Геометрическое распределение. Дискретные распределения в MS EXCEL

Статистика приходит к нам на помощь при решении многих задач, например: когда нет возможности построить детерминированную модель, когда слишком много факторов или когда нам необходимо оценить правдоподобие построенной модели с учётом имеющихся данных. Отношение к статистике неоднозначное. Есть мнение, что существует три вида лжи: ложь, наглая ложь и статистика. С другой стороны, многие «пользователи» статистики слишком ей верят, не понимая до конца, как она работает: применяя, например, тест к любым данным без проверки их нормальности. Такая небрежность способна порождать серьёзные ошибки и превращать «поклонников» теста в ненавистников статистики. Попробуем поставить токи над i и разобраться, какие модели случайных величин должны использоваться для описания тех или иных явлений и какая между ними существует генетическая связь.

В первую очередь, данный материал будет интересен студентам, изучающим теорию вероятностей и статистику, хотя и «зрелые» специалисты смогут его использовать в качестве справочника. В одной из следующих работ я покажу пример использования статистики для построения теста оценки значимости показателей биржевых торговых стратегий.

В работе будут рассмотрены :


В конце статьи будет задан для размышлений. Свои размышления по этому поводу я изложу в следующей статье.

Некоторые из приведённых непрерывных распределений являются частными случаями .

Дискретные распределения

Дискретные распределения используются для описания событий с недифференцируемыми характеристиками, определёнными в изолированных точках. Проще говоря, для событий, исход которых может быть отнесён к некоторой дискретной категории: успех или неудача, целое число (например, игра в рулетку, в кости), орёл или решка и т.д.

Описывается дискретное распределение вероятностью наступления каждого из возможных исходов события. Как и для любого распределения (в том числе непрерывного) для дискретных событий определены понятия матожидания и дисперсии. Однако, следует понимать, что матожидание для дискретного случайного события - величина в общем случае нереализуемая как исход одиночного случайного события, а скорее как величина, к которой будет стремиться среднее арифметическое исходов событий при увеличении их количества.

В моделировании дискретных случайных событий важную роль играет комбинаторика, так как вероятность исхода события можно определить как отношение количества комбинаций, дающих требуемый исход к общему количеству комбинаций. Например: в корзине лежат 3 белых мяча и 7 чёрных. Когда мы выбираем из корзины 1 мяч, мы можем сделать это 10-ю разными способами (общее количество комбинаций), но только 3 варианта, при которых будет выбран белый мяч (3 комбинации, дающие требуемый исход). Таким образом, вероятность выбрать белый мяч: ().

Следует также отличать выборки с возвращением и без возвращения. Например, для описания вероятности выбора двух белых мячей важно определить, будет ли первый мяч возвращён в корзину. Если нет, то мы имеем дело с выборкой без возвращения () и вероятность будет такова: - вероятность выбрать белый мяч из начальной выборки умноженная на вероятность снова выбрать белый мяч из оставшихся в корзине. Если же первый мяч возвращается в корзину, то это выборка с возвращением (). В этом случае вероятность выбора двух белых мячей составит .

Если несколько формализовать пример с корзиной следующим образом: пусть исход события может принимать одно из двух значений 0 или 1 с вероятностями и соответственно, тогда распределение вероятности получения каждого из предложенных исходов будет называться распределение Бернулли:

По сложившейся традиции, исход со значением 1 называется «успех», а исход со значением 0 - «неудача». Очевидно, что получение исхода «успех или неудача» наступает с вероятностью .

Матожидание и дисперсия распределения Бернулли:


Количество успехов в испытаниях, исход которых распределен по с вероятностью успеха (пример с возвращением мячей в корзину), описывается биномиальным распределением:


По другому можно сказать, что биномиальное распределение описывает сумму из независимых случайных величин, умеющих распределение с вероятностью успеха .
Матожидание и дисперсия:



Биномиальное распределение справедливо только для выборки с возвращением, то есть, когда вероятность успеха остаётся постоянной для всей серии испытаний.

Если величины и имеют биномиальные распределения с параметрами и соответственно, то их сумма также будет распределена биномиально с параметрами .

Представим ситуацию, что мы вытягиваем мячи из корзины и возвращаем обратно до тех пор, пока не будет вытянут белый шар. Количество таких операций описывается геометрическим распределением. Иными словами: геометрическое распределение описывает количество испытаний до первого успеха при вероятности наступления успеха в каждом испытании . Если подразумевается номер испытания, в котором наступил успех, то геометрическое распределение будет описываться следующей формулой:


Матожидание и дисперсия геометрического распределения:

Геометрическое распределение генетически связано с распределением, которое описывает непрерывную случайную величину: время до наступления события, при постоянной интенсивности событий. Геометрическое распределение также является частным случаем .

Распределение Паскаля является обобщением распределения: описывает распределение количества неудач в независимых испытаниях, исход которых распределен по с вероятностью успеха до наступления успехов в сумме. При , мы получим распределение для величины .


где - число сочетаний из по .

Матожидание и дисперсия отрицательного биномиального распределения:



Сумма независимых случайных величин, распределённых по Паскалю, также распределена по Паскалю: пусть имеет распределение , а - . Пусть также и независимы, тогда их сумма будет иметь распределение

До сих пор мы рассматривали примеры выборок с возвращением, то есть, вероятность исхода не менялась от испытания к испытанию.

Теперь рассмотрим ситуацию без возвращения и опишем вероятность количества успешных выборок из совокупности с заранее известным количеством успехов и и неудач (заранее известное количество белых и чёрных мячей в корзине, козырных карт в колоде, бракованных деталей в партии и т.д.).

Пусть общая совокупность содержит объектов, из них помечены как «1», а как «0». Будем считать выбор объекта с меткой «1», как успех, а с меткой «0» как неудачу. Проведём n испытаний, причём выбранные объектв больше не будут участвовать в дальнейших испытаниях. Вероятность наступления успехов будет подчиняться гипергеометрическому распределению:


где - число сочетаний из по .

Матожидание и дисперсия:


Распределение Пуассона


(взято отсюда)

Распределение Пуассона значительно отличается от рассмотренных выше распределений своей «предметной» областью: теперь рассматривается не вероятность наступления того или иного исхода испытания, а интенсивность событий, то есть среднее количество событий в единицу времени.

Распределение Пуассона описывает вероятность наступления независимых событий за время при средней интенсивности событий :


Матожидание и дисперсия распределения Пуассона:

Дисперсия и матожидание распределения Пуассона тождественно равны.

Распределение Пуассона в сочетании с , описывающим интервалы времени между наступлениями независимых событий, составляют математическую основу теории надёжности.

Плотность вероятности произведения случайных величин x и y () с распределениями и может быть вычислена следующим образом:

Некоторые из приведённых ниже распределений являются частными случаями распределения Пирсона, которое, в свою очередь, является решением уравнения:


где и - параметры распределения. Известны 12 типов распределения Пирсона, в зависимости от значений параметров.

Распределения, которые будут рассмотрены в этом разделе, имеют тесные взаимосвязи друг с другом. Эти связи выражаются в том, что некоторые распределения являются частными случаями других распределений, либо описывают преобразования случайных величин, имеющих другие распределения.

На приведённой ниже схеме отражены взаимосвязи между некоторыми из непрерывных распределений, которые будут рассмотрены в настоящей работе. На схеме сплошными стрелками показано преобразование случайных величин (начало стрелки указывает на изначальное распределение, конец стрелки - на результирующее), а пунктирными - отношение обобщения (начало стрелки указывает на распределение, являющееся частным случаем того, на которое указывает конец стрелки). Для частных случаев распределения Пирсона над пунктирными стрелками указан соответствующий тип распределения Пирсона.


Предложенный ниже обзор распределений охватывает многие случаи, которые встречаются в анализе данных и моделировании процессов, хотя, конечно, и не содержит абсолютно все известные науке распределения.

Нормальное распределение (распределение Гаусса)


(взято отсюда)

Плотность вероятности нормального распределения с параметрами и описывается функцией Гаусса:

Если и , то такое распределение называется стандартным.

Матожидание и дисперсия нормального распределения:



Область определения нормального распределения - множество дествительных чисел.

Нормальное распределение является распределение типа VI.

Сумма квадратов независимых нормальных величин имеет , а отношение независимых Гауссовых величин распределено по .

Нормальное распределение является бесконечно делимым: сумма нормально распределенных величин и с параметрами и соответственно также имеет нормальное распределение с параметрами , где и .

Нормальное распределение хорошо моделирует величины, описывающие природные явления, шумы термодинамической природы и погрешности измерений.

Кроме того, согласно центральной предельной теореме, сумма большого количества независимых слагаемых одного порядка сходится к нормальному распределению, независимо от распределений слагаемых. Благодаря этому свойству, нормальное распределение популярно в статистическом анализе, многие статистические тесты рассчитаны на нормально распределенные данные.

На бесконечной делимости нормального распределении основан z-тест. Этот тест используется для проверки равенства матожидания выборки нормально распределённых величин некоторому значению. Значение дисперсии должно быть известно . Если значение дисперсии неизвестно и рассчитывается на основании анализируемой выборки, то применяется t-тест, основанный на .

Пусть у нас имеется выборка объёмом n независимых нормально распределенных величин из генеральной совокупности со стандартным отклонением выдвинем гипотезу, что . Тогда величина будет иметь стандартное нормальное распределение. Сравнивая полученное значение z с квантилями стандартного распределения можно принимать или отклонять гипотезу с требуемым уровнем значимости.

Благодаря широкой распространённости распределения Гаусса, многие, не очень хорошо знающие статистику исследователи забывают проверять данные на нормальность, либо оценивают график плотности распределения «на глазок», слепо полагая, что имеют дело с Гауссовыми данными. Соответственно, смело применяя тесты, предназначенные для нормального распределения и получая совершенно некорректные результаты. Наверное, отсюда и пошла молва про статистику как самый страшный вид лжи.

Рассмотрим пример: нам надо измерить сопротивления набора резистров некоторого номинала. Сопротивление имеет физическую природу, логично предположить, что распределение отклонений сопротивления от номинала будет нормальным. Меряем, получаем колоколообразную функцию плотности вероятности для измеренных значений с модой в окрестности номинала резистров. Это нормальное распределение? Если да, то будем искать бракованные резистры используя , либо z-тест, если нам заранее известна дисперсия распределения. Думаю, что многие именно так и поступят.

Но давайте внимательнее посмотрим на технологию измерения сопротивления: сопротивление определяется как отношение приложенного напряжения к протекающему току. Ток и напряжение мы измеряли приборами, которые, в свою очередь, имеют нормально распределенные погрешности. То есть, измеренные значения тока и напряжения - это нормально распределенные случайные величины с матожиданиями, соответствующими истинным значениям измеряемых величин. А это значит, что полученные значения сопротивления распределены по , а не по Гауссу.

Распределение описывает сумму квадратов случайных величин , каждая из которых распределена по стандартному нормальному закону :

Где - число степеней свободы, .

Матожидание и дисперсия распределения :



Область определения - множество неотрицательных натуральных чисел. является бесконечно делимым распределением. Если и - распределены по и имеют и степеней свободы соответственно, то их сумма также будет распределена по и иметь степеней свободы.

Является частным случаем (а следовательно, распределением типа III) и обобщением . Отношение величин, распределенных по распределено по .

На распределении основан критерий согласия Пирсона. с помощью этого критерия можно проверять достоверность принадлежности выборки случайной величины некоторому теоретическому распределению.

Предположим, что у нас имеется выборка некоторой случайной величины . На основании этой выборки рассчитаем вероятности попадания значений в интервалов (). Пусть также есть предположение об аналитическом выражении распределения, в соответствие с которым, вероятности попадания в выбранные интервалы должны составлять . Тогда величины будут распределены по нормальному закону.

Приведем к стандартному нормальному распределению: ,
где и .

Полученные величины имеют нормальное распределение с параметрами (0, 1), а следовательно, сумма их квадратов распределена по с степенью свободы. Снижение степени свободы связано с дополнительным ограничением на сумму вероятностей попадания значений в интервалы: она должна быть равна 1.

Сравнивая значение с квантилями распределения можно принять или отклонить гипотезу о теоретическом распределении данных с требуемым уровнем значимости.

Распределение Стьюдента используется для проведения t-теста: теста на равенство матожидания выборки распределённых случайных величин некоторому значению, либо равенства матожиданий двух выборок с одинаковой дисперсией (равенство дисперсий необходимо проверять ). Распределение Стьюдента описывает отношение распределённой случайной величины к величине, распределённой по .

Пусть и независимые случайные величины, имеющие со степенями свободы и соответственно. Тогда величина будет иметь распределение Фишера со степенями свободы , а величина - распределение Фишера со степенями свободы .
Распределение Фишера определено для действительных неотрицательных аргументов и имеет плотность вероятности:


Матожидание и дисперсия распределения Фишера:



Матожидание определено для , а диспересия - для .

На распределении Фишера основан ряд статистических тестов, таких как оценка значимости параметров регрессии, тест на гетероскедастичность и тест на равенство дисперсий выборок (f-тест, следует отличать от точного теста Фишера).

F-тест: пусть имеются две независимые выборки и распределенных данных объёмами и соответственно. Выдвинем гипотезу о равенстве дисперсий выборок и проверим её статистически.

Рассчитаем величину . Она будет иметь распределение Фишера со степенями свободы .

Сравнивая значение с квантилями соответствующего распределения Фишера, мы можем принять или отклонить гипотезу о равенстве дисперсий выборок с требуемым уровнем значимости.

Экспоненциальное (показательное) распределение и распределение Лапласа (двойное экспоненциальное, двойное показательное)


(взято отсюда)

Экспоненциальное распределение описывает интервалы времени между независимыми событиями, происходящими со средней интенсивностью . Количество наступлений такого события за некоторый отрезок времени описывается дискретным . Экспоненциальное распределение вместе с составляют математическую основу теории надёжности.

Кроме теории надёжности, экспоненциальное распределение применяется в описании социальных явлений, в экономике, в теории массового обслуживания, в транспортной логистике - везде, где необходимо моделировать поток событий.

Экспоненциальное распределение является частным случаем (для n=2), а следовательно, и . Так-как экспоненциально распределённая величина является величиной хи-квадрат с 2-мя степенями свободы, то она может быть интерпретирована как сумма квадратов двух независимых нормально распределенных величин.

Кроме того, экспоненциальное распределение является честным случаем

Пусть производится стрельба по заданной мишени до первого попадания, при этом вероятность p попадания в цель в каждом выстреле одна и та же и не зависит от результатов предыдущих выстрелов. Другими словами, в рассматриваемом опыте осуществляется схема Бернулли. В качестве случайной величины X будем рассматривать число произведенных выстрелов. Очевидно, что возможными значениями случайной величины X являются натуральные числа: x 1 =1, x 2 =2, … тогда вероятность того, что понадобится k выстрелов будет равна

Полагая в этой формуле k =1,2, … получим геометрическую прогрессию с первым членом p и множителем q :

По этой причине распределение, определяемое формулой (6.11) называется геометрическим .

Используя формулу суммы бесконечно убывающей геометрической прогрессии, легко убедится, что

.

Найдем числовые характеристики геометрического распределения.

По определению математического ожидания для ДСВ имеем

.

Дисперсию вычислим по формуле

.

Для этого найдем

.

Следовательно,

.

Итак, математическое ожидание и дисперсия геометрического распределения равна

. (6.12)

6.4.* Производящая функция

При решении задач, связанных с ДСВ, часто используются методы комбинаторики. Одним из наиболее развитых теоретических методов комбинаторного анализа является метод производящих функций, который является одним из самых сильных методов и в применениях. Кратко познакомимся с ним.

Если случайная величина  принимает только целые неотрицательные значения, т.е.

,

то производящей функцией распределения вероятностей случайной величины  называется функция

, (6.13)

где z – действительная или комплексная переменная. Отметим, что между множеством производящих функций   (x ) и множеством распределений {P(=k )} существует взаимно однозначное соответствие .

Пусть случайная величина  имеет биномиальное распределение

.

Тогда, используя формулу бинома Ньютона, получим

,

т.е. производящая функция биномиального распределения имеет вид

. (6.14)

Добавление. Производящая функция распределения Пуассона

имеет вид

. (6.15)

Производящая функция геометрического распределения

имеет вид

. (6.16)

При помощи производящих функций удобно находить основные числовые характеристики ДСВ. Например, первый и второй начальный моменты связаны с производящей функцией следующими равенствами:

, (6.17)

. (6.18)

Метод производящих функций часто бывает удобен тем, что в некоторых случаях функцию распределения ДСВ очень трудно определить, тогда как производящую функцию порой легко найти. Например, рассмотрим схему последовательных независимых испытаний Бернулли, но внесем в нее одно изменение. Пусть вероятность осуществления события A от испытания к испытанию меняется. Это означает, что формула Бернулли для такой схемы становится неприменимой. Задача нахождения функции распределения в таком случае представляет значительные трудности. Однако для данной схемы легко находится производящая функция, а, следовательно, легко находятся и соответствующие числовые характеристики.

Широкое применение производящих функций основано на том, что изучение сумм случайных величин можно заменить изучением произведений соответствующих производящих функций. Так, если  1 ,  2 , …,  n независимы, то

Пусть p k =P k (A ) – вероятность "успеха" в k -м испытании в схеме Бернулли (соответственно, q k =1–p k – вероятность "неуспеха" в k -м испытании). Тогда, в соответствие с формулой (6.19), производящая функция будет иметь вид

. (6.20)

Пользуясь данной производящей функцией, можем написать

.

Здесь учтено, что p k + q k =1. Теперь по формуле (6.1) найдем второй начальный момент. Для этого предварительно вычислим

и
.

В частном случае p 1 =p 2 =…=p n =p (т.е. в случае биномиального распределения) из полученных формул следует, что M=np , D=npq .

В геометрическом распределении опыты в схеме Бернулли проводятся до первого успеха, с вероятностью успеха р в единичном опыте.
Примерами таких величин могут быть:

  • число выстрелов до первого попадания;
  • число испытаний прибора до первого отказа;
  • число шаров до первого появления белого. см. решение ;
  • число бросаний монеты до первого выпадения решки и т.д.
Ряд геометрического распределения ДСВ имеет вид:
X 1 2 3 m
p p qp q 2 p q m-1 p

Вероятности образуют геометрическую прогрессию с первым членом р и знаменателем q .
Математическое ожидание и дисперсия случайной величины Х, имеющей геометрическое распределение с параметром р, равны:

Гипергеометрическое распределение

Дискретная случайная величина имеет гипергеометрическое распределение с параметрами n, k, m, если она принимает значения 0, 1, 2, ... с вероятностями .
Гипергеометрическое распределение имеет случайная величина Х, равная числу объектов, обладающих заданным свойством, среди m объектов, случайно извлеченных (без возврата) из совокупности n объектов, k из которых обладают этим свойством.
Например:
  • В партии из 10 деталей 3 бракованных. Извлекается 4 детали. Х – число годных деталей среди извлеченных. (m = 4, n = 10, k = 3). см. решение
Математическое ожидание случайной величины Х, имеющей гипергеометрическое распределение, и ее дисперсия равны:

Пример №1 . В урне 2 белых и 3 черных шара. Шары наудачу достают из урны без возвращения до тех пор, пока не появится белый шар. Как только это произойдет, процесс прекращается. Составить таблицу распределения случайной величины X – числа произведенных опытов, найти F(x), P(X ≤ 2), M(X), D(X).·
Решение: Обозначим через А – появление белого шара. Опыт может быть проведен только один раз, если белый шар появится сразу:. Если же в первый раз белый шар не появился, а появился при втором извлечении, то X=2. Вероятность такого события равна . Аналогично: , , . Запишем данные в таблицу:


X

1

2

3

4

P

0,4

0,3

0,2

0,1

НайдемF(x):

Найдем P(X ≤ 2) = P(X = 1 или X = 2) = 0,4 + 0,3 = 0,7
M(X) = 1 · 0,4 + 2 · 0,3 +3 · 0,2 + 4 · 0,1 = 2.
D(X) = (1-2) 2 · 0,4 + (2-2) 2 · 0,3 +(3-2) 2 · 0,2 + (4-2) 2 · 0,1 = 1.

Пример №2 . В ящике содержится 11 деталей, среди которых 5 бракованных. Сборщик наудачу извлекает 4 деталей.
1. Найти вероятность того, что среди извлеченных деталей: a ) 4 бракованных; b ) одна бракованная; c ) две бракованные; d ) хотя бы одна бракованная.
2. Составить закон распределения случайной величины X – числа бракованных деталей среди извлеченных.
3. Найти M(X), D(X), σ(X).
4. Вычислить P(1
Решение:
1. Найти вероятность того, что среди извлеченных деталей:
a ) 4 бракованных;

b ) одна бракованная;
Общее число возможных элементарных исходов для данных испытаний равно числу способов, которыми можно извлечь 4 детали из 11:

Подсчитаем число исходов, благоприятствующих данному событию (среди 4 деталей ровно 1 деталь дефектная):

Остальные 3 детали можно выбрать из 7:

Следовательно, число благоприятствующих исходов равно: 5*20 = 100
Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов: P(1) = 100/330 = 0,303
c ) две бракованные;

d ) хотя бы одна бракованная.
Вероятность того, что нет дефектных деталей. X = 0.

Тогда вероятность того, что хотя бы одна бракованная составит:
P = 1 – P(0) = 1 – 0,0455 = 0,95

2. Составим закон распределения P(x), X -числа бракованных деталей среди извлеченных.
Найдем вероятность появления трех бракованных изделий.


X

0

1

2

3

4

P

0,0455

0,303

0,4545

0,182

0,015

2. Найдем M(X), D(X), σ(X).
Математическое ожидание находим по формуле m = ∑x i p i .
Математическое ожидание M[X] .
M[x] = 0*0.0455 + 1*0.303 + 2*0.4545 + 3*0.182 + 4*0.015 = 1.818
Дисперсию находим по формуле d = ∑x 2 i p i - M[x] 2 .
Дисперсия D[X] .
D[X] = 0 2 *0.0455 + 1 2 *0.303 + 2 2 *0.4545 + 3 2 *0.182 + 4 2 *0.015 - 1.818 2 = 0.694
Среднее квадратическое отклонение σ(x) .

3. Вычислим P(1F(x≤0) = 0
F(0< x ≤1) = 0.0455
F(1< x ≤2) = 0.303 + 0.0455 = 0.349
F(2< x ≤3) = 0.455 + 0.349 = 0.803
F(3< x ≤4) = 0.182 + 0.803 = 0.985
F(x>4) = 1
Вероятность попадания СВ в тот ли иной интервал находится по формуле:
P(a ≤ X < b) = F(b) - F(a)
Найдем вероятность того, что СВ будет находиться в интервале 1 ≤ X < 4
P(1 ≤ X < 4) = F(4) - F(1) = 0.985 - 0.0455 = 0.9395

Пример №3 . В партии 7 деталей 3 бракованные. Контролер наудачу достает 4 детали. Составить закон распределения случайной величины Х – числа годных деталей в выборке. Найти математическое ожидание и дисперсию Х. Построить график функции распределения.
Всего исправных деталей: 7-3 = 4
1. Найдем вероятность того, что среди выбранных 4 деталей одна исправная.
Общее число возможных элементарных исходов для данных испытаний равно числу способов, которыми можно извлечь 4 детали из 7:

Подсчитаем число исходов, благоприятствующих данному событию.

Рассмотрим Геометрическое распределение, вычислим его математическое ожидание и дисперсию. С помощью функции MS EXCEL ОТРБИНОМ.РАСП() построим графики функции распределения и плотности вероятности.

Геометрическое распределение (англ. Geometric distribution ) является частным случаем (при r=1).

Пусть проводятся испытания, в каждом из которых может произойти только событие «успех» с вероятностью p или событие «неудача» с вероятностью q =1-p ().

Определим x как номер испытания, в котором был зарегистрирован первый успех. В этом случае случайная величина x будет иметь Геометрическое распределение:

Геометрическое распределение в MS EXCEL

В MS EXCEL, начиная с версии 2010, для Отрицательного Биномиального распределения имеется функция ОТРБИНОМ.РАСП() , английское название NEGBINOM.DIST(), которая позволяет вычислить вероятность возникновения количества неудач до получения заданного числа успеха при заданной вероятности успеха.

Для Геометрического распределения второй аргумент этой функции должен быть 1, т.к. нас интересует только первый успех.

Это определение несколько отличается от формулировки приведенной выше, где вычисляется вероятность, что первый успех произойдет после x испытаний . Различие сводится к диапазону изменения диапазона x : если вероятность определена через количество испытаний, то х может принимать значения начиная с 1, а если через количество неудач, то – начиная с 0. Поэтому справедлива формула: p(x_неудач )= p(x_испытаний -1). См. файл примера лист Пример , где приведено 2 способа расчета.

Ниже используется подход, принятый в функции MS EXCEL: через количество неудач.

Чтобы вычислить функцию плотности вероятности p(x), см. формулу выше, необходимо установить четвертый аргумент в функции ОТРБИНОМ.РАСП() равным ЛОЖЬ. Для вычисления , необходимо установить четвертый аргумент равным ИСТИНА.

Примечание : До MS EXCEL 2010 в EXCEL была функция ОТРБИНОМРАСП() , которая позволяет вычислить только плотность вероятности . В файле примера приведена формула на основе функции ОТРБИНОМРАСП() для вычисления интегральной функции распределения . Там же приведена формула для вычисления вероятности через определение.

В файле примера приведены графики плотности распределения вероятности и интегральной функции распределения .

Примечание : Для удобства написания формул для параметра p в файле примера создано .

Примечание : В функции ОТРБИНОМ.РАСП() при нецелом значении х , . Например, следующие формулы вернут одно и тоже значение:
ОТРБИНОМ.РАСП(2 ; 1; 0,4; ИСТИНА)=
ОТРБИНОМ.РАСП(2,9 ; 1; 0,4; ИСТИНА)

Задачи

Решения задач приведены в файле примера на листе Пример .

Задача1 . Нефтяная компания бурит скважины для добычи нефти. Вероятность обнаружить нефть в скважине равна 20%.
Какова вероятность, что первая нефть будет получена именно в третью попытку?
Какова вероятность, что для обнаружения первой нефти потребуется три попытки?
Решение1 :
=ОТРБИНОМ.РАСП(3-1; 1; 0,2; ЛОЖЬ)
=ОТРБИНОМ.РАСП(3-1; 1; 0,2; ИСТИНА)

Задача2 . Рейтинговое агентство делает опрос случайных прохожих в городе о любимой марке автомобиля. Пусть известно, что у 1% горожан любимым автомобилем является Lada Granta . Какова вероятность, что встретить первого почитателя этой марки автомобиля после опроса 10 человек?
Решение2 : =ОТРБИНОМ.РАСП(10-1; 1; 0,01; ИСТИНА )=9,56%

Можно выделить наиболее часто встречающиеся законы распределения дискретных случайных величин:

  • Биномиальный закон распределения
  • Пуассоновский закон распределения
  • Геометрический закон распределения
  • Гипергеометрический закон распределения

Для данных распределений дискретных случайных величин расчет вероятностей их значений, а также числовых характеристик (математическое ожидание, дисперсия, и т.д.) производится по определенных «формулам». Поэтому очень важно знать данные типы распределений и их основные свойства.


1. Биномиальный закон распределения.

Дискретная случайная величина $X$ подчинена биномиальному закону распределения вероятностей, если она принимает значения $0,\ 1,\ 2,\ \dots ,\ n$ с вероятностями $P\left(X=k\right)=C^k_n\cdot p^k\cdot {\left(1-p\right)}^{n-k}$. Фактически, случайная величина $X$ - это число появлений события $A$ в $n$ независимых испытаний . Закон распределения вероятностей случайной величины $X$:

$\begin{array}{|c|c|}
\hline
X_i & 0 & 1 & \dots & n \\
\hline
p_i & P_n\left(0\right) & P_n\left(1\right) & \dots & P_n\left(n\right) \\
\hline
\end{array}$

Для такой случайной величины математическое ожидание $M\left(X\right)=np$, дисперсия $D\left(X\right)=np\left(1-p\right)$.

Пример . В семье двое детей. Считая вероятности рождения мальчика и девочки равными $0,5$, найти закон распределения случайной величины $\xi $ - числа мальчиков в семье.

Пусть случайная величина $\xi $ - число мальчиков в семье. Значения, которые может принимать $\xi:\ 0,\ 1,\ 2$. Вероятности этих значений можно найти по формуле $P\left(\xi =k\right)=C^k_n\cdot p^k\cdot {\left(1-p\right)}^{n-k}$, где $n=2$ - число независимых испытаний, $p=0,5$ - вероятность появления события в серии из $n$ испытаний. Получаем:

$P\left(\xi =0\right)=C^0_2\cdot {0,5}^0\cdot {\left(1-0,5\right)}^{2-0}={0,5}^2=0,25;$

$P\left(\xi =1\right)=C^1_2\cdot 0,5\cdot {\left(1-0,5\right)}^{2-1}=2\cdot 0,5\cdot 0,5=0,5;$

$P\left(\xi =2\right)=C^2_2\cdot {0,5}^2\cdot {\left(1-0,5\right)}^{2-2}={0,5}^2=0,25.$

Тогда закон распределения случайной величины $\xi $ есть соответствие между значениями $0,\ 1,\ 2$ и их вероятностями, то есть:

$\begin{array}{|c|c|}
\hline
\xi & 0 & 1 & 2 \\
\hline
P(\xi) & 0,25 & 0,5 & 0,25 \\
\hline
\end{array}$

Сумма вероятностей в законе распределения должна быть равна $1$, то есть $\sum _{i=1}^{n}P(\xi _{{\rm i}})=0,25+0,5+0,25=1 $.

Математическое ожидание $M\left(\xi \right)=np=2\cdot 0,5=1$, дисперсия $D\left(\xi \right)=np\left(1-p\right)=2\cdot 0,5\cdot 0,5=0,5$, среднее квадратическое отклонение $\sigma \left(\xi \right)=\sqrt{D\left(\xi \right)}=\sqrt{0,5}\approx 0,707$.

2. Закон распределения Пуассона.

Если дискретная случайная величина $X$ может принимать только целые неотрицательные значения $0,\ 1,\ 2,\ \dots ,\ n$ с вероятностями $P\left(X=k\right)={{{\lambda }^k}\over {k!}}\cdot e^{-\lambda }$, то говорят, что она подчинена закону распределения Пуассона с параметром $\lambda $. Для такой случайной величины математическое ожидание и дисперсия равны между собой и равны параметру $\lambda $, то есть $M\left(X\right)=D\left(X\right)=\lambda $.

Замечание . Особенность этого распределения заключается в том, что мы на основании опытных данных находим оценки $M\left(X\right),\ D\left(X\right)$, если полученные оценки близки между собой, то у нас есть основание утверждать, что случайная величина подчинена закону распределения Пуассона.

Пример . Примерами случайных величин, подчиненных закону распределения Пуассона, могут быть: число автомашин, которые будут обслужены завтра автозаправочной станцией; число бракованных изделий в произведенной продукции.

Пример . Завод отправил на базу $500$ изделий. Вероятность повреждения изделия в пути равна $0,002$. Найти закон распределения случайной величины $X$, равной числу поврежденных изделий; чему равно $M\left(X\right),\ D\left(X\right)$.

Пусть дискретная случайная величина $X$ - число поврежденных изделий. Такая случайная величина подчинена закону распределения Пуассона с параметром $\lambda =np=500\cdot 0,002=1$. Вероятности значений равны $P\left(X=k\right)={{{\lambda }^k}\over {k!}}\cdot e^{-\lambda }$. Очевидно, что все вероятности всех значений $X=0,\ 1,\ \dots ,\ 500$ перечислить невозможно, поэтому мы ограничимся лишь первыми несколькими значениями.

$P\left(X=0\right)={{1^0}\over {0!}}\cdot e^{-1}=0,368;$

$P\left(X=1\right)={{1^1}\over {1!}}\cdot e^{-1}=0,368;$

$P\left(X=2\right)={{1^2}\over {2!}}\cdot e^{-1}=0,184;$

$P\left(X=3\right)={{1^3}\over {3!}}\cdot e^{-1}=0,061;$

$P\left(X=4\right)={{1^4}\over {4!}}\cdot e^{-1}=0,015;$

$P\left(X=5\right)={{1^5}\over {5!}}\cdot e^{-1}=0,003;$

$P\left(X=6\right)={{1^6}\over {6!}}\cdot e^{-1}=0,001;$

$P\left(X=k\right)={{{\lambda }^k}\over {k!}}\cdot e^{-\lambda }$

Закон распределения случайной величины $X$:

$\begin{array}{|c|c|}
\hline
X_i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & ... & k \\
\hline
P_i & 0,368; & 0,368 & 0,184 & 0,061 & 0,015 & 0,003 & 0,001 & ... & {{{\lambda }^k}\over {k!}}\cdot e^{-\lambda } \\
\hline
\end{array}$

Для такой случайной величины математическое ожидание и дисперсия равным между собой и равны параметру $\lambda $, то есть $M\left(X\right)=D\left(X\right)=\lambda =1$.

3. Геометрический закон распределения.

Если дискретная случайная величина $X$ может принимать только натуральные значения $1,\ 2,\ \dots ,\ n$ с вероятностями $P\left(X=k\right)=p{\left(1-p\right)}^{k-1},\ k=1,\ 2,\ 3,\ \dots $, то говорят, что такая случайная величина $X$ подчинена геометрическому закону распределения вероятностей. Фактически, геометрическое распределения представляется собой испытания Бернулли до первого успеха.

Пример . Примерами случайных величин, имеющих геометрическое распределение, могут быть: число выстрелов до первого попадания в цель; число испытаний прибора до первого отказа; число бросаний монеты до первого выпадения орла и т.д.

Математическое ожидание и дисперсия случайной величины, подчиненной геометрическому распределению, соответственно равны $M\left(X\right)=1/p$, $D\left(X\right)=\left(1-p\right)/p^2$.

Пример . На пути движения рыбы к месту нереста находится $4$ шлюза. Вероятность прохода рыбы через каждый шлюз $p=3/5$. Построить ряд распределения случайной величины $X$ - число шлюзов, пройденных рыбой до первого задержания у шлюза. Найти $M\left(X\right),\ D\left(X\right),\ \sigma \left(X\right)$.

Пусть случайная величина $X$ - число шлюзов, пройденных рыбой до первого задержания у шлюза. Такая случайная величина подчинена геометрическому закону распределения вероятностей. Значения, которые может принимать случайная величина $X:$ 1, 2, 3, 4. Вероятности этих значений вычисляются по формуле: $P\left(X=k\right)=pq^{k-1}$, где: $p=2/5$ - вероятность задержания рыбы через шлюз, $q=1-p=3/5$ - вероятность прохода рыбы через шлюз, $k=1,\ 2,\ 3,\ 4$.

$P\left(X=1\right)={{2}\over {5}}\cdot {\left({{3}\over {5}}\right)}^0={{2}\over {5}}=0,4;$

$P\left(X=2\right)={{2}\over {5}}\cdot {{3}\over {5}}={{6}\over {25}}=0,24;$

$P\left(X=3\right)={{2}\over {5}}\cdot {\left({{3}\over {5}}\right)}^2={{2}\over {5}}\cdot {{9}\over {25}}={{18}\over {125}}=0,144;$

$P\left(X=4\right)={{2}\over {5}}\cdot {\left({{3}\over {5}}\right)}^3+{\left({{3}\over {5}}\right)}^4={{27}\over {125}}=0,216.$

$\begin{array}{|c|c|}
\hline
X_i & 1 & 2 & 3 & 4 \\
\hline
P\left(X_i\right) & 0,4 & 0,24 & 0,144 & 0,216 \\
\hline
\end{array}$

Математическое ожидание:

$M\left(X\right)=\sum^n_{i=1}{x_ip_i}=1\cdot 0,4+2\cdot 0,24+3\cdot 0,144+4\cdot 0,216=2,176.$

Дисперсия:

$D\left(X\right)=\sum^n_{i=1}{p_i{\left(x_i-M\left(X\right)\right)}^2=}0,4\cdot {\left(1-2,176\right)}^2+0,24\cdot {\left(2-2,176\right)}^2+0,144\cdot {\left(3-2,176\right)}^2+$

$+\ 0,216\cdot {\left(4-2,176\right)}^2\approx 1,377.$

Среднее квадратическое отклонение:

$\sigma \left(X\right)=\sqrt{D\left(X\right)}=\sqrt{1,377}\approx 1,173.$

4. Гипергеометрический закон распределения.

Если $N$ объектов, среди которых $m$ объектов обладают заданным свойством. Случайных образом без возвращения извлекают $n$ объектов, среди которых оказалось $k$ объектов, обладающих заданным свойством. Гипергеометрическое распределение дает возможность оценить вероятность того, что ровно $k$ объектов в выборке обладают заданным свойством. Пусть случайная величина $X$ - число объектов в выборке, обладающих заданным свойством. Тогда вероятности значений случайной величины $X$:

$P\left(X=k\right)={{C^k_mC^{n-k}_{N-m}}\over {C^n_N}}$

Замечание . Статистическая функция ГИПЕРГЕОМЕТ мастера функций $f_x$ пакета Excel дает возможность определить вероятность того, что определенное количество испытаний будет успешным.

$f_x\to $ статистические $\to $ ГИПЕРГЕОМЕТ $\to $ ОК . Появится диалоговое окно, которое нужно заполнить. В графе Число_успехов_в_выборке указываем значение $k$. Размер_выборки равен $n$. В графе Число_успехов_в_совокупности указываем значение $m$. Размер_совокупности равен $N$.

Математическое ожидание и дисперсия дискретной случайной величины $X$, подчиненной геометрическому закону распределения, соответственно равны $M\left(X\right)=nm/N$, $D\left(X\right)={{nm\left(1-{{m}\over {N}}\right)\left(1-{{n}\over {N}}\right)}\over {N-1}}$.

Пример . В кредитном отделе банка работают 5 специалистов с высшим финансовым образованием и 3 специалиста с высшим юридическим образованием. Руководство банка решило направить 3 специалистов Для повышения квалификации, отбирая их в случайном порядке.

а) Составьте ряд распределения числа специалистов с высшим финансовым образованием, которые могут быть направлены на повышение квалификации;

б) Найдите числовые характеристики этого распределения.

Пусть случайная величина $X$ - число специалистов с высшим финансовым образованием среди трех отобранных. Значения, которые может принимать $X:0,\ 1,\ 2,\ 3$. Данная случайная величина $X$ распределена по гипергеометрическому распределению с параметрами: $N=8$ - размер совокупности, $m=5$ - число успехов в совокупности, $n=3$ - размер выборки, $k=0,\ 1,\ 2,\ 3$ - число успехов в выборке. Тогда вероятности $P\left(X=k\right)$ можно рассчитать по формуле: $P(X=k)={C_{m}^{k} \cdot C_{N-m}^{n-k} \over C_{N}^{n} } $. Имеем:

$P\left(X=0\right)={{C^0_5\cdot C^3_3}\over {C^3_8}}={{1}\over {56}}\approx 0,018;$

$P\left(X=1\right)={{C^1_5\cdot C^2_3}\over {C^3_8}}={{15}\over {56}}\approx 0,268;$

$P\left(X=2\right)={{C^2_5\cdot C^1_3}\over {C^3_8}}={{15}\over {28}}\approx 0,536;$

$P\left(X=3\right)={{C^3_5\cdot C^0_3}\over {C^3_8}}={{5}\over {28}}\approx 0,179.$

Тогда ряд распределения случайной величины $X$:

$\begin{array}{|c|c|}
\hline
X_i & 0 & 1 & 2 & 3 \\
\hline
p_i & 0,018 & 0,268 & 0,536 & 0,179 \\
\hline
\end{array}$

Рассчитаем числовые характеристики случайной величины $X$ по общим формулам гипергеометрического распределения.

$M\left(X\right)={{nm}\over {N}}={{3\cdot 5}\over {8}}={{15}\over {8}}=1,875.$

$D\left(X\right)={{nm\left(1-{{m}\over {N}}\right)\left(1-{{n}\over {N}}\right)}\over {N-1}}={{3\cdot 5\cdot \left(1-{{5}\over {8}}\right)\cdot \left(1-{{3}\over {8}}\right)}\over {8-1}}={{225}\over {448}}\approx 0,502.$

$\sigma \left(X\right)=\sqrt{D\left(X\right)}=\sqrt{0,502}\approx 0,7085.$