Вопрос27. Методы исследования цнс

Частная физиология центральной нервной системы — раздел , изучающий функции структур головного и спинного мозга, а также механизмы их осуществления.

К методам исследования функций центральной нервной системы относятся нижеперечисленные.

Электроэнцефалография — метод регистрации биопотенциалов, генерируемых головного мозга, при отведении их от поверхности кожи головы. Величина таких биопотенциалов составляет 1-300 мкВ. Они отводятся с помощью электродов, накладываемых на поверхность кожи головы в стандартных точках, над всеми долями мозга и некоторыми их областями. Биопотенциалы подаются на вход прибора электроэнцефалографа, который их усиливает и регистрирует в виде электроэнцефалограммы (ЭЭГ) — графической кривой непрерывных изменений (волн) биопотенциалов мозга. Частота и амплитуда электроэнцефалографических волн отражают уровень активности нервных центров. С учетом величин амплитуды и частоты волн выделяют четыре основных ритма ЭЭГ (рис. 1).

Альфа-ритм имеет частоту 8-13 Гц и амплитуду 30- 70 мкВ. Это относительно регулярный, синхронизированный ритм, регистрируемый у человека, находящегося в состоянии бодрствования и покоя. Он выявляется приблизительно у 90% людей, находящихся в спокойной обстановке, при максимальном расслаблении мышц, с закрытыми глазами или в темноте. Альфа-ритм наиболее выражен в затылочных и теменных долях мозга.

Бета-ритм характеризуется нерегулярными волнами с частотой 14-35 Гц и амплитудой 15-20 мкВ. Этот ритм регистрируется у бодрствующего человека в лобных и теменных областях , при открытии глаз, действии звука, света, обращении к испытуемому, выполнении им физических действий. Он свидетельствует о переходе нервных процессов к более активному, деятельному состоянию и повышению функциональной активности мозга. Смену альфа-ритма или других электроэнцефалографических ритмов мозга на бета-ритм называют реакцией десинхронизации, или активации.

Рис. 1. Схема основных ритмов биопотенциалов головного мозга (ЭЭГ) человека: а — ритмы, регистрируемые с поверхности кожи головы в покос; 6 — действие света вызывает реакцию десинхронизации (смену α-ритма на β-ритм)

Тета-ритм имеет частоту 4-7 Гц и амплитуду до 150 мкВ. Он проявляется при поздних стадиях засыпания человека и развитии наркоза.

Дельта-ритм характеризуется частотой 0,5-3,5 Гц и большой (до 300 мкВ) амплитудой воли. Он регистрируется над всей поверхностью мозга во время глубокого сна или наркоза.

Основную роль в происхождении ЭЭГ отводят постсинаптическим потенциалам . Считается, что на характер ЭЭГ-ритмов оказывает наибольшее влияние ритмическая активность пейсмекерных нейронов и ретикулярной формации ствола мозга. При этом таламус индуцирует в коре высокочастотные, а ретикулярная формация ствола мозга — низкочастотные ритмы (тета и дельта).

Метод ЭЭГ широко используется для регистрации нейронной активности в состояниях сна и бодрствования; для выявления очагов повышенной активности в мозге, например при эпилепсии; для исследования влияния лекарственных и наркотических веществ и решения других задач.

Метод вызванных потенциалов позволяет регистрировать изменение электрических потенциалов коры и других структур мозга, вызываемых стимуляцией различных рецепторных полей или проводящих путей, связанных с этими структурами мозга. Возникающие в ответ на одномоментное раздражение биопотенциалы коры носят волнообразный характер, длятся до 300 мс. Для выделения вызванных потенциалов из спонтанных электроэнцефалогических волн применяют сложную компьютерную обработку ЭЭГ. Эта методика используется в эксперименте и в клинике для определения функционального состояния рецепторной, проводниковой и центральной частей сенсорных систем.

Микроэлектродный метод позволяет с помощью тончайших электродов, вводимых в клетку или подводимых к нейронам, расположенным в определенной области мозга, регистрировать клеточную или внеклеточную электрическую активность , а также оказывать на них воздействие электрическими токами.

Стереотаксический метод позволяет вводить в заданные структуры мозга зонды, электроды с лечебной и диагностической целью. Их введение осуществляется с учетом трехмерных пространственных координат расположения интересующей структуры мозга, которые описаны в стереотаксических атласах. В атласах указывается под каким углом и на какую глубину относительно характерных анатомических точек черепа должны вводиться электрод или зонд для достижения интересующей структуры мозга. При этом голова больного фиксируется в специальном держателе.

Метод раздражения. Раздражение различных структур мозга чаще всего проводится с помощью слабого электрического тока. Такое раздражение легко дозируется, не вызывает повреждений нервных клеток и может наноситься многократно. В качестве раздражителей используются также различные биологически активные вещества.

Методы перерезок, экстирпации (удаления) и функциональной блокады нервных структур. Удаление структур мозга и их перерезки широко использовались в эксперименте в начальный период накопления знаний о мозге. В настоящее время сведения о физиологической роли различных структур ЦНС пополняются клиническими наблюдениями за изменением состояния функций мозга или других органов у больных, подвергшихся удалению или разрушению отдельных структур нервной системы (при опухолях, кровоизлияниях, травмах).

При функциональной блокаде производят временное выключение функций нервных структур путем введения веществ тормозного действия, воздействий специальных электрических токов, охлаждения.

Реоэнцефалография. Представляет собой методику исследования пульсовых изменений кровенаполнения мозговых сосудов. Она основана на измерении сопротивления нервной ткани электрическому току, которое зависит от степени их кровенаполнения.

Эхоэнцефалография. Позволяет определять локализацию и размеры уплотнений и полостей в мозге и костях черепной коробки. Эта методика основывается на регистрации ультразвуковых волн, отраженных от тканей головы.

Методы компьютерной томографии (визуализации). Основаны на регистрации сигналов от проникших в ткани мозга короткоживущих изотопов с помощью магниторезонансной, позитронно-эмиссионной томографии и регистрации поглощения проходящих через ткани рентгеновских лучей. Обеспечивают получение четкого послойного и трехмерного изображения структур мозга.

Методы исследования условных рефлексов и поведенческих реакций. Позволяют изучать интегративные функции высших отделов мозга. Эти методы подробнее рассмотрены в разделе интегративные функции мозга.

Современные методы исследования

Электроэнцефалография (ЭЭГ) — регистрация электромагнитных волн, возникающих в коре головного мозга при быстром изменении потенциалов корковых полей.

Магнитоэнцефалография (МЭГ) — регистрация магнитных полей в коре головного мозга; преимущество МЭГ над ЭЭГ связано с тем, что МЭГ не испытывает искажений от тканей, покрывающих мозг, не требует индифферентного электрода и отражает только источники активности, параллельные черепу.

Позитивно-эмиссионная томография (ПЭТ) — метод, позволяющий с помощью соответствующих изотопов, введенных в кровь, оценить структуры мозга, а по скорости их перемещения — функциональную активность нервной ткани.

Магнитно-резонансная томография (МРТ) — основана на том, что различные вещества, обладающие парамагнитными свойствами, способны в магнитном ноле поляризоваться и резонировать с ним.

Термоэнцефалоскопия — измеряет локальный метаболизм и кровоток мозга по его теплопродукции (недостатком его является то, что он требует открытой поверхности мозга, применяется в нейрохирургии).

В последнее время очень распространенными стали заболевания, связанные с нервной системой. Причин тому масса, и часто больные, приходящие с жалобами к специалистам, долго не смогут получить ответ на вопрос, что с ними.

К сожалению, человеческий мозг до сих пор до конца не исследован, и возможность возникновения тех или иных отклонений в работе нервной системы и ее последствия часто находятся на стадии изучения.

Обычно постановка диагноза и назначение лечения при заболеваниях нервной системы процесс довольно длительный. Именно поэтому было изобретено множество методов, которые направлены на исследование нервной системы. Цель создания таких методов – это в первую очередь помощь специалисту в быстрой и четкой установке диагноза. Ведь множество заболеваний поддаются лечению только на ранних стадиях. Так давайте рассмотрим, в чем состоят современные методы исследования нервной системы.

Методы исследования.

Современная инструментальная диагностика всех видов заболеваний занимает очень важное место в процессе профилактики и лечения различных заболеваний, в том числе и нервной системы. Как известно болезнь легче предупредить, чем лечить, именно поэтому, разрабатываются приборы которые способны выявить малейшие отклонения и дать возможность не допустить прогрессирование и развитие болезни.

Что касается методов исследования нервной системы, то принято подразделять их на следующие разделы:

Нейровизуализационные методы;

Нейрофизиологические методы;

Методы исследования деятельности головного мозга;

Исследование сосудистой системы человека;

Другие методы.

К нейровизуальным методам принято относить: МРТ головного мозга, компьютерную томографию, эхоэнцефалоскопию. Такие, методы предназначены для исследования структуры головного мозга, диагностике при образовании гематом, объемных образованиях головного мозга или внутричерепной гипертензии.

Нейрофизиологические методы исследований – направлены на определения работы и полноценного выполнения функций нервных клеток (нейронов), нервов, нервных центров, спинного и головного мозга. К ним относятся:

ЭНМГ(электронейромиография) – определяет уровень поражения нервно-мышечного аппарата;

Термография – определяет болезни Коновалова – Вильсона, а так же Паркинсона;

Магнитная стимуляция (МС) – направлена, на исследования потенциалов головного мозгла, выявить отклонения, и оценить эффективность применения лечения при некоторых заболеваниях.

Методы лечения с помощью электродов.

К таким методам можно отнести методы исследования головного мозга, которые основываются на наружном применении электродов, для регистрации электрической активности. Такие процедуры являются безболезненными и не длительными, а так же безвредными для пациента. В процессе исследования больной обычно находится в расслабленном состоянии, и выполняет определенные задания, данные врачом, соответственно тому какие исследования проводятся. Это могут быть простые реакции на световые сигналы, глубокое дыхание или его задержка, пребывание пациента с открытыми или закрытыми глазами и другие дополнительные пробы. Обычно причиной для направления пациента на подобные исследования стают частые судороги, потери сознания, обмороки, вариации кризисов. Это единственный метод точного определения причины заболеваний. Соответственно результатам исследований дальше подбирается правильное лечение, выписывается курс медикаментов, выявляются противопоказания к определенным методам лечения. Также данный способ исследования помогает определить сохранность функций структур головного мозга у больных находящихся в реанимации в коматозном состоянии.

При подозрении на эпилепсию и тики обычно для исследования очага патологии применяется видео ЭЭГ. Это метод, основанный на синхронной записи видеоизображения пациента и проведении ЭЭГ. Таким образом, можно выявить методом сопоставления двигательную активность пациента и электродную активность мозга, что помогает поставить точный диагноз.

Множественная запись сна.

Множественная запись сна или как ее еще называют полисомнография – это метод, основанный на наблюдении за состоянием и деятельностью головного мозга в период сна. Обычно сон занимает больше третьей части нашей жизни, и очень часто патологии сна вызывают проблемы со здоровьем. Обычно такими становятся бессонница, головная боль, храп, раздражительность, дневная сонливость и другие. Результаты данных исследований в комплексе всех факторов определяют первопричину патологии, и соответственно дают возможность правильно установить лечение.

Для определений патологий функций нервной системы также применяется метод, который называется вызывание потенциалов головного мозга. Метод основывается на записи мозговой активности, которая вызвана различными раздражителями. Таким способом обычно исследуются зрительная система, и слух, а также вестибулярная система. Это дает возможность исследовать , ретробульбарный неврит, травматическое поражение зрительных нервов, а также нарушения утреннего уха, слуховой нерв, нарушения в стволе головного мозга. Обычно таким методом также определяется причина тугоухости, степень поражения ствола головного мозга при травмах, а также деформации шейного отдела позвоночника. Данное исследование применяется к пациентам, у которых выявлены такие симптомы как частое головокружение, посторонние звуки в ушах, такие как шум или звон, а также диагностирование отита.

Существует еще множество методов, которые помогают определить заболевание на ранних стадиях, и своевременно принять соответствующие меры. Современная медицина постоянно развивается и не стоит на месте. Это дает возможность надеяться, что вскоре у людей появится возможность надеяться на полное выздоровление даже при самых сложных заболеваниях. А пока нашей основной задачей остается эти заболевания не допустить. Не бойтесь проходить обследование, и обращаться к врачу, при каких-либо симптомах. Ведь ваше здоровье одно, и его намного легче сберечь, чем восстановить.

Электроэнцефалография (ЭЭГ) – это регистрация суммарной электрической активности головного мозга. Электрические колебания в коре головного мозга обнаружены Р. Кетон (1875) и В.Я. Данилевский (1876). Запись ЭЭГ возможна как поверхности кожи головы, так и с поверхности коры в эксперименте и в клинике при нейрохирургических операциях. В этом случае она называется электрокортикограммой. Запись ЭЭГ производится с помощью биполярных (оба активны) или униполярных (активный и индифферентный) электродов, накладываемых попарно и симметрично в лобно-полюсных, лобных, центральных, теменных, височных и затылочных областях мозга. Кроме записи фоновой ЭЭГ используют функциональные пробы: экстероцептивные (световые, слуховые и др.), проприоцептивные, вестибулярные раздражители, гипервентиляция, сон. На ЭЭГ регистрируется четыре основных физиологических ритма: альфа-, бета-, гамма- и дельта- ритмы.

Метод вызванных потенциалов (ВП) – это измерение электрической активности мозга, возникающее в ответ на раздражение рецепторов, афферентных путей и центров переключения афферентной импульсации. В клинической практике ВП обычно получают в ответ на стимуляцию рецепторов, преимущественно зрительных, слуховых или соматосенсорных. ВП регистрируют при записи ЭЭГ, как правило, с поверхности головы, хотя их можно записать и с поверхности коры, а также в глубоких структурах мозга, например в таламусе. Методика ВП используется для объективного изучения сенсорных функций, процесса восприятия, проводящих путей мозга при физиологических и патологических состояниях (например, при опухолях мозга искажается форма ВП, уменьшается амплитуда, исчезают некоторые компоненты).

Функциональная компьютерная томография:

Позитронно-эмиссионная томография – это прижизненный метод функционального изотопного картирования мозга. Методика основана на введение в кровоток изотопов (O 15 , N 13 , F 18 и др.) в соединении с дезоксиглюкозой. Чем активнее участок мозга, тем больше поглощает он меченой глюкозы, радиоактивное излучение которой регистрируется детекторами, расположенными вокруг головы. Информация от детекторов поступает на компьютер, создающий на регистрируемом уровне «срезы» мозга, отражающее неравномерность распределения изотопа в связи с метаболической активностьюмозговых структур.

Функциональная магнитно-резонансная томография основана на том, что при потере кислорода гемоглобин приобретает парамагнитные свойства. Чем выше метаболическая активность мозга, тем больше объемный и линейный кровоток в данном участке мозга и тем меньше соотношение парамагнитного дезоксигемоглобина к оксигемоглобину. В мозге существует много очагов активации, что отражается в неоднородности магнитного поля. Этот метод позволяет выявить активно работающие участки мозга.

Реоэнцефалография основана на регистрации изменения сопротивления тканей переменному току высокой частоты в зависимости от их кровенаполнения. Реоэнцефалография позволяет косвенно судить о величине общего кровенаполнения мозга и его ассиметрии в различных сосудистых зонах, о тонусе эластичности сосудов мозга, состоянии внезапного оттока.

Эхоэнцефалография основана на свойстве ультразвука в разной степени отражаться от структур головы – ткани мозга и его патологических образований, ликвора, костей черепа и др. Кроме определения локализации некоторых структур мозга (особенно срединных) эхоэнцефалография благодаря использованию эффекта Доплера позволяет получить сведения о скорости и направлении движения крови в сосудах, участвующих в кровоснабжении мозга (Эффект Доплера - изменение частоты и длины волн, регистрируемых приёмником, вызванное движением их источника или движением приёмника.).

Хронаксиметрия позволяет определить возбудимость нервной и мышечной тканей путем измерения минимального времени (хронаксии) при действии раздражителя удвоенной пороговой силы. Чаще определяют хронаксию двигательной системы. Хронаксия увеличивается при поражении спинальных мотонейронов, уменьшается при поражении двигательных нейронов коры. На ее величину влияет состояние структур ствола. Например таламуса и красного ядра. Можно также определить хронаксию сенсорных систем – кожной, зрительной, вестибулярной (по времени возникновения ощущений), что позволяет судить о функции анализаторов.

Стереотаксический метод позволяет с помощью устройства для точного перемещения электродов во фронтальном, сагиттальном и вертикальном направлениях ввести электрод (или микропипетку, термопару) в различные структуры головного мозга. Через введенные электроды можно регистрировать биоэлектрическую активность данной структуры, раздражать или разрушать ее, через микроканюли вводить химические вещества в нервные центры или желудочки мозга.

Метод раздражения различных структур ЦНС слабым электротоком с помощью электродов или химическими веществами (растворы солей, медиаторов, гормонов), подводимыми с помощью микропипеток механическим способом или с использованием электрофореза.

Метод выключения различных участков ЦНС можно производить механическим, электролитическим путем, используя замораживание или электрокоагуляцию, а также узконаправленным пучком или вводя снотворные вещества в сонную артерию, можно обратимо выключать некоторые отделы головного мозга, например большое полушарие.

Метод перерезки на разных уровнях ЦНС в эксперименте можно получить спинальный, бульбарный, мезэцефальный, диэнцефальный, декортицированный организмы, расщепленный мозг (операция комиссуротомии); нарушить связь между корковой областью и нижележащими структурами (операция лоботомии), между корой и подкорковыми структурами (нейронально изолированная кора). Этот метод позволяет глубже понять функциональную роль как центров, расположенных ниже перерезки, так и отключаемых высших центров.

Патологоанатомический метод – прижизненное наблюдение за нарушением функций и посмертное исследование мозга.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-20

РАЗВИТИЕ НЕРВНОЙ СИСТЕМЫ В ФИЛО И ОНТОГЕНЕЗЕ

В соответствии с принятой в отечественной науке концепции нервизма, нервная система играет основополагающую роль в регулировании всех проявлений жизнедеятельности организма и его поведения. Нервная система человека

· управляет деятельностью различных органов и систем, составляющих целостный организм;

· координирует процессы, протекающие в организме, с учетом состояния внутренней и внешней седы, анатомически и функционально связывая все части организма в единое целое;

· посредством органов чувств осуществляет связь организма с окружающей средой, обеспечивая тем самым взаимодействие с ней;

· способствует становлению межличностных контактов, необходимых для организации социума.

Развитие нервной системы в филогенезе

Филогенез – это процесс исторического развития вида. Филогенез нервной системы – это история формирования и совершенствования структур нервной системы.

В филогенетическом ряду существуют организмы различной степени сложности. Учитывая принципы их организации, их делят на две большие группы: беспозвоночные и хордовые. Беспозвоночные животные относятся к разным типам и имеют различные принципы организации. Хордовые животные принадлежат к одному типу и имеют общий план строения.

Несмотря на разный уровень сложности различных животных, перед их нервной системой стоят одни задачи. Это, во-первых, объединение всех органов и тканей в единое целое (регуляция висцеральных функций) и, во-вторых, обеспечение связи с внешней средой, а именно – восприятие ее стимулов и ответ на них (организация поведения и движения).

Совершенствование нервной системы в филогенетическом ряду идет через концентрацию нервных элементов в узлах и появление длинных связей между ними. Следующим этапом являетсяцефализация – образование головного мозга, который берет на себя функцию формирования поведения. Уже на уровне высших беспозвоночных (насекомые) появляются прототипы корковых структур (грибовидные тела), в которых тела клеток занимают поверхностное положение. У высших хордовых животных в головном мозге уже имеются настоящие корковые структуры, и развитие нервной системы идет по пути кортиколизации , то есть передачи всех высших функций коре мозга.

Итак, одноклеточные животные не имеют нервной системы, поэтому восприятие осуществляется самой клеткой.

Многоклеточные животные воспринимают воздействия внешней среды различными способами, в зависимости от своего строения:

1. с помощью эктодермальных клеток (рефлекторных и рецепторных), которые диффузно располагаются по всему телу, образуя примитивную диффузную , или сетевидную , нервную систему (гидра, амеба). При раздражении одной клетки в процесс ответа на раздражение вовлекаются другие, глубоко лежащие, клетки. Это происходит потому, что все воспринимающие клетки этих животных связаны между собой длинными отростками, образуя тем самым сетевидную нервную сеть.

2. с помощью групп нервных клеток (нервных узлов) и отходящих от них нервных стволов. Такая нервная система называется узловой и позволяет вовлекать в процесс ответа на раздражение большое количество клеток (кольчатые черви).

3. с помощью нервного тяжа с полостью внутри (нервной трубки) и отходящих от него нервных волокон. Такая нервная система называется трубчатой (от ланцетника до млекопитающих). Постепенно нервная трубка утолщается в головном отделе и в результате появляется головной мозг, который развивается путем усложнения строения. Туловищный отдел трубки формирует спинной мозг. Как от спинного, так и от головного мозга отходят нервы.

Следует отметить, что с усложнением структуры нервной системы предыдущие образования не исчезают. В нервной системе высших организмов остаются и сетевидная, и узловая, и трубчатая структуры, характерные для предыдущих ступеней развития.

По мере усложнения строения нервной системы усложняется и поведение животных. Если у одноклеточных и простейших многоклеточных общей реакцией организма на внешнее раздражение является таксис, то с усложнением нервной системы появляются рефлексы. В ходе эволюции в формировании поведения животных приобретают значение не только внешние сигналы, но и внутренние факторы в форме различных потребностей и мотиваций. Наряду с врожденными формами поведения существенную роль начинает играть научение, что в конечном итоге приводит к формированию рассудочной деятельности.

Развитие нервной системы в онтогенезе

Онтогенез – это постепенное развитие конкретного индивида от момента зарождения до смерти. Индивидуальное развитие каждого организма делится на два периода пренатальный и постнатальный.

Пренатальный онтогенез в свою очередь подразделяется на три периода: герминативный, зародышевый и плодный. Герминативный период у человека охватывает первую неделю развития с момента оплодотворения до имплантации зародыша в слизистую оболочку матки. Зародышевый период длится от начала второй недели до конца восьмой недели, то есть с момента имплантации до завершения закладки органов. Плодный (фетальный) период начинается с девятой недели и длится до рождения. В этот период происходит интенсивный рост организма.

Постнатальный онтогенез подразделяется на одиннадцать периодов: 1-10 день – новорожденные; 10 день -1 год – грудной возраст; 1-3 года – раннее детство; 4-7 лет – первое детство; 8-12 лет – второе детство; 13-16 лет – подростковый период; 17-21 год – юношеский возраст; 22-35 лет – первый зрелый возраст; 36-60 лет – второй зрелый возраст; 61-74 года – пожилой возраст; с 75 лет – старческий возраст; после 90 лет – долгожители. Завершается онтогенез естественной смертью.

Суть пренатального онтогенеза . Пренатальный период онтогенеза начинается с момента слияния двух гамет и образования зиготы. Зигота последовательно делится, образуя бластулу, которая в свою очередь тоже делится. В результате этого деления внутри бластулы образуется полость - бластоцель. После образования бластоцеля начинается процесс гаструляции. Суть этого процесса заключается в перемещении клеток в бластоцель и образовании двухслойного зародыша. Наружный слой клеток зародыша называется эктодермой , а внутренний – энтодермой . Внутри зародыша образуется полость первичной кишки – гастроцел ь. В конце стадии гаструлы из эктодермы начинает развиваться зачаток нервной системы. Происходит это в конце второй начале третьей недели пренатального развития, когда в дорсальном отделе эктодермы обособляется медуллярная (нервная) пластинка. Нервная пластинка вначале состоит из одного слоя клеток. Затем они дифференцируются на спонгиобласты , их которых развивается опорная ткань – нейроглия, и нейробласты, из которых развиваются нейроны. В связи с тем, что дифференцировка клеток пластинки идет на различных участках с различной скоростью, она в результате превращается в нервный желобок, а затем в нервную трубку, по бокам которой располагаются ганглионарныепластинки, из которых впоследствии развиваются афферентные нейроны и нейроны вегетативной нервной системы. После этого нервная трубка отшнуровывается от эктодермы и погружается вмезодерму (третий зародышевый листок). На этой стадии медуллярная пластина состоит из трех слоев, которые впоследствии дают начало: внутренний – эпендимальной вытилке полостей желудочков мозга и центрального канала спинного мозга, средний – серому веществу мозга, а наружный (малоклеточный) – белому веществу мозга. Вначале стенки нервной трубки имеют одинаковую толщину, затем боковые отделы ее начинают интенсивно утолщаться, причем дорсальная и вентральная стенки отстают в развитии и постепенно погружаются между боковыми стенками. Таким образом, формируются дорсальная и вентральная срединные борозды будущего спинного мозга и продолговатого мозга.

С самых ранних стадий развития организма устанавливается тесная связь между нервной трубкой имиотомами – теми участками тела эмбриона (сомитами ), из которых в последующем развиваются мышцы.

Из туловищного отдела нервной трубки впоследствии развивается спинной мозг. Каждому сегменту тела – сомиту, а их насчитывается 34-35, соответствует определенный участок нервной трубки –невромер , от которого осуществляется иннервация этого сегмента.

В конце третьей – начале четвертой недели начинается формирование головного мозга. Эмбриогенез головного мозга начинается с развития в ростральной части нервной трубки двух первичных мозговых пузырей: архэнцефалон и дейтерэнцефалон. Затем в начале четвертой недели у зародыша дейтерэнцефалон делится на средний (мезенцефалон) и ромбовидный (ромбенцефалон) пузыри. А архенцефалон на этой стадии превращается в передний (прозенцефалон) мозговой пузырь. Эта стадия змбриогенеза мозга называется стадией трех мозговых пузырей.

Затем на шестой неделе развития наступает стадия пяти мозговых пузырей: передний мозговой пузырь разделяется на два полушария, а ромбовидный мозг на задний и добавочный. Средний мозговой пузырь остается неразделенным. В дальнейшем под полушариями образуется промежуточный мозг, из заднего пузыря образуются мозжечок и мост, а добавочный пузырь превращается в продолговатый мозг.

Структуры головного мозга, формирующиеся из первичного мозгового пузыря: средний, задний и добавочный мозг – составляют ствол головного мозга. Он является ростральным продолжением спинного мозга и имеет с ним общие черты строения. Здесь располагаются моторные и сенсорные структуры, а также вегетативные ядра.

Производные архэнцефалона создают подкорковые структуры и кору. Здесь расположены сенсорные структуры, но нет вегетативных и двигательных ядер.

Промежуточный мозг функционально и морфологически связан с органом зрения. Здесь образуются зрительные бугры – таламус.

Полость медуллярной трубки дает начало мозговым желудочкам и центральному каналу спинного мозга.

Этапы развития головного мозга человека схематично отображены на рисунке 18.

Суть постнатального онтогенеза . Постнатальное развитие нервной системы человека начинается с момента рождения ребенка. Головной мозг новорожденного весит 300-400 г. Вскоре после рождения прекращается образование из нейробластов новых нейронов, сами нейроны не делятся. Однако к восьмому месяцу после рождения вес мозга удваивается, к 4-5 годам утраивается. Масса мозга растет в основном за счет увеличения количества отростков и их миелинизации. Максимального веса мозг мужчин достигает к 20-20 годам, а женщин к 15-19 годам. После 50 лет мозг уплощается, вес его падает и в старости может уменьшиться на 100 г.

2. Методы исследования центральной нервной системы

Центральная нервная система (ЦНС) - самая сложная из всех функциональных систем человека (рис.Центральная и периферическая нервная система ).

В мозгу находятся чувствительные центры, анализирующие изменения, которые происходят как во внешней, так и во внутренней среде. Мозг управляет всеми функциями организма, включая мышечные сокращения и секреторную активность желез внутренней секреции

Главная функция нервной системы состоит в быстрой и точной передаче информации. Сигнал от рецепторов к сенсорным центрам, от этих центров - к моторным центрам и от них - к эффекторным органам, мышцам и железам, должен передаваться быстро и точно.

Методы исследования нервной системы

Основные методы исследования ЦНС и нервно-мышечного аппарата - электроэнцефалография (ЭЭГ), реоэнцефалография (РЭГ), электромиография (ЭМГ), определяют статическую устойчивость, тонус мышц, сухожильные рефлексы и др.

Электроэнцефалография (ЭЭГ) - метод регистрации электрической активности (биотоков) мозговой ткани c целью объективной оценки функционального состояния головного мозга. Она имеет большое значение для диагностики травмы головного мозга, сосудистых и воспалительных заболеваний мозга, а также для контроля за функциональным состоянием спортсмена, выявления ранних форм неврозов, для лечения и при отборе в спортивные секции (особенно в бокс, карате и другие виды спорта, связанные с нанесением ударов по голове).

При анализе данных, полученных как в состоянии покоя, так и при функциональных нагрузках, различных воздействиях извне в виде света, звука и др.), учитывается амплитуда волн, их частота и ритм. У здорового человека преобладают альфа-волны (частота колебаний 8-12 в 1 с), регистрируемые только при закрытых глазах обследуемого. При наличии афферентной световой импульсации открытые глаза, альфа-ритм полностью исчезает и вновь восстанавливается, когда глаза закрываются. Это явление называется реакцией активации основного ритма. В норме она должна регистрироваться.

Бета-волны имеют частоту колебаний 15-32 в 1 с, а медленные волны представляют собой тэта-волны (с диапазоном колебаний 4-7 с) и дельта - волны (с еще меньшей частотой колебаний).

У 35-40% людей в правом полушарии амплитуда альфа-волн несколько выше, чем в левом, отмечается и некоторая разница в частоте колебаний - на 0,5-1 колебание в секунду.

При травмах головы альфа-ритм отсутствует, но появляются колебания большой частоты и амплитуды и медленные волны.

Kроме того, методом ЭЭГ можно диагностировать ранние признаки неврозов (переутомлений, перетренированости) у спортсменов.

Реоэнцефалография (РЭГ) - метод исследования церебрального кровотока, основанный на регистрации ритмических изменений электрического сопротивления мозговой ткани вследствие пульсовых колебаний кровенаполнения сосудов.

Реоэнцефалограмма состоит из повторяющихся волн и зубцов. При ее оценке учитывают характеристику зубцов, амплитуду реографической (систолической) волн и др.

О состоянии сосудистого тонуса можно судить также по крутизне восходящей фазы. Патологическими показателями являются углубление инцизуры и увеличение дикротического зубца со сдвигом их вниз по нисходящей части кривой, что характеризует понижение тонуса стенки сосуда.

Метод РЭГ используется при диагностике хронических нарушений мозгового кровообращения, вегетососудистой дистонии, головных болях и других изменениях сосудов головного мозга, а также при диагностике патологических процессов, возникающих в результате травм, сотрясений головного мозга и заболеваний, вторично влияющих на кровообращение в церебральных сосудах (шейный остеохондроз, аневризмы и др.).

Электромиография (ЭМГ) - метод исследования функционирования скелетных мышц посредством регистрации их электрической активности - биотоков, биопотенциалов. Для записи ЭМГ используют электромиографы. Отведение мышечных биопотенциалов осуществляется с помощью поверхностных (накладных) или игольчатых (вкалываемых) электродов. При исследовании мышц конечностей чаще всего записывают электромиограммы с одноименных мышц обеих сторон. Сначала регистрируют ЭМ покоя при максимально расслабленном состоянии всей мышцы, а затем - при ее тоническом напряжении.

По ЭМГ можно на ранних этапах определить (и предупредить возникновение травм мышц и сухожилий) изменения биопотенциалов мышц, судить о функциональной способности нервно-мышечного аппарата, особенно мышц, наиболее загруженных в тренировке. По ЭМГ, в сочетании с биохимическими исследованиями (определение гистамина, мочевины в крови), можно определить ранние признаки неврозов (переутомление, перетренированность). Kроме того, множественной миографией определяют работу мышц в двигательном цикле (например, у гребцов, боксеров во время тестирования).

ЭМГ характеризует деятельность мышц, состояние периферического и центрального двигательного нейрона.

Анализ ЭМГ дается по амплитуде, форме, ритму, частоте колебаний потенциалов и других параметрах. Kроме того, при анализе ЭМГ определяют латентный период между подачей сигнала к сокращению мышц и появлением первых осцилляций на ЭМГ и латентный период исчезновения осцилляций после команды прекратить сокращения.

Хронаксиметрия - метод исследования возбудимости нервов в зависимости от времени действия раздражителя. Сначала определяется реобаза - сила тока, вызывающая пороговое сокращение, а затем - хронаксия. Хронансия - это минимальное время прохождения тока силой в две реобазы, которое дает минимальное сокращение. Хронаксия исчисляется в сигмах (тысячных долях секунды).

В норме хронаксия различных мышц составляет 0,0001-0,001 с. Установлено, что проксимальные мышцы имеют меньшую хронаксию, чем дистальные. Мышца и иннервирующий ее нерв имеют одинаковую хронаксию (изохронизм). Мышцы - синергисты имеют также одинаковую хронаксию. На верхних конечностях хронаксия мышц-сгибателей в два раза меньше хронаксии разгибателей, на нижних конечностях отмечается обратное соотношение.

У спортсменов резко снижается хронаксия мышц и может увеличиваться разница хронаксий (анизохронаксия) сгибателей и разгибателей при перетренировке (переутомлении), миозитах, паратенонитах икроножной мышцы и др.

Устойчивость в статическом положении можно изучать с помощью стабилографии, треморографии, пробы Ромберга и др.

Проба Ромберга выявляет нарушение равновесия в положении стоя. Поддержание нормальной координации движений происходит за счет совместной деятельности нескольких отделов ЦНС. K ним относятся мозжечок, вестибулярный аппарат, проводники глубокомышечной чувствительности, кора лобной и височной областей. Центральным органом координации движений является мозжечок. Проба Ромберга проводится в четырех режимах (рис. Определение равновесия в статических позах ) при постепенном уменьшении площади опоры. Во всех случаях руки у обследуемого подняты вперед, пальцы разведены и глаза закрыты. «Очень хорошо», если в каждой позе спортсмен сохраняет равновесие в течение 15 с и при этом не наблюдается пошатывания тела, дрожания рук или век (тремор). При треморе выставляется оценка «удовлетворительно». Если равновесие в течение 15 с нарушается, то проба оценивается «неудовлетворительно». Этот тест имеет практическое значение в акробатике, спортивной гимнастике, прыжках на батуте, фигурном катании и других видах спорта, где координация имеет важное значение.

Регулярные тренировки способствуют совершенствованию координации движений. В ряде видов спорта (акробатика, спортивная гимнастика, прыжки в воду, фигурное катание и др.) данный метод является информативным показателем в оценке функционального состояния ЦНС и нервно-мышечного аппарата. При переутомлении, травме головы и других состояниях эти показатели существенно изменяются.

Тест Яроцкого позволяет определить порог чувствительности вестибулярного анализатора. Тест выполняется в исходном положении стоя с закрытыми глазами, при этом спортсмен по команде начинает вращательные движения головой в быстром темпе. Фиксируется время вращения головой до потери спортсменом равновесия. У здоровых лиц время сохранения равновесия в среднем 28 с, у тренированных спортсменов - 90 с и более.

Порог уровня чувствительности вестибулярного анализатора в основном зависит от наследственности, но под влиянием тренировки его можно повысить.

Пальцево-носовая проба . Обследуемому предлагается дотронуться указательным пальцем до кончика носа с открытыми, а затем - с закрытыми глазами. В норме отмечается попадание, дотрагивание до кончика носа. При травмах головного мозга, неврозах (переутомлении, перетренированности) и других функциональных состояниях отмечается промахивание (непопадание), дрожание (тремор) указательного пальца или кисти.

Теппинг-тест определяет максимальную частоту движений кисти.

Для проведения теста необходимо иметь секундомер, карандаш и лист бумаги, который двумя линиями разделяют на четыре равные части. В течение 10 с в максимальном темпе ставят точки в первом квадрате, затем - 10-секундный период отдыха и вновь повторяют процедуру от второго квадрата к третьему и четвертому. Общая длительность теста - 40 с. Для оценки теста подсчитывают количество точек в каждом квадрате. У тренированных спортсменов максимальная частота движений кисти более 70 за 10 секунд. Снижение количества точек от квадрата к квадрату свидетельствует о недостаточной устойчивости двигательной сферы и нервной системы. Снижение лабильности нервных процессов ступенеобразно (с увеличением частоты движений во 2-м или 3-м квадратах) - свидетельствует о замедлении процессов врабатываемости. Этот тест используют в акробатике, фехтовании, в игровых и других видах спорта.

При исследовании функционального состояния ЦНС используются различные методы, в том числе простые, основанные на наблюдении за тем, как реализуются функции ЦНС: сенсорная, двигательная и вегетативная. Применяются методы исследования состояния высшей нервной деятельности (ВНД), в том числе методы, оценивающие епособность чело­века к выработке условного рефлекса, методы оценки высших психических функций - мышления, памяти, внимания.

В экспериметальной

физиологии широко при­меняются хирургические методы: перерезки, под­резки, экстирпации. Од­нако и в клинических ус­ловиях в ряде случаев ис­пользуются эти методы (но с целью лечения, а не для изучения функций). Разрушение структур мозга, перерезка отдель­ных путей обычно выпол­няются с использованием стереотаксической техни­ки; введение электродов в мозг человека или живот­ного в определенные его участки и на определен­ную глубину. Таким спо­собом, например, исполь­зуя методику электроли­за, можно удалить очаг, вызывающий эпилептиче­ские припадки. Пионером в этом направлении был Пенфильд. В России этот метод нашел применение в клинике у академика Н.П. Бехтеревой при ле-ченни ряда форм патоло­гии ЦНС, в том числе при болезни Паркинсона. Ко­нечно, использование этого метода для лечения человека имеет целый ряд ограничений.


Рис. 11. Регистрация вызванных по­тенциалов коры больших полушарий головного мозга кошки (по И.Г. Вла­совой).

1 ~ схема вызванных потенциалов коры
больших полушарий кошки: а - первич­
ный ответ (ПО): 1 -отметка раздражения,

2 - латентный период, 3 - положитель­
ная фаза, 4 - отрицательная фаза;



II - запись: а - ПО (зарегистрированы в первой соматосенсорной зоне коры боль­ших полушарий кошки при раздражении контралатерального седалищного нерва)

Рис. 12. Регистрация возбуждающе­го постсинаптического потенциала (ВПСП) и тормозного постсинаптиче-ского потенциала (ТПСП) нервной клетки.

I-возбуждающий постсинаптический по­тенциал: а - артефакт раздражения; б- ВПСП;

II-тормозной постсинаптический потен­циал: а - артефакт раздражения; б- ТПСП;


Наиболее активно в клинической и экспе­риментальной практике используются мето­ды регистрации электрической активности нейронов мозга. Например, метод микроэле" ктродной техники - его можно даже исполь­зовать на человеке - во время операций на мозге в соответствующие участки мозга вво­дится стеклянная микропипетка, с помощью которой н регистрируется электрическая ак­тивность отдельного нейрона. Это же можно осуществить с нейронами, изолированными из организма.

Методика вызванных потенциалов (ВП) интересна тем, что с ее помощью можно оце­нить все те структуры мозга, которые прини­мают участие в обработке информации, иду­щей от данного рецептора. Если в данный уча­сток мозга (где находятся отводящие элект­роды) поступает информация, то в этой обла­сти регистрируются вызванные потенциалы.

Особую популярность приобрел Метод электроэнцефалографии: регистрация сум­марной электрической активности нейронов мозга (главным образом коры). Осуществля­ется путем регистрации разности потенциа­лов между двумя какими-либо точками, рас­положенными на голове. Существует опреде­ленная классификация различных видов отве­дений, используемых в ЭЭГ. В целом, ЭЭГ представляет собой низкоамплитудные коле­бания электрической активности, частотные и амплитудные характеристики которых зави­сят от состояния ЦНС. Различают ритмы ЭЭГ: альфа-ритм (8-13 Гц, 10-100 мкВ), бета-ритм (14-30 Гц, ампл. менее 20 мкВ), тета-ритм (7-11 Гц, ампл. более 100 мкВ), дель­та-ритм (менее 4 Гц, ампл. 150-200 мкВ). Обычно в условиях спокойной позы у челове­ка регистрируется альфа-ритм. При активном бодрствовании - бета-ритм. Переход от аль­фа- к бетафитму или от тета- к альфа- и бета-ритму называется десинхронизацией. При за­сыпании, когда уменьшается активность коры больших полушарий, имеет место синхрони­зация - переход электрической активности от альфа-ритма к тета- и даже к дельта-ритму. При этом клетки мозга начинают работать синхронно: частота генерации волн уменьша­ется, а их амплитуда возрастает. В целом, ЭЭГ позволяет определить характер состояния мозга (активный, бодрствующий или спящий мозг), стадии естественного сна, в том числе

Позволяет выяснить так называемый парадоксальный сон, она дает возможность судить о глубине наркоза, о наличии патологического очага в мозге (эпилептический очаг, опу­холь) и т. д. Хотя многие возлагали большие надежды на ЭЭГ как метод, позволяющий определить физиологические процессы, лежащие в основе мышления, но до сих пор в этом направлении не получено обнадеживающих данных.