Химическая кинетика и основы термодинамики. Основы химической термодинамики и химической кинетики

Лекция 1 Химическая термодинамика. Химическая кинетика и катализ ПЛАН 1. Основные понятия термодинамики. 2. Термохимия. 3. Химическое равновесие. 4. Скорость химических реакций. 5. Влияние температуры на скорость реакций. 6. Явление катализа. Подготовили: к.х.н., доц. Іванець Л.М., ас. Козачок С.С. Лектор ассистент кафедры фармацевтической химии Козачок Соломея Степановна


Термодинамика – Термодинамика – это раздел физики, изучающей взаимные преобразования различных видов энергии, связанных с переходом энергии в форме теплоты и работы. Большое практическое значение термодинамики в том, что она позволяет рассчитать тепловые эффекты реакции, заранее указать возможность или невозможность осуществления реакции, а также условия ее прохождения.






Внутренная енергия Внутренная энергия - кинетическая энергия всех частиц системы (молекул, атомов, электронов) и потенциальная энергия их взаимодействий, кроме кинетической и потенциальной энергии системы в целом. Внутренная энергия является функцией состояния, т.е. ее изменение определяется заданным начальным и конечным состояниями системы и не зависит от пути процесса: U = U 2 – U 1


Первый закон термодинамики Энергия не исчезает бесследно и не возникает из ничего, а только переходит из одного вида в другой в эквивалентном количестве. Вечный двигатель первого рода, то есть периодически действующая машина, которая дает работу, не тратя при этом энергии, невозможен. Q = U + W В любой изолированной системе общий запас энергии сохраняется неизменным. Q = U + W


Тепловой эффект химической реакции при постоянном V или р не зависит от пути прохождения реакции, а определяется природой и состоянием исходных веществ и продуктов реакции Закон Гесса Н 1 Н 2 Н 3 Н 4 Исходние вещества продукты реакции Н 1 = Н 2 + Н 3 + Н 4 Н 1 = Н 2 + Н 3 + Н 4


Второй закон термодинамики, как и первый, является результатом многовекового человеческого опыта. Существуют различные формулировки второго закона, но все они определяют направление самопроизвольных процессов: 1. Теплота не может самопроизвольно переходить от холодного тела к горячему (постулат Клаузиуса). 2. Процесс, единственным результатом которого является превращение теплоты в работу, невозможен (постулат Томсона). 3. Нельзя построить машину периодического действия, которая только охлаждаюет тепловой резервуар и выполняет работу (первый постулат Планка). 4. Любая форма энергии может полностью превратиться в теплоту, но теплота преобразуется в другие виды энергии лишь частично (второй постулат Планка).


Энтропия – термодинамическая функция состояния, поэтому ее изменение не зависит от пути процесса, а определяется только начальным и конечным состояниями системы. тогда S 2 - S 1 = ΔS = S 2 - S 1 = ΔS = Физической смысл энтропии - это количество связанной энергии, которая отнесенная к одному градусу: в изолированных системах, направление течения самопроизвольных процессов определяется изменением энтропии.


Характеристические функции U – функция изохорно-изоэнтропийного процесса: dU = TdS – pdV. Для произволного процесса: U 0 Н – функция изобарно-изоэнтропийного процесса:dН = TdS + Vdp Для произволного процесса: Н 0 S – функция изолированой системы Для произволного процесса: S 0 Для произволного процесса: S 0 F – функция изохорно-изотермического процесса dF = dU – TdS. Для произволного процесса: F 0 G – функция изобарно-изотермического процесса: dG = dH- TdS Для произволного процесса: G 0




Классификация химических реакций по числу стадий Простые протекают в один элементарный химический актСложные протекают в несколько стадий Обратная реакция А В Обратная реакция: А В Паралельние: В А С Последовательные:АВС Сопряженные:А D Сопряженные: А D С В Е В Е








Влияние температуры на скорость реакций Влияние температуры на скорость ферментативных реакций t t


Сравнение Вант- Гоффа: Расчет срока годности лекарств по методу "ускоренного старения" Вант- Гоффа: при t 2 t 1 Температурной коэффициент скорости:













Решение задач по разделу

Тема «Химическая термодинамика и кинетика», предполагающая изучение условий, влияющих на скорость химической реакции, встречается в школьном курсе химии дважды – в 9-м и в 11-м классах. Однако именно эта тема является одной из наиболее трудных и достаточно сложной не только для понимания «средним» учеником, но даже для изложения некоторыми учителями, особенно неспециалистами, работающими в сельской местности, для которых химия является дополнительным предметом, с учетом часов которого у педагога набирается ставка, а значит, и надежда на более-менее приличную зарплату.
В условиях резкого уменьшения числа учащихся в сельских школах, в силу хорошо известных причин, учитель вынужден быть универсалом. Посетив 2–3 курса, он начинает преподавание предметов, зачастую очень далеких от его основной специальности.
Данная разработка ориентирована в первую очередь на начинающих учителей и предметников, вынужденных преподавать химию в условиях рыночной экономики. Материал содержит задачи на нахождение скоростей гетерогенных и гомогенных реакций и увеличения скорости реакции при повышении температуры. Несмотря на то, что данные задачи базируются на школьном, хотя и сложном для усвоения «средним» учеником материале, целесообразно прорешать несколько из них на уроке химии в
11-м классе, а остальные предложить на кружковом или факультативном занятии учащимся, которые планируют свою дальнейшую судьбу связать с химией.
Помимо подробно разобранных и снабженных ответами задач данная разработка содержит теоретический материал, который поможет учителю химии, в первую очередь неспециалисту, понять суть этой сложной темы курса общей химии.
С опорой на предлагаемый материал можно создать свой вариант урока-лекции, в зависимости от способностей учащихся в классе, причем использовать предложенную теоретическую часть можно при изучении этой темы как в 9-м, так и в 11-м классе.
Наконец, материал, содержащийся в данной разработке, будет нелишним разобрать самостоятельно выпускнику, готовящемуся к поступлению в вуз, в том числе и в тот, в котором химия является профилирующим предметом.

Теоретическая часть по теме
«Химическая термодинамика и кинетика»

Условия, влияющие на скорость химической реакции

1. Скорость химической реакции зависит от природы реагирующих веществ.

П р и м е р ы.

Металлический натрий, имеющий щелочную природу, бурно реагирует с водой с выделением большого количества теплоты, в отличие от цинка, имеющего амфотерную природу, который реагирует с водой медленно и при нагревании:

Порошкообразное железо более энергично взаимодействует с сильной минеральной соляной кислотой, чем со слабой органической уксусной кислотой:

2. Скорость химической реакции зависит от концентрации реагирующих веществ, находящихся в растворенном или газообразном состоянии.

П р и м е р ы.

В чистом кислороде сера горит более энергично, чем на воздухе:

С 30%-м раствором соляной кислоты порошкообразный магний реагирует более энергично, чем с 1%-м ее раствором:

3. Скорость химической реакции прямо пропорциональна площади поверхности реагирующих веществ, находящихся в твердом агрегатном состоянии.

П р и м е р ы.

Кусок древесного угля (углерод) очень трудно поджечь спичкой, но древесная угольная пыль сгорает со взрывом:

С + О 2 = СО 2 .

Алюминий в виде гранулы не реагирует с кристаллом йода количественно, но измельченный йод энергично соединяется с алюминием в виде пудры:

4. Скорость химической реакции зависит от температуры, при которой происходит процесс.

П р и м е р.

При повышении температуры на каждые 10 °С скорость большинства химических реакций увеличивается в 2–4 раза. Конкретное увеличение скорости химической реакции определяется особым температурным коэффициентом (гамма).

Рассчитаем, во сколько раз возрастет скорость реакции:

2NO + O 2 = 2NO 2 ,

если температурный коэффициент равен 3, а температура процесса возросла с 10 °С до 50 °С.

Изменение температуры составляет:

t = 50 °С – 10 °С = 40 °С.

Используем формулу:

где – скорость химической реакции при повышенной температуре, – скорость химической реакции при начальной температуре.

Следовательно, скорость химической реакции при повышении температуры с 10 °С до 50 °С возрастет в 81 раз.

5. Скорость химической реакции зависит от присутствия некоторых веществ.

Катализатор – это вещество, ускоряющее ход химической реакции, но само в процессе реакции не расходующееся. Катализатор понижает активационный барьер химической реакции.

Ингибитор – это вещество, замедляющее ход химической реакции, но само в процессе реакции не расходующееся.

П р и м е р ы.

Катализатором, ускоряющим ход данной химической реакции, является оксид марганца(IV).

Катализатором, ускоряющим ход данной химической реакции, является красный фосфор.

Ингибитором, замедляющим ход данной химической реакции, является вещество органической природы – уротропин (гексаметилентетрамин).

Скорость гомогенной химической реакции измеряется числом молей вещества, вступившего в реакцию или образовавшегося в результате реакции за единицу времени в единице объема:

где гомог – скорость химической реакции в гомогенной системе, – число молей одного из вступивших в реакцию или одного из образовавшихся в результате реакции веществ, V – объем,
t – время, – изменение числа молей вещества за время реакции t .

Поскольку отношение числа молей вещества к объему системы представляет собой концентрацию с , то

Следовательно:

Скорость гомогенной химической реакции измеряется в моль/(л с).

Учитывая это, можно дать следующее определение:

скорость гомогенной химической реакции равна изменению концентрации одного из вступивших в реакцию или одного из образующихся в результате реакции веществ в единицу времени.

Если реакция протекает между веществами в гетерогенной системе, то реагирующие вещества соприкасаются между собой не во всем объеме, а только на поверхности твердого тела. Так, например, при горении кусочка кристаллической серы молекулы кислорода реагируют только с теми атомами серы, которые находятся на поверхности кусочка. При измельчении кусочка серы площадь реагирующей поверхности возрастает, и скорость горения серы увеличивается.

В связи с этим определение скорости гетерогенной химической реакции следующее:

скорость гетерогенной химической реакции измеряется числом молей вещества, вступившего в реакцию или образовавшегося в результате реакции в единицу времени на единице поверхности:

где S – площадь поверхности.

Скорость гетерогенной химической реакции измеряется в моль/(см 2 с).

Задачи по теме
«Химическая термодинамика и кинетика»

1. В сосуд для проведения химических реакций ввели 4 моль оксида азота(II) и избыток кислорода. Через 10 с количество вещества оксида азота(II) оказалось равным 1,5 моль. Найдите скорость данной химической реакции, если известно, что объем сосуда равен 50 л.

2. Количество вещества метана в сосуде для проведения химических реакций равно 7 моль. В сосуд ввели избыток кислорода и смесь взорвали. Опытным путем было установлено, что через 5 с количество вещества метана уменьшилось в 2 раза. Найдите скорость данной химической реакции, если известно, что объем сосуда равен 20 л.

3. Начальная концентрация сероводорода в сосуде для сжигания газов была равна 3,5 моль/л. В сосуд ввели избыток кислорода и смесь взорвали. Через 15 с концентрация сероводорода составила 1,5 моль/л. Найдите скорость данной химической реакции.

4. Начальная концентрация этана в сосуде для сжигания газов была равна 5 моль/л. В сосуд ввели избыток кислорода и смесь взорвали. Через 12 с концентрация этана составила 1,4 моль/л. Найдите скорость данной химической реакции.

5. Начальная концентрация аммиака в сосуде для сжигания газов была равна 4 моль/л. В сосуд ввели избыток кислорода и смесь взорвали. Через 3 с концентрация аммиака составила 1 моль/л. Найдите скорость данной химической реакции.

6. Начальная концентрация оксида углерода(II) в сосуде для сжигания газов была равна 6 моль/л. В сосуд ввели избыток кислорода и смесь взорвали. Через 5 с концентрация оксида углерода(II) уменьшилась вдвое. Найдите скорость данной химической реакции.

7. Кусочек серы с площадью реагирующей поверхности 7 см 2 сожгли в кислороде с образованием оксида серы(IV). За 10 с количество вещества серы уменьшилось с 3 моль до 1 моль. Найдите скорость данной химической реакции.

8. Кусочек углерода с площадью реагирующей поверхности 10 см 2 сожгли в кислороде с образованием оксида углерода(IV). За 15 с количество вещества углерода уменьшилось с 5 моль до 1,5 моль. Найдите скорость данной химической реакции.

9. Кубик магния с общей площадью реагирующей поверхности 15 см 2 и количеством вещества
6 моль сожгли в избытке кислорода. При этом через 7 с после начала реакции количество вещества магния оказалось равным 2 моль. Найдите скорость данной химической реакции.

10. Брусок из кальция с общей площадью реагирующей поверхности 12 см 2 и количеством вещества 7 моль сожгли в избытке кислорода. При этом через 10 с после начала реакции количество вещества кальция оказалось в 2 раза меньше. Найдите скорость данной химической реакции.

Решения и ответы

1 (NO) = 4 моль,

О 2 – избыток,

t 2 = 10 c,

t 1 = 0 c,

2 (NO) = 1,5 моль,

Найти:

Решение

2NO + О 2 = 2NO 2 .

Используя формулу:

Р-ции = (4 – 1,5)/(50 (10 – 0)) = 0,005 моль/(л с).

Ответ . р-ции = 0,005 моль/(л с).

2.

1 (CH 4) = 7 моль,

О 2 – избыток,

t 2 = 5 c,

t 1 = 0 c,

2 (CH 4) = 3,5 моль,

Найти :

Решение

CH 4 + 2О 2 = СО 2 + 2Н 2 О.

Используя формулу:

найдем скорость данной химической реакции:

Р-ции = (7 – 3,5)/(20 (5 – 0)) = 0,035 моль/(л с).

Ответ . р-ции = 0,035 моль/(л с).

3.

с 1 (H 2 S) = 3,5 моль/л,

О 2 – избыток,

t 2 = 15 c,

t 1 = 0 c,

с 2 (H 2 S) = 1,5 моль/л.

Найти:

Решение

2H 2 S + 3О 2 = 2SО 2 + 2Н 2 О.

Используя формулу:

найдем скорость данной химической реакции:

Р-ции = (3,5 – 1,5)/(15 – 0) = 0,133 моль/(л с).

Ответ . р-ции = 0,133 моль/(л с).

4.

с 1 (С 2 H 6) = 5 моль/л,

О 2 – избыток,

t 2 = 12 c,

t 1 = 0 c,

c 2 (С 2 H 6) = 1,4 моль/л.

Найти:

Решение

2С 2 H 6 + 7О 2 = 4СО 2 + 6Н 2 О.

найдем скорость данной химической реакции:

Р-ции = (6 – 2)/(15 (7 – 0)) = 0,0381 моль/(см 2 с).

Ответ . р-ции = 0,0381 моль/(см 2 с).

10. Ответ. р-ции = 0,0292 моль/(см 2 с).

Литература

Глинка Н.Л. Общая химия, 27-е изд. Под ред. В.А.Рабиновича. Л.: Химия, 1988; Ахметов Н.С. Общая и неорганическая химия. М.: Высш. шк., 1981; Зайцев О.С. Общая химия. М.: Высш. шк, 1983; Карапетьянц М.Х., Дракин С.И. Общая и неорганическая химия. М.: Высш. шк., 1981; Корольков Д.В. Основы неорганической химии. М.: Просвещение, 1982; Некрасов Б.В. Основы общей химии. 3-е изд., М.: Химия, 1973; Новиков Г.И. Введение в неорганическую химию. Ч. 1, 2. Минск: Вышэйш. шк., 1973–1974; Щукарев С.А . Неорганическая химия. Т. 1, 2. М.: Высш. шк., 1970–1974; Шретер В., Лаутеншлегер К.-Х., Бибрак Х. и др. Химия. Справочное изд. Пер. с нем. М.: Химия, 1989; Фельдман Ф.Г., Рудзитис Г.Е. Химия-9. Учебник для 9 класса средней школы. М.: Просвещение, 1990; Фельдман Ф.Г., Рудзитис Г.Е. Химия-9. Учебник для 9 класса средней школы. М.: Просвещение, 1992.

«ОСНОВЫ ХИМИЧЕСКОЙ ТЕРМОДИНАМИКИ, ХИМИЧЕСКОЙ КИНЕТИКИ И РАВНОВЕСИЯ»

Основы химической термодинамики

1 . Что изучает химическая термодинамика:

1) скорости протекания химических превращений и ме­ханизмы этих превращений;

2) энергетические характеристики физических и хими­ческих процессов и способность химических систем выпол­нять полезную работу;

3) условия смещения химического равновесия;

4) влияние катализаторов на скорость биохимических процессов.

2. Открытой системой называют такую систему, которая:

3. Закрытой системой называют такую систему, которая:

1) не обменивается с окружающей средой ни веществом, ни энергией;

2) обменивается с окружающей средой и веществом, и энергией;

3) обменивается с окружающей средой энергией, но не обменивается веществом;

4) обменивается с окружающей средой веществом, но не обменивается энергией.

4. Изолированной системой называют такую систему, которая:

1) не обменивается с окружающей средой ни веществом, ни энергией;

2) обменивается с окружающей средой и веществом, и энергией;

3) обменивается с окружающей средой энергией, но не обменивается веществом;

4) обменивается с окружающей средой веществом, но не обменивается энергией.

5. К какому типу термодинамических систем принадле­жит раствор, находящийся в запаянной ампуле, помещен ной в термостат?

1) изолированной;

2) открытой;

3) закрытой;

4) стационарной.

6. К какому типу термодинамических систем принадле жит раствор, находящийся в запаянной ампуле?

1) изолированной;

2) открытой;

3) закрытой;

4) стационарной.

7. К какому типу термодинамических систем принадле жит живая клетка?

1) открытой;

2) закрытой;

3) изолированной;

4) равновесной.

8 . Какие параметры термодинамической системы назы- I вают экстенсивными?

1) величина которых не зависит от числа частиц в системе;

3) величина которых зависит от агрегатного состояния системы;

9. Какие параметры термодинамической системы назы­вают интенсивными?

!) величина которых не зависит от числа частиц в системе;

2) величина которых зависит от числа частиц в системе;

3) величина которых зависит от агрегатного состояния;

4) величина которых зависит от времени.

10 . Функциями состояния термодинамической системы называют такие величины, которые:

1) зависят только от начального и конечного состояния системы;

2) зависят от пути процесса;

3) зависят только от начального состояния системы;

4) зависят только от конечного состояния системы.

11 . Какие величины являются функциями состояния си­стемы: а) внутренняя энергия; б) работа; в) теплота; г) эн­тальпия; д) энтропия.

3) все величины;

4) а, б, в, г.

12 . Какие из следующих свойств являются интенсив­ными: а) плотность; б) давление; в) масса; г) температура; д) энтальпия; е) объем?

3) б, в, г, е;

13. Какие из следующих свойств являются экстенсивны­ми: а) плотность; б) давление; в) масса; г) температура; д) энтальпия; е) объем?

3) б, в, г, е;

14 . Какие формы обмена энергией между системой и окружающей средой рассматривает термодинамика: а) теп­лота; б) работа; в) химическая; г) электрическая; д) механи­ческая; е) ядерная и солнечная?

2) в, г,д, е;

3) а, в, г, д, е;

4) а, в, г, д.

15. Процессы, протекающие при постоянной темпера­туре, называются:

1) изобарическими;

2) изотермическими;

3) изохорическими;

4) адиабатическими.

16 . Процессы, протекающие при постоянном объеме, называются:

1) изобарическими;

2) изотермическими;

3) изохорическими;

4) адиабатическими.

17 . Процессы, протекающие при постоянном давлении, называются:

1) изобарическими;

2) изотермическими;

3) изохорическими;

4) адиабатическими.

18 . Внутренняя энергия системы - это: 1) весь запас энергии системы, кроме потенциальной энер­гии ее положения и кинетической энергии системы в целом;

2) весь запас энергии системы;

3) весь запас энергии системы, кроме потенциальной энергии ее положения;

4) величина, характеризующая меру неупорядоченнос­ти расположения частиц системы.

19 . Какой закон отражает связь между работой, тепло­той и внутренней энергией системы?

1) второй закон термодинамики;

2) закон Гесса;

3) первый закон термодинамики;

4) закон Вант-Гоффа.

20 . Первый закон термодинамики отражает связь между:

1) работой, теплотой и внутренней энергией;

2) свободной энергией Гиббса, энтальпией и энтропией системы;

3) работой и теплотой системы;

4) работой и внутренней энергией.

21 . Какое уравнение является математическим выра­жением первого закона термодинамики для изолирован­ных систем?

l)AU=0 2)AU=Q-p-AV 3)AG = AH-TAS

22 . Какое уравнение является математическим выраже­нием первого закона термодинамики для закрытых систем?

1)AU=0; 2)AU=Q-p-AV;

3) AG = AH - T*AS;

23 . Постоянной или переменной величиной является внутренняя энергия изолированной системы?

1) постоянной;

2) переменной.

24 . В изолированной системе протекает реакция сгора­ния водорода с образованием жидкой воды. Изменяется ли внутренняя энергия и энтальпия системы?

1) внутренняя энергия не изменится, энтальпия изменится;

2) внутренняя энергия изменится, энтальпия не изменится;

3) внутренняя энергия не изменится, энтальпия не изменится;

4) внутренняя энергия изменится, энтальпия изменится.

25 . При каких условиях изменение внутренней энергии равно теплоте, получаемой системой из окружающей среды?

1) при постоянном объеме;

3) при постоянном давлении;

4) ни при каких.

26 . Тепловой эффект реакции, протекающей при посто­янном объеме, называется изменением:

1) энтальпии;

2) внутренней энергии;

3) энтропии;

4) свободной энергии Гиббса.

27 . Энтальпия реакции - это:

28. Химические процессы, при протекании которых про­исходит уменьшение энтальпии системы и во внешнюю сре­ду выделяется теплота, называются:

1) эндотермическимий;

2) экзотермическими;

3) экзэргоническими;

4) эндэргоническими.

29 . При каких условиях изменение энтальпии равно теп­лоте, получаемой системой из окружающей среды?

1) при постоянном объеме;

2) при постоянной температуре;

3) при постоянном давлении;

4) ни при каких.

30 . Тепловой эффект реакции, протекающей при посто-янном давлении, называется изменением:

1) внутренней энергии;

2) ни одно из предыдущих определений неверно;

3) энтальпии;

4) энтропии.

31. Какие процессы называют эндотермическими?

32 . Какие процессы называют экзотермическими?

1) для которых АН отрицательно;

2) для которых AG отрицательно;

3) для которых АН положительно;

4) для которых AG положительно.

33 . Укажите формулировку закона Гесса:

1) тепловой эффект реакции зависит только от началь­ного и конечного состояния системы и не зависит от пути реакции;

2) теплота, поглощаемая системой при постоянном объе­ме, равна изменению внутренней энергии системы;

3) теплота, поглощаемая системой при постоянном дав­лении, равна изменению энтальпии системы;

4) тепловой эффект реакции не зависит от начально­го и конечного состояния системы, а зависит от пути ре­акции.

34. Какой закон лежит в основе расчетов калорийности продуктов питания?

1) Вант-Гоффа;

3) Сеченова;

35. При окислении каких веществ в условиях организма выделяется большее количество энергии?

1) белков;

3) углеводов;

4) углеводов и белков.

36 . Самопроизвольным называется процесс, который:

1) осуществляется без помощи катализатора;

2) сопровождается выделением теплоты;

3) осуществляется без затраты энергии извне;

4) протекает быстро.

37 . Энтропия реакции - это:

1) количество теплоты, которое выделяется или погло­щается в ходе химической реакции при изобарно-изотер-мических условиях;

2) количество теплоты, которое выделяется или погло­щается в ходе химической реакции при изохорно-изотер-мических условиях;

3) величина, характеризующая возможность самопро­извольного протекания процесса;

4) величина, характеризующая меру неупорядоченнос­ти расположения и движения частиц системы.

38 . Какой функцией состояния характеризуется тенден­ция системы к достижению вероятного состояния, которо­му соответствует максимальная беспорядочность распреде­ления частиц?

1) энтальпией;

2) энтропией;

3) энергией Гиббса;

4) внутренней энергией.

39 . В каком соотношении находятся энтропии трех агрегат­ных состояний одного вещества: газа, жидкости, твердого тела:

I) S (г) > S (ж) > S (тв); 2)S(тв)>S(ж)>S(г); 3)S(ж)>S(г)>S(TB); 4) агрегатное состояние не влияет на значение энтропии.

40 . В каком из следующих процессов должно наблюдать­ся наибольшее положительное изменение энтропии:

1) СН3ОН (тв) --> СН,ОН (г);

2) СH4OH (тв) --> СН 3 ОН (ж);

3) СН,ОН (г) -> CH4OH (тв);

4) СН,ОН (ж) -> СН3ОН (тв).

41 . Выберите правильное утверждение: энтропия систе­мы увеличивается при:

1) повышении давления;

2) переходе от жидкого к твердому агрегатному состоянию

3) повышении температуры;

4) переходе от газообразного к жидкому состоянию.

42. Какую термодинамическую функцию можно исполь­зовать, чтобы предсказать возможность самопроизвольно­го протекания реакции в изолированной системе?

1) энтальпию;

2) внутреннюю энергию;

3) энтропию;

4) потенциальную энергию системы.

43 . Какое уравнение является математическим выраже­нием 2-го закона термодинамики для изолированных систем?

44 . Если система обратимым образом получает количе­ство теплоты Q при температуре Т, то об T;

2) возрастает на величину Q/T;

3) возрастает на величину, большую Q/T;

4) возрастает на величину, меньшую Q/T.

45 . В изолированной системе самопроизвольно проте­кает химическая реакция с образованием некоторого коли­чества продукта. Как изменяется энтропия такой системы?

1) увеличивается

2) уменьшается

3) не изменяется

4) достигает минимального значения

46 . Укажите, в каких процессах и при каких условиях изменение энтропии может быть равно работе процесса?

1) в изобарных, при постоянных Р и Т;

2) в изохорных, при постоянных V и Т;

З) изменение энтропии никогда не равно работе; 4) в изотермических, при постоянных Р и 47 . Как изменится связанная энергия системы TS при нагревании и при ее конденсации?

1) при нагревании растет, при конденсации уменьшается;

2) при нагревании уменьшается, при конденсации растет;

3) не происходит изменение T-S;

4) при нагревании и конденсации растет.

48 . Какие параметры системы необходимо поддержи­вать постоянными, чтобы по знаку изменения энтропии можно было судить о направлении самопроизвольного про­текания процесса?

1) давление и температуру;

2) объем и температуру;

3) внутреннюю энергию и объем;

4) только температуру.

49 . В изолированной системе все самопроизвольные процессы протекают в сторону увеличения беспорядка. Как при этом изменяется энтропия?

1) не изменяется;

2) увеличивается;

3) уменьшается;

4) сначала увеличивается, а затем уменьшается.

50 . Энтропия возрастает на величину Q/T для:

1) обратимого процесса;

2) необратимого процесса;

3) гомогенного;

4) гетерогенного.

51 Как изменяется энтропия системы за счет прямой и обратной реакции при синтезе аммиака?

3) энтропия не изменяется в ходе реакции;

4) энтропия увеличивается для прямой и обратной ре­акции.

52 . Какими одновременно действующими факторами определяется направленность химического процесса?

1) энтальпийным и температурным;

2) энтальпийным и энтропийным;

3) энтропийным и температурным;

4) изменением энергии Гиббса и температуры.

53. В изобарно-изотермических условиях максимальная работа, осуществляемая системой:

1) равна убыли энергии Гиббса;

2) больше убыли энергии Гиббса;

3) меньше убыли энергии Гиббса;

4) равна убыли энтальпии.

54 . Какие условия необходимо соблюдать, чтобы мак­симальная работа в системе совершалась за счет убыли энер­гии Гиббса?

1) необходимо поддерживать постоянными V и t;

2) необходимо поддерживать постоянными Р и t;

3) необходимо поддерживать постоянными АН и AS;

4) необходимо поддерживать постоянными PиV

55 . За счет чего совершается максимальная полезная работа химической реакции при постоянных давлении и температуре?

1) за счет убыли энергии Гиббса;

3) за счет увеличения энтальпии;

4) за счет уменьшения энтропии.

56. За счет чего совершается маскимальная полезная рабо­та живым организмом в изобарно-изотермических условиях?

1) за счет убыли энтальпии;

2) за счет увеличения энтропии;

3) за счет убыли энергии Гиббса;

4) за счет увеличения энергии Гиббса.

57 . Какие процессы называют эндэргоническими?

58. Какие процессы называют экзэргоническими?

2) AG 0; 4) AG > 0.

59. Самопроизвольный характер процесса лучше опре­делять путем оценки:

1)энтропии;

3) энтальпии;

2) свободной энергии Гиббса;

4) температуры.

60 . Какую термодинамическую функцию можно исполь­зовать для предсказания возможности самопроизвольного протекания процессов в живом организме?

1) энтальпию;

3) энтропию;

2) внутреннюю энергию;

4) свободную энергию Гиббса.

61 . Для обратимых процессов изменение свободной энергии Гиббса...

1) всегда равно нулю;

2) всегда отрицательно;

3) всегда положительно;

62 . Для необратимых процессов изменение свободной энергии:

1) всегда равно нулю;

2) всегда отрицательно;

3) всегда положительно;

4) положительно или отрицательно в зависимости от обстоятельств.

63. В изобарно-изотермических условиях в системе са­мопроизвольно могут осуществляться только такие процес­сы, в результате которых энергия Гиббса:

1) не меняется;

2) увеличивается;

3) уменьшается;

4) достигает максиального значения.

64 . Для некоторой химической реакции в газовой фазе при постоянных Р и TAG > 0. В каком направлении само­произвольно протекает эта реакция?

Г) в прямом направлении;

2) не может протекать при данных условиях;

3) в обратном направлении;

4) находится в состоянии равновесия.

65 . Каков знак AG процесса таяния льда при 263 К?

66 . В каком из следующих случаев реакция неосуществи­ма при любых температурах?

1)AH>0;AS>0; 2)AH>0;AH

3)A#4)AH= 0;AS = 0.

67. В каком из следующих случаев реакция возможна при любых температурах?

1)ДH 0; 2)AH 0; AS > 0; 4)AH = 0;AS = 0.

68 . Если АН

1) [АН] > ;

2) при любых соотношениях АН и TAS; 3){AH]

4) [АН] = [Т-А S].

69 . При каких значениях по знаку АН и AS в системе возможны только экзотермические процессы?

70. При каких соотношениях АН и T* AS химический про­цесс направлен в сторону эндотермической реакции:

71 . При каких постоянных термодинамических парамет­рах изменение энтальпии может служить критерием направ­ления самопроизвольного процесса? Какой знак DH в этих условиях указывает на самопроизвольный процесс?

1) при постоянных S и Р, АН

3) при постоянных Put, АН

2) при постоянных 5 и Р, АН > 0; 4) при постоянных Vn t, АН > 0.

72 . Можно ли и в каких случаях по знаку изменения эн­тальпии в ходе химической реакции судить о возможности ее протекания при постоянных Ти Р1

1) можно, если ЛЯ » T-AS;

2) при данных условиях нельзя;

3) можно, если АН « T-AS;

4) можно, если АН = T-AS.

73 . Реакция ЗН 2 + N 2 -> 2NH 3 проводится при 110°С, так что все реагенты и продукты находятся в газовой фазе. Ка­кие из указанных ниже величин сохраняются в ходе реакции?

2) энтропия;

3) энтальпия;

74 . Какие из следующих утверждений верны для реак­ций, протекающих в стандартных условиях?

1) эндотермические реакции не могут протекать само­произвольно;

2) эндотермические реакции могут протекать при дос­таточно низких температурах;

3) эндотермические реакции могут протекать при высо­ких температурах, если AS > 0;

4) эндотермические реакции могут протекать при высо­ких температурах, если AS

75 . Каковы особенности биохимических процессов: а) под­чиняются принципу энергетического сопряжения; б) как правило обратимы; в) сложные; г) только экзэргонические (AG

1) а, б, в, г;

2) б, в, г; 3) а, 6, в; 4) в, д.

76 . Экзэргонические реакции в организме протекают самопроизвольно, так как:

77 . Эндэргонические реакции в организме требуют под­вода энергии, так как: 1)AG >0;

78 . При гидролизе любого пептида АН 0, бу­дет ли данный процесс протекать самопроизвольно?

1) будет, так как AG > 0;

3) не будет, так как AG > 0;

2) будет, так как AG

4) не будет, так как AG

79 . Калорийностью питательных веществ называется энергия:

1) выделяемая при полном окислении 1 г питательных веществ;

2) выделяемая при полном окислении 1 моль питатель­ных веществ;

3) необходимая для полного окислении 1 г питательных веществ;

4) необходимая для полного окислении 1 моль питатель­ных веществ.

80 . Для процесса тепловой денатурации многих фермен­тов ЛЯ > 0 и AS > 0. Может ли данный процесс протекать самопроизвольно?

1) может при высоких температурах, так как \T-AS\ > |АД];

2) может при низких температурах, так как \T-AS\

3) не может, так как \T-AS\ > |AH];

4) не может, так как \T-AS\

81 . Для процесса тепловой гидратации многих белков АН

1) может при достаточно низких температурах, так как |AH| > \T-AS\;

2) может при достаточно низких температурах, так как |АЯ|

3) может при высоких температурах, так как |АH)

4) не может ни при каких температурах.

Программа

Параметров химических реакций, химического равновесия ; - рассчитывать тепловые эффекты и скорость химических реакций... реакций; - основы физической и коллоидной химии, химической кинетики , электрохимии, химической термодинамики и термохимии; ...

  • Задачи профессиональной деятельности выпускника. Компетенции выпускника, формируемые в результате освоения ооп впо. Документы, регламентирующие содержание и организацию образовательного процесса при реализации ооп впо (3)

    Регламент

    Модуль 2. Основные физико-химические закономерности протекания химических процессов Основы химической термодинамики . Основы химической кинетики . Химическое равновесие . Модуль 3..Основы химии растворов Общие...

  • Данное пособие может быть использовано для самостоятельной работы студентами нехимических специальностей

    Документ

    Простые вещества. На этой основе в химической термодинамике создана система расчета тепловых эффектов... , Cr2O3? ТЕМА 2. ХИМИЧЕСКАЯ КИНЕТИКА И ХИМИЧЕСКОЕ РАВНОВЕСИЕ Как было показано ранее, химическая термодинамика позволяет предсказать принципиальную...

  • Рабочая программа дисциплины химия направление подготовки

    Рабочая программа

    4.1.5. Окислительно-восстановительные процессы. Основы электрохимии Окислительно-восстановительные процессы. ... Способы количественного выражения состава растворов. 5 Химическая термодинамика 6 Кинетика и равновесие . 7 Диссоциация, рН, гидролиз 8 ...

  • Методические советы

    (Л.1, с. 168-210)

    В термохимии изучаются тепловые эффекты химических реакций. Термохимические расчеты основаны на применении закона Гесса. Основываясь на этом законе можно вычислять тепловые эффекты реакций, пользуясь табличными данными (прил., табл.3). Следует обратить внимание, что термохимические таблицы обычно построены на основе данных для простых веществ, теплоты образования которых приняты равными нулю.

    Термодинамика разрабатывает общие закономерности протекания химических реакций. Эти закономерности могут быть количественно определены следующими термодинамическими величинами: внутренней энергией системы (U), энтальпией (H), энтропией (S) и изобарно-изотермическим потенциалом (G- свободная энергия Гиббса).

    Учение о скорости химических реакций называется химической кинетикой. Центральными вопросами этой темы являются закон действия масс и химическое равновесие. Обратить внимание на то, что учение о скорости химических реакций и о химическом равновесии имеет огромное значение, так как позволяет управлять течением химических реакций.

    Теоретические аспекты

    4.1 Химическая термодинамика

    Химическая термодинамика – наука о зависимости направления и пределов превращений веществ от условий, в которых эти вещества находятся.

    В отличие от других разделов физической химии (строение вещества и химическая кинетика), химическую термодинамику можно применять, ничего не зная о молекулярном строении вещества. Такое описание требует значительно меньше исходных данных.

    Пример :

    Энтальпию образования глюкозы нельзя определить прямым экспериментом:

    6 C + 6 H 2 + 3 O 2 = C 6 H 12 O 6 (H х - ?) такая реакция невозможна

    6 CO 2 + 6 H 2 O = C 6 H 12 O 6 + 6 O 2 ( H у - ?) реакция идет в зеленых листьях, но вместе с другими процессами.

    Пользуясь законом Гесса, достаточно скомбинировать три уравнения сжигания:

    1) C + O 2 = CO 2 H 1 = -394 кДж

    2) H 2 + 1/2 O 2 = H 2 O (пар) H 2 = -242 кДж

    3) C 6 H 12 O 6 + 6 O 2 = 6 CO 2 + 6 H 2 O H 3 = -2816 кДж

    Складываем уравнения, "разворачивая" третье, тогда

    H х = 6 H 1 + 6 H 2 - H 3 = 6(-394) + 6(-242) -(-2816) = -1000 кДж/моль

    При решении не использованы никакие данные по строению глюкозы; не рассматривался также механизм ее горения.

    Изобарный потенциал выражается в кДж/моль . Его изменение в процессе химической реакции не зависит от пути протекания реакции, а определяется лишь начальным и конечным состоянием реагирующих веществ (закон Гесса):

    ΔG реакц = Σ ΔG конечн. продукт - Σ ΔG исходных веществ

    Конкретный объект термодинамического исследования называют термодинамической системой, выделенной из окружающего мира реально существующими или воображаемыми поверхностями. Системой может быть газ в сосуде, раствор реагентов в колбе, кристалл вещества или даже мысленно выделенная часть этих объектов.

    Если в системе есть реальные поверхности раздела , отделяющие друг от друга части системы, различающиеся по свойствам, то система называется гетерогенной (насыщенный раствор с осадком), если таких поверхностей нет, система называется гомогенной (истинный раствор). Гетерогенные системы содержат не менее двух фаз.

    Фаза – совокупность всех гомогенных частей системы, одинаковых по составу и по всем физическим и химическим свойствам (не зависящим от количества вещества) и отграниченных от других частей системы поверхностью раздела. Внутри одной фазы свойства могут изменяться непрерывно, но на поверхности раздела между фазами свойства меняются скачком.

    Компонентами называют вещества, минимально необходимые для составления данной системы (минимум один). Число компонентов в системе равно числу веществ в ней присутствующих, минус число связывающих эти вещества независимых уравнений.

    По уровням взаимодействия с окружающей средой термодинамические системы принято делить на:

    – открытые – обмениваются с окружающей средой веществом и энергией (например, живые объекты);

    – закрытые – обмениваются только энергией (например, реакция в закрытой колбе или колбе с обратным холодильником), наиболее частый объект химической термодинамики;

    – изолированные – не обмениваются ни веществом, ни энергией и сохраняют постоянный объем (приближение – реакция в термостате).

    Свойства системы разделяют на экстенсивные (суммирующиеся) – например, общий объем, масса, и интенсивные (выравнивающиеся) – давление, температура, концентрация и т.п. Совокупность свойств системы определяет ее состояние. Многие свойства взаимосвязаны, поэтому для гомогенной однокомпонентной системы с известным количеством вещества n достаточно выбрать для характеристики состояния два из трех свойств: температуру T, давление p и объем V. Связывающее свойства уравнение называют уравнением состояния, для идеального газа это:

    Законы термодинамики

    Первый закон термодинамики: Энергия не создается и не уничтожается. Вечный двигатель (perpetuum mobile) первого рода невозможен. В любой изолированной системе общее количество энергии постоянно .

    В общем случае, работа, совершаемая химической реакцией при постоянном давлении (изобарный процесс), состоит из изменения внутренней энергии и работы расширения:

    Для большинства химических реакций, проводимых в открытых сосудах, удобно использовать функцию состояния, приращение которой равно теплоте, полученной системой в изобарном процессе . Эта функция называется энтальпия (от греч. "энтальпо" – нагреваю):

    Другое определение: разность энтальпий в двух состояниях системы равна тепловому эффекту изобарного процесса .

    Существуют таблицы, содержащие данные по стандартным энтальпиям образования веществ H o 298 . Индексы означают, что для химических соединений приведены энтальпии образования 1 моль их из простых веществ, взятых в наиболее устойчивой модификации (кроме белого фосфора – не самой устойчивой, а самой воспроизводимой формы фосфора) при 1 атм (1,01325∙10 5 Па или 760 мм.рт.ст) и 298,15 К (25 о С). Если речь идет об ионах в растворе, то стандартной является концентрация 1М (1 моль/л).

    Знак энтальпии определяется "с точки зрения" самой системы: при выделении теплоты изменение энтальпии отрицательно, при поглощении теплоты изменение энтальпии положительно.

    Второй закон термодинамики

    Изменение энтропии равно (по определению) минимальной теплоте, подводимой к системе в обратимом (все промежуточные состояния равновесны) изотермическом процессе, деленной на абсолютную температуру процесса:

    S = Q мин. /T

    На данном этапе изучения термодинамики следует принять как постулат, что существует некоторое экстенсивное свойство системы S, называемое энтропией, изменение которого так связано с процессами в системе:

    В самопроизвольном процессе S > Q мин. /T

    В равновесном процессе S = Q мин. /T

    < Q мин. /T

    Для изолированной системы, где dQ = 0, получим:

    В самопроизвольном процессе S > 0

    В равновесном процессе S = 0

    В несамопроизвольном процессе S < 0

    В общем случае энтропия изолированной системы или увеличивается, или остается постоянной :

    Понятие энтропии возникло из полученных ранее формулировок второго закона (начала) термодинамики. Энтропия – свойство системы в целом, а не отдельной частицы.

    Третий закон термодинамики (постулат Планка)

    Энтропия правильно сформированного кристалла чистого вещества при абсолютном нуле равна нулю (Макс Планк, 1911г.). Этот постулат может быть объяснен статистической термодинамикой, согласно которой энтропия есть мера беспорядочности системы на микроуровне:

    S = k b lnW - уравнение Больцмана

    W – число различных состояний системы, доступное ей при данных условиях, или термодинамическая вероятность макросостояния системы.

    k b = R/N A = 1,38 . 10 -16 эрг/град – постоянная Больцмана

    В 1872 г. Л.Больцман предложил статистическую формулировку второго закона термодинамики: изолированная система эволюционирует преимущественно в направлении большей термодинамическоой вероятности .

    Введение энтропии дало возможность установить критерии, позволяющие определить направление и глубину протекания любого химического процесса (для большого числа частиц в равновесии).

    Макроскопические системы достигают равновесия, когда изменение энергии компенсируется энтропийной составляющей:

    При постоянном объеме и температуре:

    U v = TS v или (U-TS) =F = 0- энергия Гельмгольца или изохорно-изо- термический потенциал

    При постоянном давлении и температуре:

    H p = TS p или (H-TS) =G = 0 -энергия Гиббса или свободная энергия Гиббса или изобарно-изотермический потенциал.

    Изменение энергии Гиббса как критерий возможности химической реакции: G =H - TS

    При G < 0 реакция возможна;

    при G > 0 реакция невозможна;

    при G = 0 система находится в равновесии.

    Возможность самопроизвольной реакции в изолированной системе определяется сочетанием знаков энергетического (энтальпийного) и энтропийного факторов:

    Имеются обширные табличные данные по стандартным значениям G 0 и S 0 , позволяющие вычислить G 0 реакции.

    В случае, если температура отличается от 298 К и концентрации реагентов – от 1М, для процесса в общем виде:

    G = G 0 + RT ln([C] c [D] d /[A] a [B] b)

    В положении равновесия G = 0 иG 0 = -RTlnK р, где

    K р = [C] c равн [D] d равн /[A] a равн [B] b равн константа равновесия

    K р = exp (-G˚/RT)

    Пользуясь приведенными формулами, можно определить температуру, начиная с которой эндотермическая реакция, при которой возрастает энтропия, становится легко осуществимой. Температура определяется из условия.

    1 . Что изучает химическая термодинамика:

    1) скорости протекания химических превращений и ме­ханизмы этих превращений;

    2) энергетические характеристики физических и хими­ческих процессов и способность химических систем выпол­нять полезную работу;

    3) условия смещения химического равновесия;

    4) влияние катализаторов на скорость биохимических процессов.

    2. Открытой системой называют такую систему, которая:

    2) обменивается с окружающей средой и веществом, и энергией;

    3. Закрытой системой называют такую систему, которая:

    1) не обменивается с окружающей средой ни веществом, ни энергией;

    3) обменивается с окружающей средой энергией, но не обменивается веществом ;

    4) обменивается с окружающей средой веществом, но не обменивается энергией.

    4. Изолированной системой называют такую систему, которая:

    1) не обменивается с окружающей средой ни веществом, ни энергией ;

    2) обменивается с окружающей средой и веществом, и энергией;

    3) обменивается с окружающей средой энергией, но не обменивается веществом;

    4) обменивается с окружающей средой веществом, но не обменивается энергией.

    5. К какому типу термодинамических систем принадле­жит раствор, находящийся в запаянной ампуле, помещен ной в термостат?

    1) изолированной;

    2) открытой;

    3) закрытой;

    4) стационарной.

    6. К какому типу термодинамических систем принадле жит раствор, находящийся в запаянной ампуле?

    1) изолированной;

    2) открытой;

    3) закрытой;

    4) стационарной.

    7. К какому типу термодинамических систем принадле жит живая клетка?

    1) открытой ;

    2) закрытой;

    3) изолированной;

    4) равновесной.

    8 . Какие параметры термодинамической системы назы-Iвают экстенсивными?

    1) величина которых не зависит от числа частиц в системе;

    2) величина которых зависит от числа частиц в системе ;

    3) величина которых зависит от агрегатного состояния системы;

    9. Какие параметры термодинамической системы назы­вают интенсивными?

    !) величина которых не зависит от числа частиц в системе ;

    2) величина которых зависит от числа частиц в системе;

    3) величина которых зависит от агрегатного состояния;

    4) величина которых зависит от времени.

    10 . Функциями состояния термодинамической системы называют такие величины, которые:

    1) зависят только от начального и конечного состояния системы ;

    2) зависят от пути процесса;

    3) зависят только от начального состояния системы;

    4) зависят только от конечного состояния системы.

    11 . Какие величины являются функциями состояния си­стемы: а) внутренняя энергия; б) работа; в) теплота; г) эн­тальпия; д) энтропия.

    1) а, г, д;

    3) все величины;

    4) а, б, в, г.

    12 . Какие из следующих свойств являются интенсив­ными: а) плотность; б) давление; в) масса; г) температура; д) энтальпия; е) объем?

    1) а, б, г;

    3) б, в, г, е;

    13. Какие из следующих свойств являются экстенсивны­ми: а) плотность; б) давление; в) масса; г) температура; д) энтальпия; е) объем?

    1) в, д, е;

    3) б, в, г, е;

    14 . Какие формы обмена энергией между системой и окружающей средой рассматривает термодинамика: а) теп­лота; б) работа; в) химическая; г) электрическая; д) механи­ческая; е) ядерная и солнечная?

    1)а,б;

    2) в, г,д, е;

    3) а, в, г, д, е;

    4) а, в, г, д.

    15. Процессы, протекающие при постоянной темпера­туре, называются:

    1) изобарическими;

    2) изотермическими ;

    3) изохорическими;

    4) адиабатическими.

    16 . Процессы, протекающие при постоянном объеме, называются:

    1) изобарическими;

    2) изотермическими;

    3) изохорическими;

    4) адиабатическими.

    17 . Процессы, протекающие при постоянном давлении, называются:

    1) изобарическими ;

    2) изотермическими;

    3) изохорическими;

    4) адиабатическими.

    18 . Внутренняя энергия системы - это:1) весь запас энергии системы, кроме потенциальной энер­гии ее положения и кинетической энергии системы в целом;

    2) весь запас энергии системы;

    3) весь запас энергии системы, кроме потенциальной энергии ее положения;

    4) величина, характеризующая меру неупорядоченнос­ти расположения частиц системы.

    19 . Какой закон отражает связь между работой, тепло­той и внутренней энергией системы?

    1) второй закон термодинамики;

    2) закон Гесса;

    3) первый закон термодинамики;

    4) закон Вант-Гоффа.

    20 . Первый закон термодинамики отражает связь между:

    1) работой, теплотой и внутренней энергией;

    2) свободной энергией Гиббса, энтальпией и энтропией системы;

    3) работой и теплотой системы;

    4) работой и внутренней энергией.

    21 . Какое уравнение является математическим выра­жением первого закона термодинамики для изолирован­ных систем?

    l)AU=0 2)AU=Q-p-AV 3)AG = AH-TAS

    22 . Какое уравнение является математическим выраже­нием первого закона термодинамики для закрытых систем?

    2)AU=Q-p-AV ;

    3) AG = AH - T*AS;

    23 . Постоянной или переменной величиной является внутренняя энергия изолированной системы?

    1) постоянной;

    2) переменной.

    24 . В изолированной системе протекает реакция сгора­ния водорода с образованием жидкой воды. Изменяется ли внутренняя энергия и энтальпия системы?

    1) внутренняя энергия не изменится, энтальпия изменится;

    2) внутренняя энергия изменится, энтальпия не изменится ;

    3) внутренняя энергия не изменится, энтальпия не изменится;

    4) внутренняя энергия изменится, энтальпия изменится.

    25 . При каких условиях изменение внутренней энергии равно теплоте, получаемой системой из окружающей среды?

    1) при постоянном объеме ;

    3) при постоянном давлении;

    4) ни при каких.

    26 . Тепловой эффект реакции, протекающей при посто­янном объеме, называется изменением:

    1) энтальпии;

    2) внутренней энергии;

    3) энтропии;

    4) свободной энергии Гиббса.

    27 . Энтальпия реакции - это:

    1) количество теплоты, которое выделяется или погло­щается в ходе химической реакции при изобарно-изотер-мических условиях ;

    4) величина, характеризующая меру неупорядоченнос­ти расположения и движения частиц системы.

    28. Химические процессы, при протекании которых про­исходит уменьшение энтальпии системы и во внешнюю сре­ду выделяется теплота, называются:

    1) эндотермическимий;

    2) экзотермическими;

    3) экзэргоническими;

    4) эндэргоническими.

    29 . При каких условиях изменение энтальпии равно теп­лоте, получаемой системой из окружающей среды?

    1) при постоянном объеме;

    2) при постоянной температуре;

    3) при постоянном давлении ;

    4) ни при каких.

    30 . Тепловой эффект реакции, протекающей при посто-янном давлении, называется изменением:

    1) внутренней энергии;

    2) ни одно из предыдущих определений неверно;

    3) энтальпии;

    4) энтропии.

    31. Какие процессы называют эндотермическими?

    1) для которых АН отрицательно;

    3) для которых АН положительно ;

    32 . Какие процессы называют экзотермическими?

    1) для которых АН отрицательно ;

    2) для которых AGотрицательно;

    3) для которых АН положительно;

    4) для которых AGположительно.

    33 . Укажите формулировку закона Гесса:

    1) тепловой эффект реакции зависит только от началь­ного и конечного состояния системы и не зависит от пути реакции ;

    2) теплота, поглощаемая системой при постоянном объе­ме, равна изменению внутренней энергии системы;

    3) теплота, поглощаемая системой при постоянном дав­лении, равна изменению энтальпии системы;

    4) тепловой эффект реакции не зависит от начально­го и конечного состояния системы, а зависит от пути ре­акции.

    34. Какой закон лежит в основе расчетов калорийности продуктов питания?

    1) Вант-Гоффа;

    2) Гесса;

    3) Сеченова;

    35. При окислении каких веществ в условиях организма выделяется большее количество энергии?

    1) белков;

    2) жиров ;

    3) углеводов;

    4) углеводов и белков.

    36 . Самопроизвольным называется процесс, который:

    1) осуществляется без помощи катализатора;

    2) сопровождается выделением теплоты;

    3) осуществляется без затраты энергии извне ;

    4) протекает быстро.

    37 . Энтропия реакции - это:

    1) количество теплоты, которое выделяется или погло­щается в ходе химической реакции при изобарно-изотер-мических условиях;

    2) количество теплоты, которое выделяется или погло­щается в ходе химической реакции при изохорно-изотер-мических условиях;

    3) величина, характеризующая возможность самопро­извольного протекания процесса;

    4) величина, характеризующая меру неупорядоченнос­ти расположения и движения частиц системы.

    38 . Какой функцией состояния характеризуется тенден­ция системы к достижению вероятного состояния, которо­му соответствует максимальная беспорядочность распреде­ления частиц?

    1) энтальпией;

    2) энтропией ;

    3) энергией Гиббса;

    4) внутренней энергией.

    39 . В каком соотношении находятся энтропии трех агрегат­ных состояний одного вещества: газа, жидкости, твердого тела:

    I ) S (г) > S (ж) > S (тв); 2)S(тв)>S(ж)>S(г); 3)S(ж)>S(г)>S(TB); 4) агрегатное состояние не влияет на значение энтропии.

    40 . В каком из следующих процессов должно наблюдать­ся наибольшее положительное изменение энтропии:

    1) СН3ОН (тв) --> СН,ОН (г);

    2) СH3OH(тв) --> СН 3 ОН (ж);

    3) СН,ОН (г) -> CH3OH(тв);

    4) СН,ОН (ж) -> СН3ОН (тв).

    41 . Выберите правильное утверждение: энтропия систе­мы увеличивается при:

    1) повышении давления;

    2) переходе от жидкого к твердому агрегатному состоянию

    3) повышении температуры;

    4) переходе от газообразного к жидкому состоянию.

    42. Какую термодинамическую функцию можно исполь­зовать, чтобы предсказать возможность самопроизвольно­го протекания реакции в изолированной системе?

    1) энтальпию;

    2) внутреннюю энергию;

    3) энтропию;

    4) потенциальную энергию системы.

    43 . Какое уравнение является математическим выраже­нием 2-го закона термодинамики для изолированных систем?

    2)AS>Q\T

    44 . Если система обратимым образом получает количе­ство теплотыQпри температуре Т, то обT;

    2) возрастает на величину Q / T ;

    3) возрастает на величину, большую Q/T;

    4) возрастает на величину, меньшую Q/T.

    45 . В изолированной системе самопроизвольно проте­кает химическая реакция с образованием некоторого коли­чества продукта. Как изменяется энтропия такой системы?

    1) увеличивается

    2) уменьшается

    3) не изменяется

    4) достигает минимального значения

    46 . Укажите, в каких процессах и при каких условиях изменение энтропии может быть равно работе процесса?

    1) в изобарных, при постоянных Р и Т;

    2) в изохорных, при постоянных Vи Т;

    З) изменение энтропии никогда не равно работе;

    4) в изотермических, при постоянных Р и 47 . Как изменится связанная энергия системыTSпри нагревании и при ее конденсации?