Из каких неорганических веществ синтезируются углеводы. Амилоза растворима в горячей воде и дает с йодом синее окрашивание

Вспомните!

Какие вещества называют биологическими полимерами?

Это полимеры – высокомолекулярные соединения, входящие в состав живых организмов. Белки, некоторые углеводы, нуклеиновые кислоты.

Каково значение углеводов в природе?

Широко распространена в природе фруктоза - фруктовый сахар, который значительно слаще других сахаров. Этот моносахарид придаёт сладкий вкус плодам растений и мёду. Самый распространённый в природе дисахарид - сахароза, или тростниковый сахар, - состоит из глюкозы и фруктозы. Её получают из сахарного тростника или сахарной свёклы. Крахмал для растений и гликоген для животных и грибов являются резервом питательных веществ и энергии. Целлюлоза и хитин выполняют в организмах структурную и защитную функции. Целлюлоза, или клетчатка, образует стенки растительных клеток. По общей массе она занимает первое место на Земле среди всех органических соединений. По своему строению очень близок к целлюлозе хитин, который составляет основу наружного скелета членистоногих и входит в состав клеточной стенки грибов.

Назовите известные вам белки. Какие функции они выполняют?

Гемоглобин – белок крови, транспорт газов в крови

Миозин – белок мышц, сокращение мышц

Коллаген – белок сухожилий, кож, эластичность, растяжимость

Казеин – белок молока, питательное вещество

Вопросы для повторения и задания

1. Какие химические соединения называют углеводами?

Это обширная группа природных органических соединений. В животных клетках углеводы составляют не более 5% сухой массы, а в некоторых растительных (например, клуб ни картофеля) их содержание достигает 90% сухого остатка. Углеводы подразделяют на три основных класса: моносахариды, дисахариды и полисахариды.

2. Что такое моно- и дисахариды? Приведите примеры.

Моносахариды состоят из мономеров, низкомолекулярные органические вещества. Моносахариды рибоза и дезоксирибоза входят в состав нуклеиновых кислот. Самый распространенный моносахарид – глюкоза. Глюкоза присутствует в клетках всех организмов и является одним из основных источников энергии для животных. Если в одной молекуле объединяются два моносахарида, такое соединение называют дисахаридом. Самый распространённый в природе дисахарид - сахароза, или тростниковый сахар.

3. Какой простой углевод служит мономером крахмала, гликогена, целлюлозы?

4. Из каких органических соединений состоят белки?

Длинные белковые цепи построены всего из 20 различных типов аминокислот, имеющих общий план строения, но отличающихся друг от друга по строению радикала. Соединяясь, молекулы аминокислот образуют так называемые пептидные связи. Две полипептидные цепи, из которых состоит гормон поджелудочной железы - инсулин, содержат 21 и 30 аминокислотных остатков. Это одни из самых коротких «слов» в белковом «языке». Миоглобин - белок, связывающий кислород в мышечной ткани, состоит из 153 аминокислот. Белок коллаген, составляющий основу коллагеновых волокон соединительной ткани и обеспечивающий её прочность, состоит из трёх полипептидных цепей, каждая из которых содержит около 1000 аминокислотных остатков.

5. Как образуются вторичная и третичная структуры белка?

Закручиваясь в виде спирали, белковая нить приобретает более высокий уровень организации - вторичную структуру. И наконец, спираль полипептида сворачивается, образуя клубок (глобулу). Именно такая третичная структура белка и является его биологически активной формой, обладающей индивидуальной специфичностью. Однако для ряда белков третичная структура не является окончательной. Вторичная структура – это полипептидная цепь, закрученная в спираль. Для более прочного взаимодействия во вторичной структуре, происходит внутримолекулярное взаимодействие с помощью –S–S– сульфидных мостиков между витками спирали. Это обеспечивает прочность данной структуры. Третичная структура – это вторичная спиральная структура закручена в глобулы – компактные комочки. Эти структуры обеспечивают максимальную прочность и большую распространенность в клетках по сравнению с другими органическими молекулами.

6. Назовите известные вам функции белков. Чем вы можете объяснить существующее многообразие функций белков?

Одна из основных функций белков – ферментативная. Ферменты – это белки-катализаторы, ускоряющие химические реакции в живых организмах. Ферментативная реакция – это химическая реакция, протекающая только при наличии фермента. Без фермента не протекает не одна реакции в живых организмах. Работа ферментов строго специфична, у каждого фермента свой субстрат, который он расщепляет. Фермент подходит к своему субстрату как «ключ к замку». Так, фермент уреаза регулирует расщепление мочевины, фермент амилаза – крахмала, а ферменты протеазы – белки. Поэтому для ферментов применяют выражение «специфичность действия».

Белки выполняют и другие разнообразные функции в организмах: структурная, транспортная, двигательная, регуляторная, защитная, энергетическая. Функции белков довольно многочисленны, так как лежат в основе многообразия проявления жизни. Это компонент биологических мембран, перенос питательных веществ, например, гемоглобин, работа мышц, гормональная функция, защита организма – работа антигенов и антител, и прочие важнейшие функции в организме.

7. Что такое денатурация белка? Что может явиться причиной денатурации?

Денатурация – это нарушения третичной пространственной структуры белковых молекул под действием различных физических, химических, механических и других факторов. Физические факторы – это температура, излучение, Химические факторы – это действие на белки любых химических веществ: растворители, кислоты, щелочи, концентрированные вещества и прочее. Механические факторы – встряхивание, давление, растяжение, скручивание и прочее.

Подумайте! Вспомните!

1. Используя знания, полученные при изучении биологии растений, объясните, почему в растительных организмах углеводов значительно больше, чем в животных.

Так как в основе жизни – питания растений лежит фотосинтез, это процесс образования сложных органических соединений углеводов из более простых неорганических углекислого газа и воды. Основной углевод синтезируемый растения для воздушного питания – глюкоза, также это может быть крахмал.

2. К каким заболеваниям может привести нарушение превращения углеводов в организме человека?

Регуляция углеводного обмена в основном осуществляется гормонами и центральной нервной системой. Глюкокортикостероиды (кортизон, гидрокортизон) тормозят скорость транспорта глюкозы в клетки тканей, инсулин ускоряет его; адреналин стимулирует процесс сахарообразования из гликогена в печени. Коре больших полушарий также принадлежит определенная роль в регуляции углеводного обмена, так как факторы психогенного характера усиливают образование сахара в печени и вызывают гипергликемию.

О состоянии углеводного обмена можно судить по содержанию сахара в крови (в норме 70-120 мг%). При сахарной нагрузке эта величина возрастает, но затем быстро достигает нормы. Нарушения углеводного обмена возникают при различных заболеваниях. Так, при недостатке инсулина наступает сахарный диабет.

Понижение активности одного из ферментов углеводного обмена - мышечной фосфорилазы - ведет к мышечной дистрофии.

3. Известно, что, если в рационе отсутствует белок, даже несмотря на достаточную калорийность пищи, у животных останавливается рост, изменяется состав крови и возникают другие патологические явления. Какова причина подобных нарушений?

В организме всего 20 различных типов аминокислот, имеющих общий план строения, но отличающихся друг от друга по строению радикала, они образуют разные белковые молекулы, если не употреблять белки, например, незаменимые, которые не могут в организме образовываться самостоятельно, а должны потребляться с пищей. Таким образом, если не есть белки, не смогут образовываться многие белковые молекулы внутри самого организма и возникнуть патологические изменения. Рост контролируется ростом костных клеток, основной любой клетки является белок; гемоглобин основной белок крови, который обеспечивает перенос основных газов в организме (кислород, углекислый газ).

4. Объясните трудности, возникающие при пересадке органов, опираясь на знания специфичности белковых молекул в каждом организме.

Белки являются генетическим материалом, так как в них записана структура ДНК и РНК организма. Тем самым белки имеют генетические особенности у каждого организма, в них зашифрована информация генов, в этом заключается трудность при пересадке от чужих (неродственных) организмов, так как у них различные гены, а значит и белки.

Углеводы - органические соединения, состоящие из углерода, и кислорода. Различают простые углеводы, или моносахариды, например глюкоза, и сложные, или полисахариды, которые делятся на низшие, содержащие немного остатков простых углеводов, например дисахариды, и высшие, имеющие очень большие молекулы из многих остатков простых углеводов. В животных организмах содержание углеводов составляет около 2% сухой массы.

Средняя суточная потребность взрослого человека в углеводах - 500 г, а при интенсивной мышечной работе - 700-1000 г.

Количество углеводов в сутки должно быть по массе 60%, а по - 56% от общего количества пищи.

Глюкоза содержится в крови, в которой ее количество поддерживается на постоянном уровне (0,1-0,12%). После всасывания в кишечнике моносахариды доставляются кровью в , где происходит синтез из моносахаридов гликогена, входящего в состав цитоплазмы. Запасы гликогена откладываются главным образом в мышцах и в печени.

Общее количество гликогена в теле человека массой 70 кг составляет примерно 375 г, из них в мышцах содержится 245 г, в печени - 110 г (до 150 г), в крови и других жидкостях тела - 20 г. В организме тренированного человека гликогена на 40-50% больше, чем у нетренированного.

Углеводы - главный источник энергии для жизнедеятельности и работы организма.

В организме в бескислородных условиях (анаэробных) углеводы распадаются на молочную кислоту, освобождая энергию. Этот процесс называется гликолизом. При участии кислорода (аэробные условия) они расщепляются на углекислоту и , освобождая при этом значительно больше энергии. Большое биологическое значение имеет анаэробный распад углеводов с участием фосфорной кислоты - фосфорилирование.

Фосфорилирование глюкозы происходит в печени при участии ферментов. Источником глюкозы могут быть аминокислоты и жиры. В печени из предварительно фосфорилированной глюкозы образуются огромные молекулы полисахарида - гликогена. Количество гликогена в печени человека зависит от характера питания и мышечной деятельности. С участием других ферментов в печени происходит расщепление гликогена до глюкозы - сахарообразование. Распад гликогена в печени и скелетных мышцах при голодании и мышечной работе сопровождается одновременным синтезом гликогена. Глюкоза, образующаяся в печени, поступает в и с нею доставляется всем клеткам и тканям.

Только небольшая часть белков и жиров освобождает энергию в процессе десмолитического распада и, следовательно, служит непосредственным источником энергии. Значительная часть белков и жиров еще до полного распада предварительно превращается в мышцах в углеводы. Кроме того, из пищеварительного канала продукты гидролиза белков и жиров поступают в печень, где аминокислоты и жиры превращаются в глюкозу. Этот процесс обозначается как глюконеогенез. Основной источник образования глюкозы в печени - гликоген, значительно меньшая часть глюкозы получается путем глюконеогенеза, в процессе которого задерживается образование кетоновых тел. Таким образом, углеводный обмен значительно влияет на обмен , и воды.

Когда потребление глюкозы работающими мышцами возрастает в 5-8 раз, гликоген образуется в печени из жиров и белков.

В отличие от белков и жиров углеводы легко распадаются, поэтому они быстро мобилизуются организмом при больших затратах энергии (мышечная работа, эмоции боли, страха, гнева и др.). Распад углеводов поддерживает постоянство тела и является основным источником энергии мускулатуры. Углеводы необходимы для нормального функционирования нервной системы. Понижение содержания сахара в крови ведет к падению температуры тела, к слабости и утомлению мышц, к расстройствам нервной деятельности.

В тканях используется с освобождением энергии только очень небольшая часть глюкозы, доставляемой кровью. Основной источник углеводного обмена в тканях - гликоген, ранее синтезированный из глюкозы.

Во время работы мышц - основных потребителей углеводов - используются находящиеся в них запасы гликогена, и только после полного израсходования этих запасов начинается непосредственное использование глюкозы, доставляемой к мышцам кровью. При этом расходуется глюкоза, образовавшаяся из запасов гликогена в печени. После работы мышцы возобновляют свой запас гликогена, синтезируя его из глюкозы крови, а печень - за счет всосавшихся моносахаридов в пищеварительном тракте и расщепления белков и жиров.

Например, при увеличении содержания глюкозы в крови выше 0,15-0,16% вследствие обильного содержания её в пище, что обозначается как пищевая гипергликемия, происходит выведение её из организма с мочой – глюкозурия.

С другой стороны, даже при длительном голодании уровень глюкозы в крови не снижается, так как глюкоза поступает в кровь из тканей при распаде находящегося в них гликогена.

Краткая характеристика состава, строения и экологической роли углеводов

Углеводы - это органические вещества, состоящие из углерода, водорода и кислорода, имеющие общую формулу С n (Н 2 O) m (для подавляющего большинства этих веществ).

Величина n или равна m (для моносахаров), или больше ее (для остальных классов углеводов). Вышеприведенная общая формула не соответствует дезоксирибозе.

Углеводы подразделяют на моносахариды, ди (олиго) сахариды и полисахариды. Ниже дается краткая характеристика отдельных представителей каждого класса углеводов.

Краткая характеристика моносахаридов

Моносахариды - это углеводы, общая формула которых С n (Н 2 O) n (исключение составляет дезоксирибоза).

Классификации моносахаридов

Моносахариды - довольно обширная и сложная группа соединений, поэтому они имеют сложную классификацию по различным признакам:

1) по числу углерода, содержащихся в молекуле моносахарида, различают тетрозы, пентозы, гексозы, гептозы; наибольшее практическое значение имеют пентозы и гексозы;

2) по функциональным группам моносахариды делят на кетозы и альдозы;

3) по числу атомов, содержащихся в циклической молекуле моносахарида, различают пиранозы (содержат 6 атомов) и фуранозы (содержат 5 атомов);

4) исходя из пространственного расположения «глюкозидного» гидроксида (этот гидроксид получается при присоединении атома водорода к кислороду карбонильной группы) моносахариды подразделяют на альфа- и бета-формы. Рассмотрим некоторые наиболее важные моносахариды, имеющие наибольшее биологическое и экологическое значение в природе.

Краткая характеристика пентоз

Пентозы - это моносахариды, молекула которых содержит 5 атомов углерода. Эти вещества могут быть и открытоцепными, и циклическими, альдозами и кетозами, альфа- и бета-соединениями. Среди них наиболее практическое значение имеют рибоза и дезоксирибоза.

Формула рибозы в общем виде С 5 Н 10 О 5 . Рибоза является одним из веществ, из которых синтезируются рибонуклеотиды, из последних в дальнейшем получаются различные рибонуклеиновые кислоты (РНК). Поэтому наибольшее значение имеет фуранозная (5-членная) альфа-форма рибозы (в формулах РНК изображается в форме правильного пятиугольника).

Формула дезоксирибозы в общем виде С 5 Н 10 О 4 . Дезоксирибоза - одно из веществ, из которых синтезируются в организмах дезоксирибонуклеотиды; последние являются исходными веществами для синтеза дезоксирибонуклеиновых кислот (ДНК). Поэтому наибольшее значение имеет циклическая альфа-форма дезоксирибозы, у которой отсутствует гидроксид у второго атома углерода в цикле.

Открытоцепные формы рибозы и дезоксирибозы являются альдозами, т. е. содержат 4 (3) гидроксидные группы и одну альдегидную группу. При полном распаде нуклеиновых кислот рибоза и дезоксирибоза окисляются до углекислого газа и воды; этот процесс сопровождается выделением энергии.

Краткая характеристика гексоз

Гексозы - это моносахара, молекулы которых содержат шесть атомов углерода. Общая формула гексоз С 6 (Н 2 O) 6 или С 6 Н 12 O 6 . Все многообразие гексоз является изомерами, соответствующими приведенной выше формуле. Среди гексоз существуют и кетозы, и альдозы, и альфа- и бета-формы молекул, открытоцепные и циклические формы, пиранозные и фуранозные циклические формы молекул. Наибольшее значение в природе имеют глюкоза и фруктоза, которые кратко рассмотрены ниже.

1. Глюкоза. Как и любая гексоза, она имеет общую формулу С 6 Н 12 O 6 . Она относится к альдозам, т. е. содержит альдегидную функциональную группу и 5 гидроксидных групп (характерных для спиртов), следовательно, глюкоза - это многоатомный альдегидоспирт (эти группы содержатся в открытоцепной форме, в циклической форме альдегидная группа отсутствует, так как превращается в гидроксидную группу, называемую «глюкозидным гидроксидом»). Циклическая форма может быть как пятичленной (фуранозной), так и шестичленной (пиранозной). Наибольшее значение в природе имеет пиранозная форма молекулы глюкозы. Циклическая пиранозная и фуранозная формы могут быть как альфа-, так и бета-формами, что зависит от расположения глюкозидного гидроксида относительно других гидроксидных групп в молекуле.

По физическим свойствам глюкоза - твердое белое кристаллическое вещество сладкого вкуса (интенсивность этого вкуса подобна сахарозе), хорошо растворимое в воде и способное к образованию перенасыщенных растворов («сиропов»). Так как в молекуле глюкозы содержатся асимметрические атомы углерода (т. е. атомы, соединенные с четырьмя различными радикалами), то растворы глюкозы обладают оптической активностью, поэтому различают D-глюкозу и L-глюкозу, имеющие различную биологическую активность.

С биологической точки зрения, наиболее важна способность глюкозы к легкому окислению по схеме:

С 6 Н 12 O 6 (глюкоза) → (промежуточные стадии) → 6СO 2 + 6Н 2 O.

Глюкоза - важное в биологическом смысле соединение, так как оно за счет своего окисления используется организмом в качестве универсального питательного вещества и легкодоступного источника энергии.

2. Фруктоза. Это кетоза, ее общая формула С 6 Н 12 O 6 , т. е. она изомер глюкозы, для нее характерны открытоцепная и циклические формы. Наибольшее значение имеет бета-Б-фруктофураноза или сокращенно - бета-фруктоза. Из бета-фруктозы и альфа-глюкозы получается сахароза. В определенных условиях фруктоза способна превращаться в глюкозу при реакции изомеризации. По физическим свойствам фруктоза напоминает глюкозу, но слаще ее.

Краткая характеристика дисахаридов

Дисахариды - продукты реакции диконденсации одинаковых или различных молекул моносахаридов.

Дисахариды являются одной из разновидностей олигосахаридов (в образовании их молекул участвует небольшое количество молекул моносахаридов (одинаковых или различных).

Важнейшим представителем дисахаридов является сахароза (свекловичный или тростниковый сахар). Сахароза - продукт взаимодействия альфа-D-глюкопиранозы (альфа-глюкозы) и бета-D-фруктофуранозы (бета-фруктозы). Ее формула в общем виде С 12 Н 22 О 11 . Сахароза - один из многочисленных изомеров дисахаридов.

Это белое кристаллические вещество, которое существует в различных состояниях: крупнокристаллическом («сахарные головы»), мелкокристаллическом (сахарный песок), аморфном (сахарная пудра). Хорошо растворяется в воде, особенно в горячей (по сравнению с горячей водой, растворимость сахарозы в холодной воде относительно невелика), поэтому сахароза способна образовывать «перенасыщенные растворы» - сиропы, которые могут «засахариваться», т. е. происходит образование мелкокристаллических суспензий. Концентрированные растворы сахарозы способны образовывать особые стеклообразные системы - карамели, что используется человеком для получения определенных сортов конфет. Сахароза - сладкое вещество, но интенсивность сладкого вкуса у нее меньше, чем у фруктозы.

Важнейшим химическим свойством сахарозы является ее способность к гидролизу, при котором образуется альфа-глюкоза и бета-фруктоза, которые вступают в реакции обмена углеводов.

Для человека сахароза является одним из важнейших продуктов питания, так как она - источник глюкозы. Однако избыточное употребление сахарозы вредно, ибо это приводит к нарушению углеводного обмена, что сопровождается появлением заболеваний: диабета, болезней зубов, ожирению.

Общая характеристика полисахаридов

Полисахаридами называют природные полимеры, являющиеся продуктами реакции поликонденсации моносахаридов. В качестве мономеров для образования полисахаридов могут быть пентозы, гексозы и другие моносахариды. В практическом отношении наиболее важны продукты поликонденсации гексоз. Известны и полисахариды, в молекулах которых содержатся атомы азота, например хитин.

Полисахариды на основе гексоз имеют общую формулу (С 6 Н 10 О 5)n. Они не растворимы в воде, при этом некоторые из них способны образовывать коллоидные растворы. Наиболее важными из данных полисахаридов являются различные разновидности растительного и животного крахмала (последние называют гликогенами), а также разновидности целлюлозы (клетчатки).

Общая характеристика свойств и экологической роли крахмала

Крахмал - это полисахарид, являющийся продуктом реакции поликонденсации альфа-глюкозы (альфа-D-глюкопиранозы). По происхождению различают растительные и животные крахмалы. Животные крахмалы называют гликогенами. Хотя в целом молекулы крахмалов имеют общее строение, одинаковый состав, но отдельные свойства у крахмала, полученного из разных растений, различны. Так, картофельный крахмал отличается от кукурузного крахмала и т. д. Но все разновидности крахмала имеют общие свойства. Это твердые, белые мелкокристаллические или аморфные вещества, «хрупкие» на ощупь, нерастворимые в воде, но в горячей воде способны образовывать коллоидные растворы, которые сохраняют свою стабильность и при охлаждении. Крахмал образует как золи (например, жидкий кисель), так и гели (например, кисель, приготовленный при большом содержании крахмала, представляет собой студнеобразную массу, которую можно резать ножом).

Способность крахмала образовывать коллоидные растворы связана с глобулярностью его молекул (молекула как бы свернута в шар). При контакте с теплой или горячей водой молекулы воды проникают между витками молекул крахмала, происходит увеличение объема молекулы и уменьшение плотности вещества, что приводит к переходу молекул крахмала в подвижное состояние, характерное для коллоидных систем. Общая формула крахмала: (С 6 Н 10 О 5) n , молекулы этого вещества имеют две разновидности, одна из которых называется амилоза (в этой молекуле нет боковых цепей), а другая - амилопектин (молекулы имеют боковые цепи, в которых соединение происходит через 1 - 6 атомы углерода кислородным мостиком).

Важнейшим химическим свойством, обусловливающим биолого-экологическую роль крахмала, является его способность подвергаться гидролизу, образуя в конечном счете либо дисахарид мальтозу, либо альфа-глюкозу (это окончательный продукт гидролиза крахмала):

(С 6 Н 10 О 5) n + nН 2 O → nС 6 Н 12 O 6 (альфа-глюкоза).

Процесс протекает в организмах под действием целой группы ферментов. За счет этого процесса организм обогащается глюкозой - важнейшим питательным соединением.

Качественной реакцией на крахмал является его взаимодействие с йодом, при котором возникает красно-фиолетовое окрашивание. Эта реакция используется для обнаружения крахмала в различных системах.

Биолого-экологическая роль крахмала достаточно велика. Это одно из важнейших запасных соединений в организмах растений, например у растений семейства злаковых. Для животных крахмал - важнейшее трофическое вещество.

Краткая характеристика свойств и эколого-биологической роли целлюлозы(клетчатки)

Целлюлоза (клетчатка) - полисахарид, являющийся продуктом реакции поликонденсации бета-глюкозы (бета-D-глюкопиранозы). Ее общая формула (С 6 Н 10 О 5) n . В отличие от крахмала молекулы целлюлозы строго линейны и имеют фибриллярную («нитчатую») структуру. Различие в структурах молекул крахмала и Целлюлозы объясняет различие их биолого-экологических ролей. Целлюлоза не является ни запасным, ни трофическим веществом, так как не способна перевариваться большинством организмов (исключение составляют некоторые виды бактерий, способных подвергать целлюлозу гидролизу и усваивать бета-глюкозу). Целлюлоза не способна образовывать коллоидные растворы, зато она может образовывать механически прочные нитчатые структуры, обеспечивающие защиту отдельных органоидов клетки и механическую прочность различных растительных тканей. Как и крахмал, в определенных условиях целлюлоза гидролизуется, и конечным продуктом ее гидролиза является бета-глюкоза (бета-D-глюкопираноза). В природе роль этого процесса относительно невелика (но она позволяет биосфере «усвоить» целлюлозу).

(С 6 Н 10 О 5) n (клетчатка) + n(Н 2 O) → n(С 6 Н 12 O 6) (бета-глюкоза или бета-D-глюкопираноза) (при неполном гидролизе клетчатки возможно образование растворимого дисахарида - целлобиозы).

В природных условиях клетчатка (после отмирания растений) подвергается разложению, в результате которого возможно образование различных соединений. За счет этого процесса образуются гумус (органический компонент почвы), различные виды каменного угля (нефть и каменный уголь образуются из отмерших остатков различных животных и растительных организмов в отсутствие , т. е. в анаэробных условиях, в их образовании участвует весь комплекс органических веществ, в том числе и углеводов).

Эколого-биологическая роль клетчатки состоит в том, что она является: а) защитным; б) механическим; в) формообразующим соединением (для некоторых бактерий выполняет трофическую функцию). Отмершие остатки растительных организмов являются субстратом для некоторых организмов - насекомых, грибов, различных микроорганизмов.

Краткая характеристика эколого-биологической роли углеводов

Обобщая рассмотренный выше материал, относящийся к характеристике углеводов, можно сделать следующие выводы об их эколого-биологической роли.

1. Они выполняют строительную функцию как в клетках, так и в организме в целом за счет того, что входят в состав структур, образующих клетки и ткани (особенно это характерно для растений и грибов), например, клеточные оболочки, различные мембраны и т. д., кроме того, углеводы участвуют в образовании биологически необходимых веществ, образующих ряд структур, например в образовании нуклеиновых кислот, составляющих основу хромосом; углеводы входят в состав сложных белков - гликопротеидов, имеющих определенное значение в формировании клеточных структур и межклеточного вещества.

2. Важнейшей функцией углеводов является трофическая функция, состоящая в том, что многие из них являются продуктами питания гетеротрофных организмов (глюкоза, фруктоза, крахмал, сахароза, мальтоза, лактоза и др.). Эти вещества в комплексе с другими соединениями образуют пищевые продукты, используемые человеком (различные крупы; плоды и семена отдельных растений, включающие в свой состав углеводы, являются кормом для птиц, а моносахара, вступая в цикл различных превращений, способствуют образованию как собственных углеводов, характерных для данного организма, так и других органо-биохимических соединений (жиров, аминокислот (но не их белков), нуклеиновых кислот и т. д.).

3. Для углеводов характерна и энергетическая функция, состоящая в том, что моносахара (в частности глюкоза) в организмах легко окисляются (конечным продуктом окисления является СO 2 и Н 2 O), при этом происходит выделение большого количества энергии, сопровождающееся синтезом АТФ.

4. Им присуща и защитная функция, состоящая в том, что из углеводов возникают структуры (и определенные органоиды в клетке), защищающие или клетку, или организм в целом от различных повреждений, в том числе и механических (например, хитиновые покровы насекомых, образующие внешний скелет, оболочки клеток растений и многих грибов, включающих целлюлозу и т. д.).

5. Большую роль играют механическая и формообразующая функции углеводов, представляющие собой способность структур, образованных либо углеводами, либо в сочетании их с другими соединениями, придавать организму определенную форму и делать их механически прочными; так, клеточные оболочки механической ткани и сосудов ксилемы создают каркас (внутренний скелет) древесных, кустарниковых и травянистых растений, хитином образован внешний скелет насекомых и т. д.

Краткая характеристика обмена углеводов в гетеротрофном организме (на примере организма человека)

Важную роль в понимании процессов обмена веществ играет знание о превращениях, которым подвергаются углеводы в гетеротрофных организмах. В организме человека этот процесс характеризуется приведенным ниже схематическим описанием.

Углеводы в составе пищи попадают в организм через ротовую полость. Моносахара в пищеварительной системе практически не подвергаются превращениям, дисахариды - гидролизуются до моносахаридов, а полисахариды подвергаются достаточно значительным превращениям (это относится к тем полисахаридам, которые организмом употребляются в пищу, а углеводы, не являющиеся пищевыми веществами, например, целлюлоза, некоторые пектины, удаляются из организма с каловыми массами).

В ротовой полости пища измельчается и гомогенизируется (становится более однородной, чем до попадания в нее). На пищу воздействует слюна, выделяемая слюнными железами. Она содержит птиалин и имеет щелочную реакцию среды, за счет чего начинается первичный гидролиз полисахаридов, приводящий к образованию олигосахаридов (углеводов с небольшой величиной n).

Часть крахмала может превращаться даже в дисахариды, что можно заметить при длительном пережевывании хлеба (кислый черный хлеб становится сладким).

Пережеванная пища, обильно обработанная слюной и размельченная зубами, через пищевод в виде пищевого комка поступает в желудок, где подвергается воздействию желудочного сока с кислой реакцией среды, содержащего ферменты, воздействующие на белки и нуклеиновые кислоты. В желудке с углеводами практически ничего не происходит.

Затем пищевая кашица поступает в первый отдел кишечника (тонкий кишечник), начинающийся двенадцатиперстной кишкой. В нее поступает панкреатический сок (секрет поджелудочной железы), содержащий комплекс ферментов, способствующих и перевариванию углеводов. Углеводы превращаются в моносахариды, которые растворимы в воде и способны к всасыванию. Пищевые углеводы окончательно перевариваются в тонком кишечнике, а в той его части, где содержатся ворсинки, они всасываются в кровь и поступают в кровеносную систему.

С током крови моносахара разносятся к различным тканям и клеткам организма, но предварительно вся кровь проходит через печень (там она очищается от вредных продуктов обмена). В крови моносахара присутствуют преимущественно в виде альфа-глюкозы (но возможно наличие и других изомеров гексоз, например фруктозы).

Если глюкозы в крови меньше нормы, то часть гликогена, содержащегося в печени, гидролизуется до глюкозы. Избыточное содержание углеводов характеризует тяжелое заболевание человека - диабет.

Из крови моносахариды поступают в клетки, где большая их часть расходуется на окисление (в митохондриях), при котором синтезируется АТФ, содержащая энергию в «удобном» для организма виде. АТФ расходуется на различные процессы, которые требуют энергии (синтез нужных организму веществ, реализация физиологических и других процессов).

Часть углеводов пищи используется для синтеза углеводов данного организма, требующихся для формирования структур клетки, или соединений, необходимых для образования веществ других классов соединений (так из углеводов могут получиться жиры, нуклеиновые кислоты и т. д.). Способность углеводов превращаться в жиры является одной из причин возникновения ожирения - заболевания, влекущего за собой комплекс других заболеваний.

Следовательно, потребление избыточного количества углеводов вредно для человеческого организма, что необходимо учитывать при организации рационального питания.

В растительных организмах, являющихся автотрофами, обмен углеводов несколько иной. Углеводы (моносахара) синтезируются самим организмом из углекислого газа и воды с использованием солнечной энергии. Ди-, олиго- и полисахариды синтезируются из моносахаридов. Часть моносахаридов включается в синтез нуклеиновых кислот. Определенное количество моносахаридов (глюкозы) растительные организмы используют в процессах дыхания на окисление, при котором (как и в гетеротрофных организмах) синтезируется АТФ.

План:

1.Определение понятия: углеводы. Классификация.

2. Состав, физические и химические свойства углеводов.

3.Рспространение в природе. Получение. Применение.

Углеводы – органические соединения, содержащие карбонильные и гидроксильные группировки атомов, имеющие общую формулу C n (H 2 O) m , (где n и m>3).

Углеводы – вещества, имеющие первостепенное биохимическое значение, широко распространены в живой природе и играют большую роль в жизни человека. Название углеводы возникло на основании данных анализа первых известных представителей этой группы соединения. Вещества этой группы состоят из углерода, водорода и кислорода, причем соотношение чисел атомов водорода и кислорода в них такое же, как и в воде, т.е. на каждые 2 атома водорода приходится один атом кислорода. В прошлом столетии их рассматривали как гидраты углерода. Отсюда и возникло русское название углеводы, предложенное в 1844г. К.Шмидтом. Общая формула углеводов, согласно сказанному, С м Н 2п О п. При вынесении «n» за скобки получается формула С м (Н 2 О) n , которая очень наглядно отражает название «угле - воды». Изучение углеводов показало, что существуют соединения, которые по всем свойствам нужно отнести в группу углеводов, хотя они имеют состав, не точно соответствующий формуле С м H 2п О п. Тем не менее старинное название «углеводы», сохранилось до наших дней, хотя наряду с этим названием для обозначения рассматриваемой группы веществ иногда применяют и более новое название – глициды.

Углеводы можно разделить на три группы : 1) Моносахариды – углеводы, способные гидролизоваться с образованием более простых углеводов. К данной группе относятся гексозы (глюкоза и фруктоза), а также пентоза (рибоза). 2) Олигосахариды – продукты конденсации нескольких моносахаридов (например, сахароза). 3) Полисахариды – полимерные соединения, содержащие большое число молекул моносахаридов.

Моносахариды . Моносахариды являются гетерофункциональными соединениями. В их молекулах одновременно содержатся и карбонильная (альдегидная или кетонная), и несколько гидроксильных групп, т.е. моносахариды представляют собой полигидроксикарбонильные соединения - полигидроксиальдегиды и полигидроксикетоны. В зависимости от этого моносахариды подразделяются на альдозы (в моносахариде содержится альдегидная группа) и кетозы (содержится кетогруппа). Например, глюкоза – это альдоза, а фруктоза – это кетоза.

Получение. В свободном виде в природе встречается преимущественно глюкоза. Она же является структурной единицей многих полисахаридов. Другие моносахариды в свободном состоянии встречаются редко и в основном известны как компоненты олиго- и полисахаридов. В природе глюкоза получается в результате реакции фотосинтеза: 6CO 2 + 6H 2 O ® C 6 H 12 O 6 (глюкоза) + 6O 2 Впервые глюкоза получена в 1811 году русским химиком Г.Э.Кирхгофом при гидролизе крахмала. Позже синтез моносахаридов из формальдегида в щелочной среде предложен А.М.Бутлеровым

Для тех, кто хочет потолстеть.

Углеводы Вам помогут.

Как известно, одна молекула жира - это четыре молекулы глюкозы плюс четыре молекулы воды. То есть, при увеличенном употреблении углеводов в сочетании с приемом воды - Вы получите ожидаемый результат. Отмечу только одно, желательно употреблять больше сложных углеводов, ибо простые углеводы могут привести к диабету, гипертонии. Надеюсь, что при современном питании (наборе продуктов в магазинах) у Вас не будет трудностей на этом пути. Основное об углеводах ниже, спасибо «википедии«

(сахара, сахариды) - органические вещества, содержащие карбонильную группу и несколько гидроксильных групп. Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой Cx(H2O)y, формально являясь соединениями углерода и воды.
Углеводы - весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 2-3 % массы животных

Простые и сложные Углеводы

Слева D-глицеральдегид, справа диоксиацетон.

Углеводы являются неотъемлемым компонентом клеток и тканей всех живых организмов представителей растительного и животного мира, составляя (по массе) освную часть оргического вещества на Земле. Источником углеводов для всех живых организмов является процесс фотосинтеза, осуществляемый растениями. По способности к гидролизу на мономеры углеводы делятся на две группы: простые (моносахариды) и сложные (дисахариды и полисахариды). Сложные углеводы, в отличие от простых, способны гидролизоваться с образованием моносахаридов, мономеров. Простые углеводы легко растворяются в воде и синтезируются в зелёных растениях. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов), а в процессе гидролитического расщепления образуют сотни и тысячи молекул моносахаридов

Моносахариды

Распространённый в природе моносахарид - бета-D-глюкоза.

Моносахариды (от греческого monos - единственный, sacchar - сахар) - простейшие углеводы, не гидролизующиеся с образованием более простых углеводов - обычно представляют собой бесцветные, легко растворимые вводе, плохо - в спирте и совсем нерастворимые в эфире, твёрдые прозрачные органические соединения, одна из основных групп углеводов, самая простая форма сахара. Водные растворы имеют нейтральную bsp;pH. Некоторые моносахариды обладают сладким вкусом. Моносахариды содержат карбонильную (альдегидную или кетонную) группу, поэтому их можно рассматривать как производные многоатомных спиртов. Моносахарид, у которого карбонильная группа расположена в конце цепи, представляет собой альдегид и называется альдоза. При любом другом положении карбонильной группы моносахарид является кетоном и называется кетоза. В зависимости от длины углеродной цепи (от трёх до десяти атомов) различают триозы, тетрозы, пентозы, гексозы, гептозы и так далее. Среди них наибольшее распространение в природе получили пентозы и гексозы. Моносахариды - стандартные блоки, из которых синтезируются дисахариды, олигосахариды и полисахариды.
В природе в свободном виде наиболее распространена D-глюкоза (виноградный сахар или декстроза, C6H12O6) - шестиатомный сахар (гексоза), структурная единица (мономер) многих полисахаридов (полимеров) -дисахаридов: (мальтозы, сахарозы и лактозы) и полисахаридов (целлюлоза, крахмал). Другие моносахариды, в основном, известны как компоненты ди-, олиго- или полисахаридов и в свободном состоянии встречаются редко. Природные полисахариды служат основными источниками моносахаридов

Дисахариды

Мальтоза(солодовый сахар) - прироный дисахарид, состоящий из двух остатковглюкозы

Мальтоза (солодовый сахар) - природный дисахарид, состоящий из двух остатков глюкозы
Дисахариды (от di - два, sacchar - сахар) - сложные органические соединения, одна из основных групп углеводов, при гидролизе каждая молекула распадается на две молекулы моносахаридов, являются частным сучаемолигосахаридов. По строению дисахариды представляют собой гликозиды, в которых две молекулы моносахаридов соединённы друг с другом гликозидной связью, образованной в результате взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой). В зависимости от строения дисахариды делятся на две группы: восстанавливающие и невосстанавливающие. Например, в молекуле мальтозы у второго остатка моносахарида (глюкозы) имеется свободный полуацетальный гидроксил, придающий данному дисахариду восстанавливающие свойства. Дисахариды наряду с полисахаридами являются одним из основных источников углеводов в рационе человека и животных

Олигосахариды

Рафиноза - природный трисахарид, состоящий из остатков D-галактозы, D-глюкозы и D-фруктозы.
Олигосахариды - углеводы, молекулы которых синтезированы из 2 - 10 остатков моносахаридов, соединённых гликозидными связями. Соответственно различают: дисахариды, трисахариды и так далее. Олигосахариды, состоящие из одинаковых моносахаридных остатков, называют гомополисахаридами, а из разных - гетерополисахаридами. Наиболее распространены среди олигосахаридов дисахариды.
Среди природных трисахаридов наиболее распространена рафиноза - невосстанавливающий олигосахарид, содержащий остатки фруктозы, глюкозы и галактозы - в больших количествах содержится в сахарной свёкле и во многих других растениях

Полисахариды

Полисахариды - общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров - моносахаридов. С точки зрения общих принципов строения в группе полисахаридов возможно различить гомополисахариды, синтезированные из однотипных моносахаридных единиц и гетерополисахариды, для которых характерно наличие двух или нескольких типов мономерных остатков.
Гомополисахариды (гликаны), состоящие из остатков одного моносахарида, могут быть гексозами или пентозами, то есть в качестве мономера может быть использована гексоза или пентоза. В зависимости от химической природы полисахарида различают глюканы (из остатков глюкозы), маннаны (из маннозы), галактаны (из галактозы) и другие подобные соединения. К группе гомополисахаридов относятся органические соединения растительного (крахмал, целлюлоза, пектиновые вещества), животного (гликоген, хитин) и бактериального (декстраны) происхождения.
Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Это один из основных источников энергии организма, образующейся в результате обмена веществ. Полисахариды принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Слева - крахмал, справа - гликоген.

Крахмал

(C6H10O5)n - смесь двух гомополисахаридов: линейного - амилозы и разветвлённого - амилопектина, мономером которых является альфа-глюкоза. Белое аморфное вещество, не растворимое в холодной воде, способное к набуханию и частично растворимое в горячей воде. Молекулярная масса 105-107 Дальтон. Крахмал, синтезируемый разными растениями в хлоропластах, под действием света при фотосинтезе, несколько различается по структуре зёрен, степени полимеризации молекул, строению полимерных цепей и физико-химическим свойствам. Как правило, содержание амилозы в крахмале составляет 10-30 %, амилопектина - 70-90 %. Молекула амилозы содержит в среднем около 1 000 остатков глюкозы, связанных между собой альфа-1,4-связями. Отдельные линейные участки молекулы амилопектина состоят из 20-30 таких единиц, а в точках ветвления амилопектина остатки глюкозы связаны межцепочечными альфа-1,6-связями. При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации - декстрины (C6H10O5)p, а при полном гидролизе - глюкоза.
Гликоген (C6H10O5)n - полисахарид, построенный из остатков альфа-D-глюкозы - главный резервный полисахарид высших животных и человека, содержится в виде гранул в цитоплазме клеток практически во всех органах и тканях, однако, наибольшее его количество накапливается в мышцах и печени. Молекула гликогена построена из ветвящихся полиглюкозидных цепей, в линейной последовательности которых, остатки глюкозы соединены посредством альфа-1,4-связями, а в точках ветвления межцепочечными альфа-1,6-связями. Эмпирическая формула гликогена идентична формуле крахмала. По химическому строению гликоген близок к амилопектину с более выраженной разветвлённостью цепей, поэтому иногда называется неточным термином «животный крахмал». Молекулярная масса 105-108 Дальтон и выше. В организмах животных является структурным и функциональным аналогом полисахарида растений - крахмала. Гликоген образует энергетический резерв, который при необходимости восполнить внезапный недостаток глюкозы может быть быстро мобилизован - сильное разветлние его молекулы ведёт к наличию большого числа концевых остатков, обеспечивающих возможность быстрого отщепления нужного количества молекул глюкозы. В отличие от запаса триглицеридов (жиров) запас гликогена не настолько ёмок (в калориях на грамм). Только гликоген, запасённый в клетках печени (гепатоцитах) может быть переработан в глюкозу для питания всего организма, при этом гепатоциты способны накапливать до 8 процентов своего веса в виде гликогена, что является максимальной концентрацией среди всех видов клеток. Общая масса гликогена в печени взрослых может достигать 100-120 граммов. В мышцах гликоген расщепляется на глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), тем не менее общий запас в мышцах может превышать запас, накопленный в гепатоцитах.

Целлюлоза (клетчатка) - наиболее распространённый структурный полисахарид растительного мира, состоящий из остатков альфа-глюкозы, представленных в бета-пиранозной форме. Таким образом, в молекуле целлюлозы бета-глюкопиранозные мономерные единицы линейно соединены между собой бета-1,4-связями. При частичном гидролизе целлюлозы образуется дисахарид целлобиоза, а при полном - D-глюкоза. В желудочно-кишечном тракте человека целлюлоза не переваривается, так как набор пищеварительных ферментов не содержит бета-глюкозидазу. Тем не менее, наличие оптимального количества растительной клетчатки в пище способствует нормальному формированию каловых масс. Обладая большой механической прочностью, целлюлоза выполняет роль опорного материала растений, например, в составе древесины её доля варьирует от 50 до 70 %, а хлопок представляет собой практически стопроцентную целлюлозу.
Хитин - структурный полисахарид низших растений, грибов и беспозвоночных животных (в основном роговые оболочки членистоногих - насекомых и ракообразных). Хитин, подобно целлюлозе в растениях, выполняет опорные и механические функции в организмах грибов и животных. Молекула хитина построена из остатков N-ацетил-D-глюкозамина, связанных между собой бета-1,4-гликозиюными связями. Макромолекулы хитина неразветвлённые и их пространственная укладка не имеет ничего общего с целлюлозой.
Пектиновые вещества - полигалактуроновая кислота, содержится в плодах и овощах, остатки D-галактуроновой кислоты связаны альфа-1,4-гликозидными связями. В присутствии органических кислот спосбны к желеобразованию, применяются в пищевой промышленности для приготовления желе и мармелада. Некоторые пектиновые вещества оказывают противоязвенный эффект и являются активной составляющей ряда фармацевтических препаратов, например, производное подорожника «плантаглюцид».
Мурамин - полисахарид, опорно-механический материал клеточной стенки бактерий. По химическому строению представляет собой неразветвлённую цепь, построенную из чередующихся остатков N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединённых бета-1,4-гликозидной связью. Мурамин по структурной организации (неразветвлённая цепь бета-1,4-полиглюкопиранозного скелета) и функциональной роли весьма близок к хитину и целлюлозе.
Декстран полсахариды бактериального происхождения - синтезируются в условиях промышленного производства микробиологическим путём (воздействием микроорганизмов Leuconostoc mesenteroides на раствор сахарозы) и используются в качестве заменителей плазмы крови (так называемые клинические «декстраны»: Полиглюкин и другие).

Слева D-глицеральдегид, справа L-глицеральдегид.

Пространственная изомерия

Изомерия - существование химических соединений (изомеров), одинаковых по составу и молекулярной массе, различающихся по строению или расположению атомов в пространстве и, вследствие этого, по свойствам.
Стереоизомерия моносахаридов: изомер глицеральдегида у которого при проецировании модели на плоскость ОН-группа у асимметричного атома углерода расположена с правой стороны принято считать D-глицеральдегидом, а зеркальное отражение - L-глицеральдегидом. Все изомеры моносахаридов делятся на D- и L- формы по сходству расположения ОН-группы у последнего асимметричного атома углерода возле СН2ОН-группы (кетозы содержат на один асимметричный атом углерода меньше, чем альдозы с тем же числом атомов углерода). Природные гексозы - глюкоза, фруктоза, манноза и галактоза - по стереохимической конфигурациям относят к соединениям D-ряда.

Биологическая роль
В живых организмах углеводы выполняют следующие функции:
Структурная и опорная функции. Углеводы участвуют в построении различных опорных структур. Так целлюлоза является основным структурным компонентом клеточных стенок растений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелета членистоногих.
Защитная роль у растений. У некоторых растений есть защитные образования (шипы, колючки и др.), состоящие из клеточных стенок мёртвых клеток.
Пластическая функция. Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК).
Энергетическая функция. Углеводы служат источником энергии: при окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды.
Запасающая функция. Углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин - у растений.
Осмотическая функция. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100-110 мг/% глюкозы, от концентрации глюкозы зависит осмотическое давление крови.
Рецепторная функция. Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов или молекул-лигандо Биосинтез
В суточном рационе человека и животных преобладают углеводы. Травоядные получают крахмал, клетчатку, сахарозу. Хищники получают гликоген с мясом.
Организмы животных не способны синтезировать углеводы из неорганических веществ. Они получают их от растений с пищей и используют в качестве главного источника энергии, получаемой в процессе окисления: В зеленых листьях растений углеводы образуются в процессе фотосинтеза - уникального биологического процесса превращения в сахара неорганических веществ - оксида углерода (IV) и воды, происходящего при участии хлорофилла за счёт солнечной энергии: Обмен углеводов в организме человека и высших животных складывается из нескольких процессов:
Гидролиз (расщепление) в желудочно-кишечном тракте полисахаридов и дисахаридов пищи до моносахаридов, с последующим всасыванием из просвета кишки в кровеносное русло.
Гликогеногенез (синтез) и гликогенолиз (распад) гликогена в тканях, в основном в печени.
Аэробный (пентозофосфатный путь окисления глюкозы или пентозный цикл) и анаэробный (без потребления кислорода) гликолиз - пути расщепления глюкозы в организме.
Взаимопревращение гексоз.
Аэробное окисление продукта гликолиза - пирувата (завершающая стадия углеводного обмена).
Глюконеогенез - синтез углеводов из неуглеводистого сырья (пировиноградная, молочная кислота, глицерин, аминокислоты и другие органические соединения).
[править]Важнейшие источники
Главными источниками углеводов из пищи являются: хлеб, картофель, макароны, крупы, сладости. Чистым углеводом является сахар. Мёд, в зависимости от своего происхождения, содержит 70-80 % глюкозы и фруктозы.
Для обозначения количества углеводов в пище используется специальная хлебная единица.
К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины.

Список наиболее распространенных углеводов

  • Моносахариды
  • Олигосахариды

  • сахароза(обычныйсахар, тростниковый или свекловичный)

  • Полисахариды

  • галактоманнаны

  • Гликозаминогликаны(Мукополисахариды)

  • хондроитин-сульфат

  • гиалуроновая кислота

  • гепаран-сульфат

  • дерматан-сульфат

  • кератан-сульфат

Глюкоза – наиболее важный из всех моносахаридов, так как она является структурной единицей большинства пищевых ди- и полисахаридов. В процессе обмена веществ они расщепляются на отдельные молекулы моносахаридов, которые в ходе многостадийных химических реакций превращаются в другие вещества и в конечном итоге окисляются до углекислого газа и воды – используются как «топливо» для клеток. Глюкоза – необходимый компонент обмена углеводов . При снижении ее уровня в крови или высокой концентрации и невозможности использования, как это происходит при диабете, наступает сонливость, может наступить потеря сознания (гипогликемическая кома). Глюкоза «в чистом виде», как моносахарид, содержится в овощах и фруктах. Особенно богаты глюкозой виноград – 7,8%, черешня, вишня – 5,5%, малина – 3,9%, земляника – 2,7%, слива – 2,5%, арбуз – 2,4%. Из овощей больше всего глюкозы содержится в тыкве – 2,6%, в белокочанной капусте – 2,6%, в моркови – 2,5%.

Глюкоза обладает меньшей сладостью, чем самый известный дисахарид – сахароза. Если принять сладость сахарозы за 100 единиц, то сладость глюкозы составит 74 единицы.

Фруктоза является одним из самых распространенных углеводов фруктов. В отличие от глюкозы она может без участия инсулина проникать из крови в клетки тканей. По этой причине фруктоза рекомендуется в качестве наиболее безопасного источника углеводов для больных диабетом. Часть фруктозы попадает в клетки печени, которые превращают ее в более универсальное «топливо» - глюкозу, поэтому фруктоза тоже способна повышать сахара в крови, хотя и в значительно меньшей степени, чем другие простые сахара. Фруктоза легче, чем глюкоза, способна превращаться в жиры. Основным преимуществом фруктозы является то, что она в 2,5 раза слаще глюкозы и в 1,7 – сахарозы. Ее применение вместо сахара позволяет снизить общее потребление углеводов .

Основными источниками фруктозы в пище являются виноград – 7,7%, яблоки – 5,5%, груши – 5,2%, вишня, черешня – 4,5%, арбузы – 4,3%, черная смородина – 4,2%, малина – 3,9%, земляника – 2,4%, дыни – 2,0%. В овощах содержание фруктозы невелико – от 0,1% в свекле до 1,6% в белокочанной капусте. Фруктоза содержится в меде – около 3,7%. Достоверно доказано, что фруктоза, обладающая значительно более высокой сладостью, чем сахароза, не вызывает кариеса, которому способствует потребление сахара.

Галактоза в продуктах в свободном виде не встречается. Она образует дисахарид с глюкозой – лактозу (молочный сахар) – основной углевод молока и молочных продуктов.

Лактоза расщепляется в желудочно-кишечном тракте до глюкозы и галактозы под действием фермента лактазы. Дефицит этого фермента у некоторых людей приводит к непереносимости молока. Нерасщепленная лактоза служит хорошим питательным веществом для кишечной микрофлоры. При этом возможно обильное газообразование, живот «пучит». В кисломолочных продуктах большая часть лактозы сброжена до молочной кислоты, поэтому люди с лактазной недостаточностью могут переносить кисломолочные продукты без неприятных последствий. Кроме того, молочнокислые бактерии в кисломолочных продуктах подавляют деятельность кишечной микрофлоры и снижают неблагоприятные действия лактозы.

Галактоза, образующаяся при расщеплении лактозы, превращается в печени в глюкозу. При врожденном наследственном недостатке или отсутствии фермента, превращающего галактозу в глюкозу, развивается тяжелое заболевание - галактоземия, которая ведет к умственной отсталости.

Дисахарид, образованный молекулами глюкозы и фруктозы, - это сахароза. Содержание сахарозы в сахаре 99,5%. То, что сахар – это «белая смерть», любители сладкого знают так же хорошо, как курильщики то, что капля никотина убивает лошадь. К сожалению, обе эти прописные истины чаще служат поводом для шуток, чем для серьезных размышлений и практических выводов.

Сахар быстро расщепляется в желудочно-кишечном тракте, глюкоза и фруктоза всасываются в кровь и служат источником энергии и наиболее важным предшественником гликогена и жиров. Его часто называют «носителем пустых калорий», так как сахар – это чистый углевод и не содержит других питательных веществ, таких, как, например, витамины, минеральные соли. Из растительных продуктов больше всего сахарозы содержится в свекле – 8,6%, персиках – 6,0%, дынях – 5,9%, сливах – 4,8%, мандаринах – 4,5%. В овощах, кроме свеклы, значительное содержание сахарозы отмечается в моркови – 3,5%. В остальных овощах содержание сахарозы колеблется от 0,4 до 0,7%. Кроме собственно сахара, основными источниками сахарозы в пище являются варенье, мед, кондитерские изделия, сладкие напитки, мороженое.

При соединении двух молекул глюкозы образуется мальтоза - солодовый сахар. Ее содержат мед, солод, пиво, патока и хлебобулочные и кондитерские изделия, изготовленные с добавлением патоки.

Все полисахариды, представленные в пище человека, за редкими исключениями, являются полимерами глюкозы.

Крахмал – основной из перевариваемых полисахаридов. На его долю приходится до 80% потребляемых с пищей углеводов .

Источником крахмала служат растительные продукты, в основном злаковые: крупы, мука, хлеб, а также картофель. Больше всего крахмала содержат крупы: от 60% в гречневой крупе (ядрице) до 70% - в рисовой. Из злаков меньше всего крахмала содержится в овсяной крупе и продуктах ее переработки: толокне, овсяных хлопьях «Геркулес» - 49%. Макаронные изделия содержат от 62 до 68% крахмала, хлеб из ржаной муки в зависимости от сорта – от 33% до 49%, пшеничный хлеб и другие изделия из пшеничной муки – от 35 до 51% крахмала, мука – от 56 (ржаная) до 68% (пшеничная высшего сорта). Крахмала много и в бобовых продуктах – от 40% в чечевице до 44% в горохе. По этой причине сухие горох, фасоль, чечевицу, нут относят к зернобобовым. Особняком стоят соя, которая содержит только 3,5% крахмала, и соевая мука (10-15,5%). По причине высокого содержания крахмала в картофеле (15-18%) в диетологии его относят не к овощам, где основные углеводы представлены моносахариды и дисахаридами, а к крахмалистым продуктам наравне со злаковыми и зернобобовыми.

В топинамбуре и некоторых других растениях углеводы запасаются в виде полимера фруктозы -инулина. Пищевые продукты с добавкой инулина рекомендуют при диабете и особенно – для его профилактики (напомним, что фруктоза дает меньшую нагрузку на поджелудочную железу, чем другие сахара).

Гликоген - «животный крахмал» - состоит из сильно разветвленных цепочек молекул глюкозы. Он в небольших количествах содержится в животных продуктах (в печени 2-10%, в мышечной ткани – 0,3-1%).

Сахарный диабет (СД) - эндокринное заболевание, характеризующееся синдромом хронической гипергликемии, являющейся следствием недостаточной продукции или действия инсулина, что приводит к нарушению всех видов обмена веществ, прежде всего углеводного, поражению сосудов (ангиопатии), нервной системы (нейропатии), а также других органов и систем. Согласно определению ВОЗ (1985) - сахарный диабет - состояние хронической …

, в зависимости от своего происхождения, содержит 70—80 % сахара.К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины .

Из всех потребляемых человеком пищевых веществ углеводы, несомненно, являются главным источником энергии. В среднем на их долю приходится от 50 до 70% калорийности дневных рационов. Несмотря на то, что человек потребляет значительно больше углеводов, чем жиров и белков, их резервы в организме невелики. Это означает, что снабжение ими организма должно быть регулярным.

Потребности в углеводах в очень большой степени зависят от энергетических трат организма. В среднем у взрослого мужчины, занятого преимущественно умственным или легким физическим трудом, суточная потребность в углеводах колеблется от 300 до 500 г. У работников физического труда и спортсменов она значительно выше. В отличие от белков и в известной степени жиров, количество углеводов в рационах питания без вреда для здоровья может быть существенно снижено. Тем, кто хочет похудеть, стоит обратить на это внимание: углеводы имеют главным образом энергетическую ценность. При окислении 1 г углеводов в организме освобождается 4,0 – 4,2 ккал. Поэтому за их счет легче всего регулировать калорийность питания.

Углеводы (сахариды) — общее название обширного класса природных органических соединений. Общую формулу моносахаридов можно написать как С n (Н 2 О) n . В живых организмах наиболее распространены сахара с 5-ю (пентозы) и с 6-ю (гексозы) атомами углерода.

Углеводы делятся на группы:

Простые углеводы легко растворяются в воде и синтезируются в зелёных растениях. Кроме небольших молекул, в клетке встречаются и крупные, они являются полимерами. Полимеры – это сложные молекулы, состоящие из отдельных «звеньев», соединенных друг с другом. Такие «звенья» называются мономерами. Такие вещества, как крахмал, целлюлоза и хитин, являются полисахаридами – биологическими полимерами.

К моносахаридам относятся глюкоза и фруктоза, придающие сладость фруктам и ягодам. Пищевой сахар сахароза состоит из ковалентно присоединенных друг к другу глюкозы и фруктозы. Подобные сахарозе соединения называются дисахаридами. Поли-, ди- и моносахариды называют общим термином – углеводы. К углеводам относятся соединения, обладающие разнообразными и часто совершенно различными свойствами.


Таблица: Многообразие углеводов и их свойства.

Группа углеводов

Примеры углеводов

Где встречаются

свойства

моносахара

рибоза

РНК

дезоксирибоза

ДНК

глюкоза

Свекловичный сахар

фруктоза

Фрукты, мед

галактоза

В состав лактозы молока

олигосахариды

мальтоза

Солодовый сахар

Сладкие на вкус, растворимые в воде, кристаллические,

сахароза

Тростниковый сахар

Лактоза

Молочный сахар в молоке

Полисахариды (построены из линейных или разветвленных моносахаров)

Крахмал

Растительный запасной углевод

Не сладкие, белого цвета, не растворяются в воде.

гликоген

Запасной животный крахмал в печени и мышцах

Клетчатка (целлюлоза)

хитин

муреин

воды . Для многих клеток человека (например, клеток мозга и мышц) глюкоза, приносимая кровью, служит главным источником энергии.Крахмал и очень похожее на него вещество животных клеток – гликоген – являются полимерами глюкозы, они служат для запасания ее внутри клетки.

2. Структурная функция, то есть участвуют в построении разных клеточных структур.

Полисахарид целлюлоза образует клеточные стенки растительных клеток, отличающиеся твердостью и жесткостью, она – один из главных компонентов древесины. Другими компонентами являются гемицеллюлоза, также принадлежащая к полисахаридам, и лигнин (он имеет не углеводную природу). Хитин тоже выполняет структурные функции. Хитин выполняет опорную и защитную функции.Клеточные стенки большинства бактерий состоят из пептидогликана муреина – в состав этого соединения входят остатки как моносахаридов, так и аминокислот.

3. Углеводы выполняют защитную роль у растений (клеточные стенки, состоящие из клеточных стенок мертвых клеток защитные образования — шипы, колючки и др.).

Общая формула глюкозы – С 6 Н 12 О 6 , это альдегидоспирт. Глюкоза содержится во многих фруктах, соках растений и цветочном нектаре, а также в крови человека и животных. Содержание глюкозы в крови поддерживается на определенном уровне (0,65–1,1 г на л). Если искусственно снизить его, то клетки мозга начинают испытывать острое голодание, которое может закончиться обмороком, комой и даже смертельным исходом. Длительное повышение содержания глюкозы в крови тоже отнюдь не полезно: при этом развивается заболевание сахарный диабет.

Млекопитающие, и человек в том числе, могут синтезировать глюкозу из некоторых аминокислот и продуктов расщепления самой глюкозы – например, молочной кислоты. Они не умеют получать глюкозу из жирных кислот, в отличие от растений и микробов.

Взаимопревращения веществ.

Избыток белка------углеводы

Избыток жиров--------------углеводы