Построение треугольника по двум углам прилежащим стороне. Построение треугольника по трем элементам

Представляем вашему вниманию видеоурок по теме «Построение треугольника по трем элементам». Вы сможете решить несколько примеров из класса задач на построение. Учитель подробно разберет задачу на построение треугольника по трем элементам, а также напомнит теорему о равенстве треугольников.

Данная тема имеет широкое практическое применение, поэтому рассмотрим некоторые типы решения задач. Напомним, что любые построения выполняются исключительно с помощью циркуля и линейки.

Пример 1:

Построить треугольник по двум сторонам и углу между ними.

Дано: Предположим, анализируемый треугольник выглядит так

Рис. 1.1. Анализируемый треугольник к примеру 1

Пусть заданные отрезки будут с и а, а заданный угол будет

Рис. 1.2. Заданные элементы к примеру 1

Построение:

Сначала следует отложить угол 1

Рис. 1.3. Отложенный угол 1 к примеру 1

Затем на сторонах данного угла откладываем циркулем две данные стороны: замеряем циркулем длину стороны а и помещаем остриё циркуля в вершину угла 1, а другой частью делаем насечку на стороне угла 1. Аналогичную процедуру проделываем со стороной с

Рис. 1.4. Отложенные стороны а и с к примеру 1

Затем соединяем полученные насечки, и мы получим искомый треугольник АВС

Рис. 1.5. Построенный треугольник АВС к примеру 1

Будет ли данный треугольник равный предполагаемому? Будет, ведь элементы полученного треугольника (две стороны и угол между ними) соответственно равны двум сторонам и углу между ними, данным в условии. Поэтому по первому свойству равенства треугольников - - искомый.

Построение выполнено.

Примечание:

Напомним, как отложить угол, равный данному.

Пример 2

Отложить от данного луча угол, равный данному. Заданы угол А и луч ОМ. Построить .

Построение:

Рис. 2.1. Условие к примеру 2

1. Построить окружность Окр(А, r = AB). Точки В и С - являются точками пересечения со сторонами угла А

Рис. 2.2. Решение к примеру 2

1. Построить окружность Окр(D, r = CB). Точки E и M - являются точками пересечения со сторонами угла А

Рис. 2.3. Решение к примеру 2

1. Угол МОЕ - искомый, так как .

Построение выполнено.

Пример 3

Построить треугольник АВС по известной стороне и двум прилежащим к ней углам.

Пусть анализируемый треугольник выглядит так:

Рис. 3.1. Условие к примеру 3

Тогда заданные отрезки выглядят таким образом

Рис. 3.2. Условие к примеру 3

Построение:

Отложим угол на плоскости

Рис. 3.3. Решение к примеру 3

Отложим на стороне данного угла длину стороны а

Рис. 3.4. Решение к примеру 3

Затем отложим от вершины С угол . Необщие стороны углов γ и α пересекаются в точке А

Рис. 3.5. Решение к примеру 3

Является построенный треугольник искомым? Является, так как сторона и два прилежащих к ней угла построенного треугольника соответственно равны стороне и углу между ними, данных в условии

Искомый по второму признаку равенства треугольников

Построение выполнено

Пример 4

Построить треугольник по 2 катетам

Пусть анализируемый треугольник выглядит так

Рис. 4.1. Условие к примеру 4

Известные элементы - катеты

Рис. 4.2. Условие к примеру 4

Данная задача отличается от предыдущих тем, что угол между сторонами можно определить по умолчанию - 90 0

Построение:

Отложим угол, равный 90 0 . Делать это будем точно так же, как показано в примере 2

Рис. 4.3. Решение к примеру 4

Затем на сторонах данного угла откладываем длины сторон а и b , данных в условии

Рис. 4.4. Решение к примеру 4

В результате полученный треугольник - искомый, ведь его две стороны и угол между ними соответственно равны двум сторонам и углу между ними, данными в условии

Заметим, что отложить угол 90 0 можно, построив две перпендикулярные прямые. Как выполнить эту задачу, рассмотрим в дополнительном примере

Дополнительный пример

Восстановить перпендикуляр к прямой р, проходящий через точку А,

Прямая р, и точка А, лежащая на данной прямой

Рис. 5.1. Условие к дополнительному примеру

Построение:

Сначала выполним построение окружности произвольного радиуса с центром в точке А

Рис. 5.2. Решение к дополнительному примеру

Данная окружность пересекает прямую р в точках К и Е. Затем построим две окружности Окр(К, R = КЕ), Окр(E, R = КЕ). Данные окружности пересекаются в точках С и В. Отрезок СВ - искомый,

Рис. 5.3. Ответ к дополнительному примеру

  1. Единая коллекция цифровых образовательных ресурсов ().
  2. Репетитор по математике ().
  1. № 285, 288. Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б., Позняк Э. Г., Юдина И. И. под редакцией Тихонова А. Н. Геометрия 7-9 классы. М.: Просвещение. 2010 г.
  2. Постройте равнобедренный треугольник по боковой стороне и углу, противолежащему основанию.
  3. Постройте прямоугольный треугольник по гипотенузе и острому углу
  4. Постройте треугольник по углу, высоте и биссектрисе, проведённым из вершины данного угла.

§ 1 Построение треугольника по двум сторонам и углу между ними

Построение геометрической фигуры - одна из интересных задач в геометрии. Получить необходимую фигуру только при помощи циркуля и линейки без делений не просто.

Фигура треугольник часто используется в решении задач, но как его правильно построить?

Пусть необходимо построить треугольник по двум сторонам и углу между ними.

Во-первых, что такое две стороны - это два произвольных отрезка, например, P1Q1 и P2Q2, а также произвольный угол альфа. Все эти элементы уже построены, другими словами, эти элементы - дано задачи.

Во-вторых, необходимо определить последовательность построения: сначала необходимо построить одну сторону треугольника, затем угол и потом вторую сторону треугольника.

Итак, перед нами белый лист, проведем прямую а и отметим на ней точку А, затем возьмем циркуль и отложим отрезок АВ, равный отрезку P1Q1. Далее выберем произвольный раствор циркуля и проведем одну окружность с центром в вершине угла альфа и другую с центром в точке А. Первая окружность пересечет лучи угла альфа в точках Р и К, а вторая окружность пересечет прямую а в точке М. Проведем отрезок РК. Затем возьмем раствор циркуля, равный отрезку РК, и построим окружность с центром в точке М. Окружность с центром в точке М пересечет окружность с центром в точке А, пусть эта точка будет М1. Проведем луч АМ1. Затем на луче АМ1 отложим отрезок АС, равный отрезку Р2Q2. Соединим точки В и С отрезком. Полученный треугольник АВС - искомый.

Теперь докажем, что полученный треугольник АВС искомый. На самом деле отрезок АВ равен отрезку P1Q1 и отрезок АС равен отрезку P2Q2 по построению. Угол альфа также по построению равен углу САВ. При данном ходе построения для любых данных отрезков P1Q1 и P2Q2 и неразвернутом угле альфа искомый треугольник построить можно. Так как прямую а и точку А на ней можно выбрать произвольно, то существует бесконечно много треугольников, удовлетворяющих условиям задачи. Все эти треугольники равны друг другу по первому признаку равенства треугольников, поэтому принято говорить, что данная задача имеет единственное решение.

§ 2 Построение треугольника по стороне и двум прилежащим к ней углам

Теперь рассмотрим задачу построения треугольника по стороне и двум прилежащим к ней углам.

Итак, нам дан отрезок PQ и два угла альфа и бета. Проведем прямую а и отметим на ней произвольную точку А. Отложим от точки А отрезок АВ, равный отрезку PQ. Затем построим угол М1АВ с вершиной в точке А, равный углу альфа, и угол М2ВА с вершиной в точке В, равный углу бета. Точка пересечения лучей АМ1 и ВМ2 будет точка С. Треугольник АВС искомый.

Докажем это: отрезок АВ равен отрезку PQ по построению, также по построению угол САВ равен углу альфа, а угол СВА равен углу бета.

Как известно, сумма углов в треугольнике равна 180 градусов, поэтому при данном ходе построения искомый треугольник АВС возможно построить только, если сумма углов альфа и бета будет меньше 180 градусов. Если же сумма данных углов будет больше или равна 180 градусом, треугольник построить невозможно.

В этой задаче, как и в предыдущей, прямую а и точку А на ней можно выбрать произвольно, а значит, существует бесконечно много треугольников, удовлетворяющих условиям задачи. Все эти треугольники равны друг другу по второму признаку равенства треугольников, поэтому говорят, что данная задача имеет единственное решение.

§ 3 Построение треугольника по трем сторонам

Построить треугольник по трем сторонам является третьей задачей построения треугольника.

Пусть нам даны три отрезка P1Q1, P2Q2 и P3Q3. необходимо построить треугольник АВС, в котором АВ равно P1Q1, ВС равно P2Q2 и СА равно P3Q3.

Проведем прямую а и на ней с помощью циркуля отложим отрезок АВ, равный отрезку P1Q1. Затем построим две окружности: одну - с центром в точке А и радиусом P3Q3, а другую - с центром в точке В и радиусом P2Q2. Пусть точка С - одна из точек пересечения этих окружностей. Проведя отрезки АС и ВС, получим искомый треугольник АВС. В самом деле, по построению АВ равно P1Q1, BC равно P2Q2 и СА равно P3Q3, то есть стороны треугольника равны данным отрезкам.

Рассмотренная задача не всегда имеет решение в силу действия неравенства треугольника, то есть в любом треугольнике сумма любых двух сторон больше третьей стороны, поэтому, если какой-нибудь из данных отрезков больше или равен сумме двух других, то нельзя построить треугольник, стороны которого равнялись бы данным отрезкам.

Список использованной литературы:

  1. Атанасян Л.С. Учебник: Геометрия. 7-9 классы: учеб. для общеобразоват. организаций / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М. : Просвещение, 2013. –383 с.
  2. Геометрия. Ч.I. Планиметрия: учебное пособие/ И.Б. Барский, Г.Н. Тимофеев. – Йошкар-Ола: изд-во Марийского гос. ун-та, 2006 и 2008. – 636с
Тема урока: Построение треугольника по трём элементам

Цель урока: научиться строить треугольники по трём элементам

Задачи урока: построение треугольника при помощи линейки и циркуля

Ход урока:

1 этап: орг момент, приветствие, проверка домашнего задания

2 этап: новая тема

Построение треугольника по двум сторонам и углу между ними .

Даны два отрезка a и b , они равны сторонам искомого треугольника, и угол 1 , равный углу треугольника между сторонами. Необходимо построить треугольник с элементами, равными данным отрезкам и углу.

1. Провести прямую.

A a .

1 (вершина угла A

4. На другой стороне угла отложить отрезок, равный данному отрезку b .

5. Соединить концы отрезков.

Согласно признаку равенства треугольников по двум сторонам и углу между ними, построенный треугольник равен со всеми треугольниками, которые имеют данные элементы.

Построение треугольника по стороне и двум прилежащим к ней углам .

Дан отрезок a и два угла 1 и 2 , равные углам треугольника, прилежащим к данной стороне. Необходимо построить треугольник с элементами, равными данному отрезку и углам.

1. Провести прямую.

2. На прямой от выбранной точки A отложить отрезок, равный данному отрезку a B .

3. Построить угол, равный данному 1 (вершина угла A , одна сторона угла лежит на прямой).

4. Построить угол, равный данному 2 (вершина угла B , одна сторона угла лежит на прямой).

5. Точка пересечения других сторон углов является третьей вершиной искомого треугольника.

Согласно признаку равенства треугольников по стороне и двум прилежащим к ней углам, построенный треугольник равен со всеми треугольниками, которые имеют данные элементы.

Построение треугольника по трём сторонам .

Даны три отрезка: a , b и c , равные сторонам искомого треугольника. Необходимо построить треугольник со сторонами, равными данным отрезкам.

В этом случае перед началом построения необходимо убедиться, исполняется ли неравенство треугольника (длина каждого отрезка меньше суммы длин двух остальных отрезков), и эти отрезки могут быть сторонами треугольника.

1. Провести прямую.

2. На прямой от выбранной точки A отложить отрезок, равный данному отрезку a , и отметить другой конец отрезка B .

3. Провести окружность с центром A и радиусом, равным отрезку b .

4. Провести окружность с центром B и радиусом, равным отрезку c .

5. Точка пересечения окружностей является третьей вершиной искомого треугольника

Согласно признаку равенства треугольников по трём сторонам, построенный треугольник равен со всеми треугольниками, которые имеют данные стороны.

3 этап: решение задач

239 стр 74

постройте прямоугольный треугольник по двум катетам


4 этап: подведение итогов

5 этап: домашнее задание № 240 стр 74

Треугольник — это геометрическая фигура, которая образуется при соединении отрезками трёх точек, не принадлежащих одной прямой. Он однозначно определяется набором из трёх данных: тремя сторонами, двумя сторонами и углом между ними, или стороной и двумя прилежащими углами.

В качестве примера попробуем построить треугольник по стороне и двум прилежащим к ней углам?

Быстрая навигация по статье

Строим треугольник

Первым делом на прямой откладывается отрезок, равный длине заданной стороны. Концы отрезка отмечаем точками А и В.

Чтобы построить треугольник, нужно от точек А и В отложить заданные углы. Если заданы величины углов, то для построения воспользуйтесь транспортиром:

  • Нижнюю планку транспортира выравниваем по отрезку прямой;
  • Начало отсчёта устанавливаем в точке А для первого угла и в точке В — для второго;
  • Затем откладываем величины углов. Рядом с соответствующим делением шкалы ставим точки и обозначаем их М и N;
  • Соединяем прямыми точки А и М, В и N. Пересечение построенных прямых будет третьей последней вершиной треугольника С.

Таким образом по данной стороне и двум заданным прилежащим углам построен треугольник.

Графический угол

Часто для построения треугольника по данной стороне и двум заданным прилежащим углам, углы задаются графически. Задача усложняется, так как нужно построить угол, равный по величине заданному графическому углу.

Можно измерить величину заданного графически угла с помощью транспортира и получить величины прилежащих углов, а затем воспользоваться методом, описанным в предыдущем пункте и построить треугольник.

Используем циркуль

Для другого способа построения угла, соответствующего по величине заданному, понадобится циркуль:

  • Циркулем, с произвольным раствором, проводится окружность с центром в начальной точке угла. Пересечения окружности и сторон угла обозначим М и N;
  • Теперь вернёмся к отрезку АВ, равному стороне нужного треугольника. Не меняя раствор, от точки А проведите окружность и отметьте точку пересечения ее с отрезком АВ — получаем точку М1;
  • Вернитесь к заданному углу. Поставьте ножку циркуля в точку М и сделайте раствор равным МN;
  • Теперь, не меняя раствор циркуля, от точки М1 проведите окружность до пересечения её с первой окружностью — получаем точку N1;
  • Соедините прямой точки А и N1. Угол М1АN1 и будет равен заданному;
  • Так же строим второй угол в точке В. Пересечение сторон построенных углов и будет недостающей вершиной С.

Таким способом строиться треугольник с помощью циркуля по стороне и двум данным прилежащим углам при помощи циркуля.

Рассмотрим, наконец, задачу, решение которой приводит к построению треугольника по стороне и двум углам:

На другом берегу реки (черт. 72) видна веха A . Требуется, не переправляясь через реку, узнать расстояние до нее от вехи В на этом берегу.

Поступим так. Отмерим от точки В по прямой линии какое-нибудь расстояние ВС и у концов его В и С измерим углы 1 и 2 (черт. 73). Если теперь на удобной местности отмерить расстояние DE, равное ВС , и построить у его концов углы а и b (черт. 74), равные углам 1 и 2, то в точке пересечения их сторон получим третью вершину F треугольника DEF. Легко убедиться, что треугольник DEF равен треугольнику АВС ; действительно, если представим себе, что треугольник DEF наложен на ABC так, что сторона DE совпала с равной ей стороною ВС , то уг. а совпадет с углом 1, угол b – с углом 2, и сторона DF пойдет по стороне ВA , а сторона EF по стороне СА. Так как две прямые могут пересечься только в одной точке, то и вершина F должна совпасть с вершиной A . Значит, расстояние DF равно искомому расстоянию ВА.

Задача, как видим, имеет т о л ь к о о д н о решение. Вообще по стороне и двум углам, прилегающим к этой стороне, можно построить т о л ь к о о д и н треугольник; других треугольников с такою же стороною и такими же двумя углами, прилегающими к ней в тех же местах, быть не может. Все треугольники, имеющие по одной одинаковой стороне и по два одинаковых угла, прилегающих к ней в тех же местах, могут быть наложением приведены в полное совпадение. Значит, это признак, по которому можно установить полное равенство треугольников.

Вместе с прежде установленными признаками равенства треугольников, мы знаем теперь следующие три:

Т р е у г о л ь н и к и р а в н ы:

п о т р е м с т о р о н а м;

п о д в у м с т о р о н а м и у г л у м е ж д у н и м и;

п о с т о р о н е и д в у м у г л а м.

Эти три случая равенства треугольников мы будем в дальнейшем обозначать ради краткости так:

по трем сторонам: ССС ;

по двум сторонам и углу между ними: СУС ;

по стороне и двум углам: УСУ .


Применения

14. Чтобы узнать расстояние до точки A на другом берегу реки от точки В на этом берегу (черт. 5), отмеряют по прямой линии какую-нибудь линию ВС, затем при точке В строят угол, равный AВС , по другую сторону ВС , а при точке С – таким же образом угол, равный АСВ. Расстояние точки D пересечения сторон обеих сторон углов до точки В равно искомому расстоянию АВ . Почему?

Р е ш е н и е. Треугольники ABC и ВDС равны по одной стороне (ВС ) и двум углам (уг. DCB = уг. АСВ ; уг. DBC = уг. ABC .) Следовательно, АВ = ВD, как стороны, лежащие в равных треугольниках против равных углов.