того, что Вселенная начала расширяться 10 - 15 млрд. лет назад. Еще в начале ХХ века американский астроном В. М. Слайфер на основании своих исследований, показал, что в спектрах некоторых слабых галактик, которые он называл туманностями, наблюдаются заметные смещения линий к красному концу. Если считать, что эти красные смещения вызваны лучевой скоростью удаления, то, как заключил Слайфер, некоторые из его туманностей удаляются от Солнца со скоростями, превышающими 1000 км/с. К началу 30-х годов, когда стало ясно, что туманности Слайфера не что иное, как галактики, Хаббл и Хьюмасон распространили измерения Слайфера на более слабые галактики. Поскольку они смогли определить приближенные расстояния до этих галактик, им удалось установить универсальность зависимости красное смещение - расстояние, вытекающую из этих исследований.

С тех пор как Хаббл и Хьюмасон выполнили свою фундаментальную работу, в шкалу расстояний галактик были внесены значительные изменения. Исследования Аллана Сэндиджа, основанные главным образом на данных, полученных с помощью 200-дюймового рефлектора Хэйла, свидетельствуют об очень близком к линейному характере зависимости красное смещение - расстояние. Если предположить, что красные смещения указывают на удаление по лучу зрения, то зависимость красное смещение - расстояние становится фундаментальным законом, связывающим скорость удаления и расстояние.

С какой скоростью расширяется Вселенная?


Вся наблюдаемая Вселенная, по-видимому, расширяется, причем скорость этого расширения определяется на основании того факта, что две галактики, находящиеся на расстоянии 10 млн. пс друг от друга, взаимно удаляются со скоростью около 550 км/с. У обычных галактик наблюдались красные смещения, соответствующие движению со скоростью, равной половине скорости света, а у далеких , красные смещения свидетельствуют о скоростях удаления, превышающих 0,8 скорости света. На этом основании можно сказать, что в больших масштабах общее расширение Вселенной - твердо установленный факт. Если считать, что указанная выше скорость расширения Вселенной мало менялась в прошлом, то очень простые расчеты приводят нас к следующему выводу: 17 млрд. лет назад все участвующие в разбегании были близко расположены друг к другу. Этот «возраст» вполне устраивает астрономов, изучающих нашу Галактику.

рис. Возможные сценарии расширения Вселенной


Совсем не обязательно, чтобы расширение Вселенной было равномерным. Весьма возможно, например, что начало Вселенной было положено колоссальным взрывным процессом и что очень большая первоначально скорость расширения постепенно начала уменьшаться. Естественно, что время, прошедшее с момента начала расширения, установленное по наблюдаемым ныне скоростям расширения, было бы тогда меньше указанного выше значения 17 млрд. лет. Весьма возможно также, что наша Вселенная представляет собой пульсирующую систему, находящуюся сейчас в стадии расширения, и что впоследствии она начнет сжиматься.

Множество наблюдений подтверждают гипотезу расширяющейся Вселенной. Почти наверняка представляют собой галактики, которые мы наблюдаем такими, какими они были пять и более миллиардов лет назад. Наблюдаемое их количество на огромных расстояниях показывает, насколько активнее была Вселенная 5 - 10 млрд. лет назад, чем в настоящее время. Другое подтверждение гипотезы о том, что около 10 млрд. лет назад произошел колоссальный космический взрыв, было получено благодаря наблюдениям Пензиаса и Уилсона, интерпретированных Дикке. В результате этих наблюдений были обнаружены реликтовые остатки энергии, первоначально связанной с взрывным началом расширения, в виде микроволнового фонового излучения с эффективной температурой 3 К, пронизывающего всю Вселенную. Наиболее точные современные наблюдения позволяют регистрировать галактики и далекие квазары на расстояниях до 8 - 10 млрд. световых лет, или около 3 млрд. пс. Эти наблюдения дают нам возможность заглянуть в прошлое и увидеть небесные объекты такими, какими они были 8 - 10 млрд. лет назад.

Как образовалась наша Галактика?


Ответ на этот вопрос можно дать, если иметь в виду, что самые старые и отдельные звезды находятся на больших расстояниях от центральной плоскости Млечного Пути. Это, вероятно, должно означать, что вскоре после взрывного начала расширения наша Галактика имела вид отдельного гигантского почти сферического газового сгустка. Первоначальный процесс конденсации газа в звезды и звездные скопления, по-видимому, распространился по всему облаку. С течением времени газ все сильнее и сильнее концентрировался к центральной плоскости Галактики, которая приобрела тогда свое нынешнее вращение. Более молодые звезды и скопления образовались тогда, когда первоначальный газовый сгусток в значительной мере сжался, и на современной стадии центральное газовое (и пылевое) облако поразительно тонкое.


рис. Распределение звезд в Галактике


Рождение звезд теперь, по-видимому, полностью ограничено областями межзвездного газа и пыли на расстоянии нескольких сотен парсек от центральной плоскости Млечного Пути. Согласно этой привлекательной картине, первыми образовались старейшие шаровые и рассеянные скопления. В короне нашей Галактики и скоплений давно прекратилось. Однако можно считать, что нам повезло, так как эти процессы продолжаются вблизи центральной плоскости Галактики, причем Солнце и Земля расположены, с одной стороны, вблизи этой плоскости, а с другой - на окраине Галактики, т. е. там, где все еще вовсю кипят эволюционные котлы!

Всего лишь сто лет назад ученые обнаружили, что наше Мироздание стремительно увеличивается в размерах.

Еще сто лет назад представления о Вселенной базировались на ньютоновской механике и евклидовой геометрии. Даже немногие ученые, такие как Лобачевский и Гаусс, допускавшие (только как гипотезу!) физическую реальность неевклидовой геометрии, считали космическое пространство вечным и неизменным

Алексей Левин

В 1870 году английский математик Уильям Клиффорд пришел к очень глубокой мысли, что пространство может быть искривлено, причем неодинаково в разных точках, и что со временем его кривизна может изменяться. Он даже допускал, что такие изменения как-то связаны с движением материи. Обе эти идеи спустя много лет легли в основу общей теории относительности. Сам Клиффорд до этого не дожил — он умер от туберкулеза в возрасте 34 лет за 11 дней до рождения Альберта Эйнштейна.

Красное смещение

Первые сведения о расширении Вселенной предоставила астроспектрография. В 1886 году английский астроном Уильям Хаггинс заметил, что длины волн звездного света несколько сдвинуты по сравнению с земными спектрами тех же элементов. Исходя из формулы оптической версии эффекта Допплера, выведенной в 1848 году французским физиком Арманом Физо, можно вычислить величину радиальной скорости звезды. Подобные наблюдения позволяют отследить движение космического объекта.


Еще сто лет назад представления о Вселенной базировались на ньютоновской механике и евклидовой геометрии. Даже немногие ученые, такие как Лобачевский и Гаусс, допускавшие (только как гипотезу!) физическую реальность неевклидовой геометрии, считали космическое пространство вечным и неизменным. Из-за расширения Вселенной судить о расстоянии до далеких галактик непросто. Свет, дошедший через 13 млрд лет от галактики A1689-zD1 в 3,35 млрд световых лет от нас (А), «краснеет» и ослабевает по мере преодоления расширяющегося пространства, а сама галактика удаляется (B). Он будет нести информацию о дистанции в красном смещении (13 млрд св. лет), в угловом размере (3,5 млрд св. лет), в интенсивности (263 млрд св. лет), тогда как реальное расстояние составляет 30 млрд св. лет.

Четверть века спустя эту возможность по‑новому использовал сотрудник обсерватории во Флагстаффе в штате Аризона Весто Слайфер, который с 1912 года изучал спектры спиральных туманностей на 24-дюймовом телескопе с хорошим спектрографом. Для получения качественного снимка одну и ту же фотопластинку экспонировали по нескольку ночей, поэтому проект двигался медленно. С сентября по декабрь 1913 года Слайфер занимался туманностью Андромеды и с помощью формулы Допплера-Физо пришел к выводу, что она ежесекундно приближается к Земле на 300 км.

В 1917 году он опубликовал данные о радиальных скоростях 25 туманностей, которые показывали значительную асимметрию их направлений. Только четыре туманности приближались к Солнцу, остальные убегали (и некоторые очень быстро).

Слайфер не стремился к славе и не пропагандировал свои результаты. Поэтому они стали известны в астрономических кругах, лишь когда на них обратил внимание знаменитый британский астрофизик Артур Эддингтон.


В 1924 году он опубликовал монографию по теории относительности, куда включил перечень найденных Слайфером радиальных скоростей 41 туманности. Там присутствовала все та же четверка туманностей с голубым смещением, в то время как у остальных 37 спектральные линии были сдвинуты в красную сторону. Их радиальные скорости варьировали в пределах 150 — 1800 км/с и в среднем в 25 раз превышали известные к тому времени скорости звезд Млечного Пути. Это наводило на мысль, что туманности участвуют в иных движениях, нежели «классические» светила.

Космические острова

В начале 1920-х годов большинство астрономов полагало, что спиральные туманности расположены на периферии Млечного Пути, а за его пределами уже нет ничего, кроме пустого темного пространства. Правда, еще в XVIII веке некоторые ученые видели в туманностях гигантские звездные скопления (Иммануил Кант назвал их островными вселенными). Однако эта гипотеза не пользовалась популярностью, поскольку достоверно определить расстояния до туманностей никак не получалось.

Эту задачу решил Эдвин Хаббл, работавший на 100-дюймовом телескопе-рефлекторе калифорнийской обсерватории Маунт-Вилсон. В 1923—1924 годах он обнаружил, что туманность Андромеды состоит из множества светящихся объектов, среди которых есть переменные звезды семейства цефеид. Тогда уже было известно, что период изменения их видимого блеска связан с абсолютной светимостью, и поэтому цефеиды пригодны для калибровки космических дистанций. С их помощью Хаббл оценил расстояние до Андромеды в 285 000 парсек (по современным данным, оно составляет 800 000 парсек). Диаметр Млечного Пути тогда полагали приблизительно равным 100 000 парсек (в действительности он втрое меньше). Отсюда следовало, что Андромеду и Млечный Путь необходимо считать независимыми звездными скоплениями. Вскоре Хаббл идентифицировал еще две самостоятельные галактики, чем окончательно подтвердил гипотезу «островных вселенных».


Справедливости ради стоит отметить, что за два года до Хаббла расстояние до Андромеды вычислил эстонский астроном Эрнст Опик, чей результат — 450000 парсек — был ближе к правильному. Однако он использовал ряд теоретических соображений, которые не были так же убедительны, как прямые наблюдения Хаббла.

К 1926 году Хаббл провел статистический анализ наблюдений четырех сотен «внегалактических туманностей» (этим термином он пользовался еще долго, избегая называть их галактиками) и предложил формулу, позволяющую связать расстояние до туманности с ее видимой яркостью. Несмотря на огромные погрешности этого метода, новые данные подтверждали, что туманности распределены в пространстве более или менее равномерно и находятся далеко за границами Млечного Пути. Теперь уже не приходилось сомневаться, что космос не замыкается на нашей Галактике и ее ближайших соседях.

Модельеры космоса

Эддингтон заинтересовался результатами Слайфера еще до окончательного выяснения природы спиральных туманностей. К этому времени уже существовала космологическая модель, в определенном смысле предсказывавшая эффект, выявленный Слайфером. Эддингтон много размышлял о ней и, естественно, не упустил случая придать наблюдениям аризонского астронома космологическое звучание.

Современная теоретическая космология началась в 1917 году двумя революционными статьями, представившими модели Вселенной, построенные на основе общей теории относительности. Одну из них написал сам Эйнштейн, другую — голландский астроном Виллем де Ситтер.

Законы Хаббла

Эдвин Хаббл эмпирически выявил примерную пропорциональность красных смещений и галактических дистанций, которую он с помощью формулы Допплера-Физо превратил в пропорциональность между скоростями и расстояниями. Так что мы имеем здесь дело с двумя различными закономерностями.
Хаббл не знал, как они связаны друг с другом, но что об этом говорит сегодняшняя наука?
Как показал еще Леметр, линейная корреляция между космологическими (вызванными расширением Вселенной) красными смещениями и дистанциями отнюдь не абсолютна. На практике она хорошо соблюдается лишь для смещений, меньших 0,1. Так что эмпирический закон Хаббла не точный, а приближенный, да и формула Допплера-Физо справедлива только для небольших смещений спектра.
А вот теоретический закон, связывающий радиальную скорость далеких объектов с расстоянием до них (с коэффициентом пропорциональности в виде параметра Хаббла V=Hd), справедлив для любых красных смещений. Однако фигурирующая в нем скорость V — вовсе не скорость физических сигналов или реальных тел в физическом пространстве. Это скорость возрастания дистанций между галактиками и галактическими скоплениями, которое обусловлено расширением Вселенной. Мы бы смогли ее измерить только в том случае, если были бы в состоянии останавливать расширение Вселенной, мгновенно протягивать мерные ленты между галактиками, считывать расстояния между ними и делить их на промежутки времени между измерениями. Естественно, что законы физики этого не позволяют. Поэтому космологи предпочитают использовать параметр Хаббла H в другой формуле, где фигурирует масштабный фактор Вселенной, который как раз и описывает степень ее расширения в различные космические эпохи (поскольку этот параметр изменяется со временем, его современное значение обозначают H0). Вселенная сейчас расширяется с ускорением, так что величина хаббловского параметра возрастает.
Измеряя космологические красные смещения, мы получаем информацию о степени расширения пространства. Свет галактики, пришедший к нам с космологическим красным смещением z, покинул ее, когда все космологические дистанции были в 1+z раз меньшими, нежели в нашу эпоху. Получить об этой галактике дополнительные сведения, такие как ее нынешняя дистанция или скорость удаления от Млечного Пути, можно лишь с помощью конкретной космологической модели. Например, в модели Эйнштейна — де Ситтера галактика с z = 5 отдаляется от нас со скоростью, равной 1,1 с (скорости света). А вот если сделать распространенную ошибку и просто уравнять V/c и z, то эта скорость окажется впятеро больше световой. Расхождение, как видим, нешуточное.
Зависимость скорости далеких объектов от красного смещения согласно СТО, ОТО (зависит от модели и времени, кривая показывает настоящее время и текущую модель). При малых смещениях зависимость линейная.

Эйнштейн в духе времени считал, что Вселенная как целое статична (он пытался сделать ее еще и бесконечной в пространстве, но не смог найти корректные граничные условия для своих уравнений). В итоге он построил модель замкнутой Вселенной, пространство которой обладает постоянной положительной кривизной (и поэтому она имеет постоянный конечный радиус). Время в этой Вселенной, напротив, течет по‑ньютоновски, в одном направлении и с одинаковой скоростью. Пространство-время этой модели искривлено за счет пространственной компоненты, в то время как временная никак не деформирована. Статичность этого мира обеспечивает специальный «вкладыш» в основное уравнение, препятствующий гравитационному схлопыванию и тем самым действующий как вездесущее антигравитационное поле. Его интенсивность пропорциональна особой константе, которую Эйнштейн назвал универсальной (сейчас ее называют космологической постоянной).


Космологическая модель Леметра, описывающая расширение Вселенной, намного опередила свое время. Вселенная Леметра начинается с Большого взрыва, после которого расширение сначала замедляется, а затем начинает ускоряться.

Эйнштейновская модель позволила вычислить размер Вселенной, общее количество материи и даже значение космологической постоянной. Для этого нужна лишь средняя плотность космического вещества, которую, в принципе, можно определить из наблюдений. Не случайно этой моделью восхищался Эддингтон и использовал на практике Хаббл. Однако ее губит неустойчивость, которую Эйнштейн просто не заметил: при малейшем отклонении радиуса от равновесного значения эйнштейновский мир либо расширяется, либо претерпевает гравитационный коллапс. Поэтому к реальной Вселенной такая модель отношения не имеет.

Пустой мир

Де Ситтер тоже построил, как он сам считал, статичный мир постоянной кривизны, но не положительной, а отрицательной. В нем присутствует эйнштейновская космологическая константа, но зато полностью отсутствует материя. При введении пробных частиц сколь угодно малой массы они разбегаются и уходят в бесконечность. Кроме того, время на периферии вселенной де Ситтера течет медленней, нежели в ее центре. Из-за этого с больших расстояний световые волны приходят с красным смещением, даже если их источник неподвижен относительно наблюдателя. Поэтому в 1920-е годы Эддингтон и другие астрономы задались вопросом: не имеет ли модель де Ситтера чего-нибудь общего с реальностью, отраженной в наблюдениях Слайфера?


Эти подозрения подтвердились, хоть и в ином плане. Статичность вселенной де Ситтера оказалась мнимой, поскольку была связана с неудачным выбором координатной системы. После исправления этой ошибки пространство де Ситтера оказалось плоским, евклидовым, но нестатичным. Благодаря антигравитационной космологической константе оно расширяется, сохраняя при этом нулевую кривизну. Из-за этого расширения длины волн фотонов возрастают, что и влечет за собой предсказанный де Ситтером сдвиг спектральных линий. Стоит отметить, что именно так сегодня объясняют космологическое красное смещение далеких галактик.

От статистики к динамике

История открыто нестатичных космологических теорий начинается с двух работ советского физика Александра Фридмана, опубликованных в немецком журнале Zeitschrift fur Physik в 1922 и 1924 годах. Фридман просчитал модели вселенных с переменной во времени положительной и отрицательной кривизной, которые стали золотым фондом теоретической космологии. Однако современники эти работы почти не заметили (Эйнштейн сначала даже счел первую статью Фридмана математически ошибочной). Сам Фридман полагал, что астрономия еще не обладает арсеналом наблюдений, позволяющим решить, какая из космологических моделей более соответствует реальности, и потому ограничился чистой математикой. Возможно, он действовал бы иначе, если бы ознакомился с результатами Слайфера, однако этого не случилось.


По-другому мыслил крупнейший космолог первой половины XX века Жорж Леметр. На родине, в Бельгии, он защитил диссертацию по математике, а затем в середине 1920-х изучал астрономию — в Кембридже под руководством Эддингтона и в Гарвардcкой обсерватории у Харлоу Шепли (во время пребывания в США, где он подготовил вторую диссертацию в МIT, он познакомился со Слайфером и Хабблом). Еще в 1925 году Леметру впервые удалось показать, что статичность модели де Ситтера мнимая. По возвращении на родину в качестве профессора Лувенского университета Леметр построил первую модель расширяющейся вселенной, обладающую четким астрономическим обоснованием. Без преувеличения, эта работа стала революционным прорывом в науке о космосе.

Вселенская революция

В своей модели Леметр сохранил космологическую константу с эйнштейновским численным значением. Поэтому его вселенная начинается статичным состоянием, но со временем из-за флуктуаций вступает на путь постоянного расширения с возрастающей скоростью. На этой стадии она сохраняет положительную кривизну, которая уменьшается по мере роста радиуса. Леметр включил в состав своей вселенной не только вещество, но и электромагнитное излучение. Этого не сделали ни Эйнштейн, ни де Ситтер, чьи работы были Леметру известны, ни Фридман, о котором он тогда ничего не знал.

Сопутствующие координаты

В космологических вычислениях удобно пользоваться сопутствующими координатными системами, которые расширяются в унисон с расширением Вселенной. В идеализированной модели, где галактики и галактические кластеры не участвуют ни в каких собственных движениях, их сопутствующие координаты не меняются. А вот дистанция между двумя объектами в данный момент времени равна их постоянной дистанции в сопутствующих координатах, умноженной на величину масштабного фактора для этого момента. Такую ситуацию легко проиллюстрировать на надувном глобусе: широта и долгота каждой точки не меняются, а расстояние между любой парой точек увеличивается с ростом радиуса.
Использование сопутствующих координат помогает осознать глубокие различия между космологией расширяющейся Вселенной, специальной теорией относительности и ньютоновской физикой. Так, в ньютоновской механике все движения относительны, и абсолютная неподвижность не имеет физического смысла. Напротив, в космологии неподвижность в сопутствующих координатах абсолютна и в принципе может быть подтверждена наблюдениями. Специальная теория относительности описывает процессы в пространстве-времени, из которого можно с помощью преобразований Лоренца бесконечным числом способов вычленять пространственные и временные компоненты. Космологическое пространство-время, напротив, естественно распадается на искривленное расширяющееся пространство и единое космическое время. При этом скорость разбегания далеких галактик может многократно превышать скорость света.

Леметр еще в США предположил, что красные смещения далеких галактик возникают из-за расширения пространства, которое «растягивает» световые волны. Теперь же он доказал это математически. Он также продемонстрировал, что небольшие (много меньшие единицы) красные смещения пропорциональны расстояниям до источника света, причем коэффициент пропорциональности зависит только от времени и несет информацию о текущем темпе расширения Вселенной. Поскольку из формулы Допплера-Физо следовало, что радиальная скорость галактики пропорциональна красному смещению, Леметр пришел к выводу, что эта скорость также пропорциональна ее удаленности. Проанализировав скорости и дистанции 42 галактик из списка Хаббла и приняв во внимание внутригалактическую скорость Солнца, он установил значения коэффициентов пропорциональности.

Незамеченная работа

Свою работу Леметр опубликовал в 1927 году на французском языке в малочитаемом журнале «Анналы Брюссельского научного общества». Считают, что это послужило основной причиной, из-за которой она поначалу осталась практически незамеченной (даже его учителем Эддингтоном). Правда, осенью того же года Леметр смог обсудить свои выводы с Эйнштейном и узнал от него о результатах Фридмана. У создателя ОТО не было технических возражений, однако он решительно не поверил в физическую реальность леметровской модели (подобно тому, как раньше не принял фридмановские выводы).


Графики Хаббла

Между тем в конце 1920-х годов Хаббл и Хьюмасон выявили линейную корреляцию между расстояниями до 24 галактик и их радиальными скоростями, вычисленными (в основном еще Слайфером) по красным смещениям. Хаббл сделал из этого вывод о прямой пропорциональности радиальной скорости галактики расстоянию до нее. Коэффициент этой пропорциональности сейчас обозначают H0 и называют параметром Хаббла (по последним данным, он немного превышает 70 (км/с)/мегапарсек).

Статья Хаббла с графиком линейной зависимости между галактическими скоростями и дистанциями была опубликована в начале 1929 года. Годом ранее молодой американский математик Хауард Робертсон вслед за Леметром вывел эту зависимость из модели расширяющейся Вселенной, о чем Хаббл, возможно, знал. Однако в его знаменитой статье эта модель ни прямо, ни косвенно не упоминалась. Позднее Хаббл высказывал сомнения, что фигурирующие в его формуле скорости реально описывают движения галактик в космическом пространстве, однако всегда воздерживался от их конкретной интерпретации. Смысл своего открытия он видел в демонстрации пропорциональности галактических расстояний и красных смещений, остальное предоставлял теоретикам. Поэтому при всем уважении к Хабблу считать его первооткрывателем расширения Вселенной нет никаких оснований.


И все-таки она расширяется!

Тем не менее Хаббл подготовил почву для признания расширения Вселенной и модели Леметра. Уже в 1930 году ей воздали должное такие мэтры космологии, как Эддингтон и де Ситтер; немногим позже ученые заметили и по достоинству оценили работы Фридмана. В 1931 году с подачи Эддингтона Леметр перевел на английский свою статью (с небольшими купюрами) для «Ежемесячных известий Королевского астрономического общества». В этом же году Эйнштейн согласился с выводами Леметра, а годом позже совместно с де Ситтером построил модель расширяющейся Вселенной с плоским пространством и искривленным временем. Эта модель из-за своей простоты долгое время была очень популярна среди космологов.

В том же 1931 году Леметр опубликовал краткое (и без всякой математики) описание еще одной модели Вселенной, объединявшей в себе космологию и квантовую механику. В этой модели начальным моментом выступает взрыв первичного атома (Леметр также называл его квантом), породивший и пространство, и время. Поскольку тяготение тормозит расширение новорожденной Вселенной, его скорость уменьшается — не исключено, что почти до нуля. Позднее Леметр ввел в свою модель космологическую постоянную, заставившую Вселенную со временем перейти в устойчивый режим ускоряющегося расширения. Так что он предвосхитил и идею Большого взрыва, и современные космологические модели, учитывающие присутствие темной энергии. А в 1933 году он отождествил космологическую постоянную с плотностью энергии вакуума, о чем до того никто еще не додумался. Просто удивительно, насколько этот ученый, безусловно достойный титула первооткрывателя расширения Вселенной, опередил свое время!

На вопрос Чем подтверждается расширение Вселенной? заданный автором Alena соколовская лучший ответ это Считается, что это подтверждается смещением спектральных линий удаленных объектов в длинноволновую область в соответствии с эффектом Доплера. (Под цифрой один)
Международная группа учёных под руководством Алексея Вихлинина из Института космических исследований РАН экспериментально подтвердила ускоренное расширение Вселенной новым независимым методом и восстановила картину её развития во времени.
Алексей Вихлинин, выступая с докладом на конференции «Астрофизика высоких энергий сегодня и завтра» , прошедшей в ИКИ РАН, рассказал, что в прошлом веке по наблюдениям далёких сверхновых звёзд было показано, что наша Вселенная расширяется с ускорением.
Для объяснения этого ускорения ввели понятие «тёмной энергии» («невидимой энергии») . Её свойства оказались весьма необычными - так, например, тёмная энергия должна обладать отрицательным давлением, чтобы «расталкивать» Вселенную.
В основе работы международной группы учёных лежало исследование распределения массивных скоплений галактик в пространстве - основных элементов крупномасштабной структуры Вселенной. (Крупномасштабную структуру можно представить как скопления галактик, соединённые филаментами.
Скопление галактик Abel85, расположенное на расстоянии примерно 740 млн световых лет от Земли, зарегистрировано рентгеновской обсерваторией Чандра. Пурпурное свечение - это газ, разогретый до нескольких миллионов градусов.
Иллюстрация к модели роста космических структур Вселенной. Изображены три возраста Вселенной: 0,9 млрд, 3,2 млрд и 13,7 млрд лет (нынешнее состояние) .
Экспериментально обнаружено и подробно исследовано 86 наиболее массивных скоплений галактик во Вселенной, находящихся на расстоянии от нескольких сотен миллионов до нескольких миллиардов световых лет от Млечного Пути.
На основе полученных результатов астрофизики восстановили картину развития Вселенной начиная примерно с 2/3 её возраста до настоящего времени, то есть в течение последних 5,5 миллиарда лет (что примерно соответствует возрасту Солнца) . Результаты этого исследования показали, что рост крупномасштабной структуры в течение этого времени существенно замедлился.
Сила, с которой тёмная энергия «расталкивает» вещество, описывается параметром уравнения состояния тёмной энергии, имеющим физический смысл, сходный с жёсткостью пружины.
Астрофизики считают, что изучение природы тёмной энергии позволит создать новую теорию вакуума, которая, возможно, будет распространена на другие физические явления. Не исключено, что в рамках новой теории окажется, что наше пространство имеет не четыре, а пять измерений.
Википедия (не всегда правильная))) гласит:
Источник: ссылка

Ответ от 22 ответа [гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Чем подтверждается расширение Вселенной?

Ответ от хлебосольство [гуру]
всё это следствия лишь одной теории 🙂 той что в школе преподают.
есть более достоверные теории, с более интересными и правдивыми "доказательствами".


Ответ от Mikhail Levin [гуру]
3. - бред собачий, плотност неизвестна даже на уровне порядка. Вот открыли темную материю, вроде плотность стала оцениваться как минимум вдесятеро больше
4. как раз наоборот - и однородностью не пахнет, и изотропностью.
А самых главных признаков как раз не попало. Например, отстутствие звезд массой в 0.7-0.8 масс Солнца на поздних ступенях развития.


Ответ от Невроз [гуру]
О расширяющейся Вселенной свидетельствует красное смещение длин волн света, испускаемых галактиками в связи с их удалением от наблюдателя, согласно эффекта Доплера.
Первыми это заметили В. М. Слайфер и Э. П. Хаббл (американские астрономы). Они же
исследовали скорости движения галактик (от нескольких сотен до тысяч км/с) .
Но и все остальные явления перечислинные Вами также косвенно подтверждают гипотезу
"Большего Взрыва"


Ответ от Выброситься [гуру]
смещением светимости в красную сторону спектра..


Ответ от OOO АЛЬЯНС [новичек]
"Доплеровское смещение" показывает нам как удалялись (не удаляются в данный момент времени) от нас объекты (галактики, скопления галактик и т. д) в далёком прошлом, а в настоящее время эти объекты тормозят, а быть может и уже давным-давно двигаются к нам!


Модель однородной изотропной нестационарной горячей расширяющейся Вселенной, построенная на основе общей теории относительности и релятивистской теории тяготения, созданной А. Эйнштейном в 1916 г., принята в настоящее время в космологии в качестве основной. В основе этой модели лежат два предположения: свойства Вселенной одинаковы во всех ее точках (однородность) и направлениях (изотропность); наилучшее известное описание гравитационного поля - уравнения Эйнштейна. Из этого следует так называемая кривизна пространства и связь кривизны с плотностью массы (энергии). Космология, основанная на этих постулатах, - релятивистская.

Важный признак данной модели - ее нестационарность. Это определяется двумя постулатами теории относительности: 1) принципом относительности, гласящим, что во всех инерционных системах все законы сохраняются вне зависимости от того, с какими скоростями равномерно и прямолинейно движутся эти системы друг относительно друга; 2) экспериментально подтвержденным постоянством скорости света.

Из теории относительности следовало, что искривленное пространство не может быть стационарным: оно должно или расширяться или сжиматься. Первым это заметил петербургский физик и математик А. А. Фридман в 1922 г. В 1922-1924 гг. он выдвинул гипотезу расширения Вселенной. Эмпирическим подтверждением этой гипотезы стало открытие американским астрономом Э. Хабблом в 1929 г. так называемого красного смещения.

Астрономы изучают небесные тела по принимаемому от них излучению. Это излучение с помощью особых призм раскладывают, получая так называемый спектр, состоящий из семи основных цветов. Иногда мы видим на небе естественно образующийся спектр - радугу. Она появляется потому, что водяные капли разделяют солнечный луч на его составляющие. Ученые получают спектр искусственным путем. Каждое тело имеет свой особый спектр, т.е. определенное соотношение между цветами. Изучая его, можно сделать вывод о составе тел, скорости и направлении их движения.

Красное смещение - это понижение частот электромагнитного излучения: в видимой части спектра линии смещаются к его красному концу. Согласно обнаруженному ранее эффекту Доплера при удалении от нас какого-либо источника колебаний, воспринимаемая частота колебаний уменьшается, а длина волны соответственно увеличивается. При излучении происходит «покраснение», т.е. линии спектра сдвигаются в сторону более длинных красных волн.

Облегчает обнаружение красного смещения то обстоятельство, что проходящий через какую-либо среду свет поглощается химическими элементами данной среды. Так как энергетические уровни, на которых находятся электроны, входящие в состав химических элементов, различны, то каждый химический элемент поглощает особую часть света, оставляя темные линии в спектре прошедшего через него луча. По поглощенной части спектра можно определить состав среды, через которую прошел свет, а также скорость движения испускающего свет объекта. Темные линии смещаются при удалении объекта от нас в сторону красной части спектра.

Так вот, для всех далеких источников света красное смещение было зафиксировано, причем чем дальше находился источник, тем в большей степени. Красное смещение оказалось пропорционально расстоянию до источника, что и подтверждало гипотезу об удалении их, т.е. о расширении Метагалактики видимой части Вселенной. Открытие красного смещения позволило сделать вывод о «разбегании» галактик и расширении Вселенной. Красное смещение надежно подтверждает теоретический вывод о нестационарное™ нашей Вселенной.

Если Вселенная расширяется, значит, она возникла в определенный момент времени. Как это произошло? Составной частью модели расширяющейся Вселенной является представление о Большом взрыве, произошедшем примерно 13,7 плюс-минус 0,2 млрд лет назад. Автор модели Большого взрыва Г. А. Гамов, ученик А. А. Фридмана, а сам термин «Большой взрыв» принадлежит английскому астроному Ф. Хойлу. «Вначале был взрыв. Не такой взрыв, который знаком нам на Земле и который начинается из определенного центра и затем распространяется, захватывая все больше и больше пространства, а взрыв, который произошел одновременно везде, заполнив с самого начала все пространство, причем каждая частица материи устремилась прочь от любой другой частицы».

Начальное состояние Вселенной (так называемая точка сингулярности - от англ, «single» - единственный) характеризуется следующими свойствами: бесконечная плотность массы, пространство в виде точки и взрывное расши 1

рение. Модель Большого взрыва подтверждена открытием в 1965 г. реликтового излучения фотонов и нейтрино, образовавшихся на ранней стадии расширения Вселенной. Предсказание реликтового излучения было следствием модели Большого взрыва и расширяющейся Вселенной, а его обнаружение - подтверждением данного следствия. Слово «реликтовое» здесь не случайно - так и реликтовыми животными называют виды, появившиеся в древности и существующие до наших дней.

Возникает вопрос: из чего же образовалась Вселенная? В Библии утверждается, что Бог создал «все из ничего». После того, как в классической науке были сформулированы законы сохранения материи и энергии, некоторые философы предполагали, что под «ничем» имелся в виду первоначальный материальный хаос, упорядоченный Богом.

Как это ни удивительно, современная наука допускает, что все могло создасться из ничего. «Ничего» в научной терминологии называется вакуумом. Вакуум, который физика XIX в. считала пустотой, по современным научным представлениям является своеобразной формой материи, способной при определенных условиях «рождать» другие ее формы. Квантовая механика допускает, что вакуум может приходить в «возбужденное состояние», вследствие чего в нем может образоваться поле, а из него (что подтверждается современными физическими экспериментами) вещество.

Рождение Вселенной из «ничего» означает с современной научной точки зрения ее самопроизвольное возникновение из вакуума, когда в отсутствии частиц происходит спонтанное возникновение энергетического потенциала, т.е. поле как один из видов физической материи. Напряженность поля не имеет определенного значения (по «принципу неопределенности» Гейзенберга): поле постоянно испытывает флуктуации, хотя среднее (наблюдаемое) значение напряженности равно нулю.

Благодаря флуктуациям, вакуум приобретает особые свойства. В вакууме «частицы непрерывно создаются из ничего, как флуктуации энергии, и затем разрушаются снова, но исчезают настолько быстро, что непосредственно никогда не могут наблюдаться. Такие частицы называют виртуальными» 1 .

Флуктуация представляет собой появление виртуальных частиц, которые непрерывно рождаются и сразу же уничтожаются, но так же участвуют во взаимодействиях, как и реальные частицы. «Можно сказать, что каждая из сталкивающихся частиц окружена облаком виртуальных частиц. Когда частицы задевают друг друга краями своих облаков, виртуальные частицы превращаются в реальные» .

Итак, Вселенная могла образоваться из «ничего», т.е. из «возбужденного вакуума». Такая гипотеза, конечно, не является подтверждением искусственного творения мира. Все это могло произойти в соответствии с законами физики естественным путем, без вмешательства извне каких-либо идеальных сущностей. И в этом случае научные гипотезы не подтверждают и не опровергают религиозные догмы, которые лежат по ту сторону эмпирически подтверждаемого и опровергаемого естествознания.

На этом удивительное в современной физике не кончается. Отвечая на просьбу журналиста изложить суть теории относительности в одной фразе, А. Эйнштейн сказал: «Раньше полагали, что если бы из Вселенной исчезла вся материя, то пространство и время сохранились бы; теория относительности утверждает, что вместе с материей исчезли бы также пространство и время». Перенеся этот вывод на модель расширяющейся Вселенной, можно заключить, что до образования Вселенной (если наша Вселенная единственна) не было ни пространства, ни времени.

Отметим, что теория относительности соответствует двум разновидностям модели расширяющейся Вселенной. В первой из них кривизна пространства-времени отрицательна или в пределе равна нулю; в этом варианте все расстояния со временем неограниченно возрастают. Во второй разновидности модели кривизна положительна, пространство конечно, и в этом случае расширение со временем заменяется сжатием. В обоих вариантах теория относительности согласуется с нынешним эмпирически подтвержденным расширением Вселенной.

Человеческий ум неизбежно задается вопросами: что же было тогда, когда не было ничего, и что находится за пределами расширения. Первый вопрос, очевидно, противоречив сам по себе, второй выходит за рамки конкретной науки.

Астроном может сказать, что как ученый он не вправе отвечать на такие вопросы. Но поскольку они все же возникают, формулируются и возможные обоснования ответов, которые не столько научные, сколько натурфилософские.

Так, проводится различие между терминами «бесконечный» и «безграничный». Примером бесконечности, которая не безгранична, служит поверхность Земли: мы можем идти по ней бесконечно долго, но тем не менее она ограничена атмосферой сверху и земной корой снизу. Вселенная также может быть бесконечной, но ограниченной. С другой стороны, известна точка зрения, в соответствии с которой в материальном мире не может быть ничего бесконечного, потому что он развивается в виде конечных систем с петлями обратной связи, которыми эти системы создаются в процессе преобразования среды. Оставим эти соображения натурфилософии, потому что в естествознании в конечном счете критерием истины являются не абстрактные мысли, а эмпирическая проверка гипотез.

Что происходило на начальных этапах эволюции Вселенной, получивших название Большого взрыва? Главенствующей в космологии является гипотеза постепенной эволюции физической материи и образования существующих физических сил из первоначальной единой суперсилы. Выделяют следующие этапы Большого взрыва: инфляционный , суперструнный , этап великого объединения, электрослабый , кварковый, этап нуклеосинтеза.

Когда возраст Вселенной был менее 10~ 43 с, произошло ее интенсивное расширение (раздувание), названное инфляцией (хорошо всем известное слово употреблено здесь в особом специфическом смысле). «Раздувание предлагает естественный механизм для создания больших пространственных размеров во Вселенной» 1 .

Что расширялось при отсутствии в пространстве материи? Само пространство, а именно три пространственные измерения (в целом пространственных измерений на ранних стадиях эволюции Вселенной и в настоящее время насчитывают до 10). Это инфляционный этап. «Когда раздувание закончилось, произошла огромная передача энергии. Энергия, которая управляла инфляционным расширением, преобразовалась в элементарные частицы и излучение, что закончилось драматическим увеличением температуры Вселенной» 1 .

Когда возраст Вселенной достиг 10 -43 с, появились первые материальные объекты, получившие название супер- струн, поскольку по аналогии с обычными струнами они имеют длину и свойство колебаться. У струн нет толщины, а протяженность порядка 10 33 см. Это суперструнный этап. Предполагается, что колебания струн способны порождать все возможные частицы и физические поля. При этом «обычные» частицы и физические поля живут только в реальном мире с числом измерений 3+1 (три пространственных плюс время). «Привлекательная особенность такой картины состоит в том, что она дает возможность рассматривать все частицы в виде одного и того же фундаментального объекта - суперструны... Характеристики суперструны, такие как растяжение и энергия колебаний, могут изменяться, и эти вариации проявляются как частицы с различными свойствами... Другая привлекательная особенность супер- струниой теории состоит в том, что взаимодействия частиц естественно объясняются разрывом струны на части или соединением отдельных кусков вместе».

На каждом последующем этапе по мере расширения Вселенной температура постепенно снижается, определяя протекающие физические процессы. Следующий этап назван этапом великого объединения , поскольку единая суперсила разбилась в начале его на силу гравитации и силу великого объединения. На данном этапе продолжили расширяться только три пространственных измерения, известные нам как длина, ширина и высота. Снижение температуры заставило струны сжаться, и они начали походить на точечные объекты, которые известны сегодня как элементарные частицы и античастицы. В этот период элементарные частицы обменивались частицами, ответственными за перенос силы великого объединения и были неразличимы между собой.

В возрасте Вселенной 10 35 с сила великого объединения расщепилась на сильную и электрослабую силы. Начался электрослабый этап. Элементарные частицы утратили способность взаимодействовать между собой посредством силы великого объединения и разделились на кварки и лептоны, но благодаря электрослабой силе взаимодействовали с излучением и были не отличимы от него.

В возрасте Вселенной К) -10 с произошло расщепление электрослабых сил на слабые и электромагнитные. Начался кварковый этап . В начале его в отсутствии электрослабой силы более влиятельной стала сильная сила, которая объединила кварки в протоны и нейтроны.

В возрасте Вселенной 10 4 с при температуре в миллиард градусов начался процесс образования ядер атомов водорода и гелия (нуклеосинтез). Соответственно этот этап получил название нуклеосинтеза. Полностью данный процесс был закончен в течение приблизительно трех минут.

В последующие 300000 лет Вселенная продолжила расширяться, а температура понизилась до 3000 градусов. Из ядер атомов и электронов стали образовываться атомы и началась эра вещества. Появление атомов может рассматриваться как окончание Большого взрыва.

На этапах возникновения вещества Вселенная состояла из плотной смеси элементарных частиц, находившихся в состоянии плазмы (нечто среднее между твердым и жидким состоянием). Плазма расширялась все больше и больше под действием взрывной волны. Соответственно, температура ее падала, и в результате менялся состав вещества: «... когда температура была выше 1 млрд градусов, электромагнитное излучение имело достаточно энергии, чтобы разрушить любые ядра, которые, возможно, возникали. Аналогично, если атом, так или иначе, сумел сформироваться, когда температура была более, чем три тысячи градусов, излучение вскоре сталкивалось с ним и выбивало электроны, делая их свободными. Ниже этой температуры энергия излучения была уже недостаточной для того, чтобы освобождать электроны, и поэтому атомы выживали» 1 .

Через 0,01 с после начала Большого взрыва во Вселенной появилась смесь легких ядер ( / 3 водорода и */ 3 гелия). По своему химическому составу Вселенная и в настоящее время более чем на 90% состоит из водорода и гелия.

«Так как свободные заряженные частицы, способные взаимодействовать с основной частью излучения, отсутствовали, оно осталось, по существу, неискаженным при дальнейшем расширении Вселенной» . Поскольку атомы нейтральны, а фотоны, из которых состоит излучение, отрицательно заряжены, излучение отделилось от вещества, когда сформировались атомы. Обнаружение этого излучения, названного реликтовым, и стало решающим подтверждением модели Большого взрыва.

Там же. С. 67.

  • Линдсей Д. Э. Указ. соч. С. 77.
  • Там же. С. 78.
  • Там же. С. 78.
  • О том, что Вселенная образовалась вследствие Большого взрыва, знает каждый школьник. И каждый студент знает о том, что Вселенная расширяется, как надувающийся воздушный шарик. Галактики удаляются друг от друга, о чём говорят простейшие физические эффекты.

    В физике существует явление, которое называется эффект Допплера . С ним сталкивался каждый обыватель: когда мимо наблюдателя проезжает машина скорой помощи со включённым звуковым сигналом, то сначала звук кажется выше, а по мере удаления автомобиля — всё ниже (меняется частота звука). Этому есть простое объяснение: звук — это волны, которые проходят определённый путь до человеческого уха. По мере удлинения пути меняются и параметры приходящего сигнала.

    Астрофизики опираются на эффект Допплера и когда рассматривают Вселенную в телескопы. Ещё в 1920-х годах Жорж Леметр (Georges Lemaître) и Эдвин Хаббл (Edwin Hubble) заметили, что все галактики имеют красноватый оттенок, и чем дальше расположена галактика, тем отчётливее заметно понижение частот приходящего излучения (так называемое красное смещение).

    Свет также можно представить в виде волны, а значит эффект Допплера применим и к нему. Если не вдаваться в подробности, то удаляющиеся от наблюдателя предметы будут казаться красноватыми (красное смещение), а приближающиеся — синеватыми (синее смещение). Именно так родилась теория о том, что Вселенная расширяется.

    С тех пор множество раз выдвигались и другие научные гипотезы, но ни одна из них не получила разумного подтверждения.

    Сегодня немецкий физик-теоретик Христоф Веттерих (Christof Wetterich) из университета Гейдельберга предложил по-новому взглянуть на красноватый оттенок далёких галактик и забыть на время про эффект Допплера.

    Атомы, из которых состоят все небесные (и не только небесные) тела, испускают характерный свет, зависящий от масс составляющих атомы элементарных частиц, а конкретнее — электронов. Если масса атома растёт, то испускаемый им фотон будет обладать более высокой энергией. Высокие энергии соотносятся с высокими частотами, а самая короткая длина волны (и самая высокая частота) — у фиолетового и синего света. Набирающие массу частицы будут синеватыми, а "худеющие" — красноватыми.

    Но это вовсе не значит, что все галактики во Вселенной теряют массу. Поскольку скорость света хоть и недостижима, но конечна (около 300 тысяч километров в секунду в вакууме), чем дальше мы смотрим, тем более далёкие во времени события видим. К примеру, если астрономы говорят, что звезда находится в 20 тысячах световых лет от Земли, это значит, что мы видим её такой, какой она была 20 тысяч лет назад.

    Если бы все тела обладали бы раньше меньшей массой, чем обладают сегодня, и постоянно бы "тяжелели", то все галактики выглядели бы красноватыми по сравнению с тем, как выглядят сейчас, и степень этого красного смещения была бы пропорциональна удалённости галактики от Земли. Собственно говоря, это именно то, что мы наблюдаем сегодня.

    Если взглянуть на космос с этой точки зрения, то всё будет выглядеть иначе. Гипотеза Веттериха не исключает существование Большого взрыва и расширения Вселенной полностью. В её ранней истории был короткий период, описываемый инфляционной моделью , когда образовались элементарные частицы. Но до этого, согласно Веттериху, Большой взрыв был лишён сингулярности — бесконечной плотности Вселенной. Вместо этого Большой взрыв бесконечно растягивался во времени в прошлое. А сегодня космос уже статичен или даже схлопывается.

    У этой стройной гипотезы существует лишь один большой недостаток: её невозможно проверить экспериментально. Когда мы говорим о постоянном "утяжелении" всех тел во Вселенной, нужно учитывать, что масса есть размерная величина, а значит, она может быть измерена лишь относительно чего-то. А если растёт масса даже эталона килограмма, хранящегося в Международном бюро мер и весов, то с чем мы будет сравнивать массы звёзд и галактик?

    О своей гипотезе Веттерих которую можно почитать на сайте препринтов arXiv.org. И хотя она ещё требует экспертной оценки, пока что астрофизики в основном отзываются об идее положительно. По мнению коллег Веттериха, его гипотеза, как минимум, поможет физикам избежать однобокости мышления.

    "Вся космология сегодня опирается на Стандартную модель, теорию Большого взрыва и расширения Вселенной. Я считаю, что прежде чем залезать в комфортные рамки одной научной теории, необходимо рассмотреть все альтернативные объяснения физических явлений", — прокомментировал исследование Архун Берера (Arjun Berera), физик и профессор университета Эдинбурга.

    Сам Веттерих не считает свою гипотезу единственно верным объяснением всех процессов во Вселенной. Он говорит, что с помощью его модели можно будет по-другому взглянуть на некоторые явления. К примеру, физики уже пользуются различными интерпретациями квантовой механики, каждая из которых математически объяснима. В конце концов, отсутствие сингулярности Большого взрыва значительно упрощает понимание происхождения Вселенной.