Является ли дерево проводником. Диэлектрик - что такое? Свойства диэлектриков

Все материалы, существующие в природе, различаются своими электрическими свойствами. Таким образом, из всего многообразия физических веществ в отдельные группы выделяются диэлектрические материалы и проводники электрического тока.

Что представляют собой проводники?

Проводник – это такой материал, особенностью которого является наличие в составе свободно передвигающихся заряженных частиц, которые распространены по всему веществу.

Проводящими электрический ток веществами являются расплавы металлов и сами металлы, недистиллированная вода, раствор солей, влажный грунт, человеческое тело.

Металл – это самый лучший проводник электрического тока. Также и среди неметаллов есть хорошие проводники, например, углерод.

Все, существующие в природе проводники электрического тока, характеризуются двумя свойствами:

  • показатель сопротивления;
  • показатель электропроводности.
Сопротивление возникает из-за того, что электроны при движении испытывают столкновение с атомами и ионами, которые являются своеобразным препятствием. Именно поэтому проводникам присвоена характеристика электрического сопротивления. Обратной сопротивлению величиной является электропроводность.

Электропроводность – это характеристика (способность) физического вещества проводить ток. Поэтому свойствами надежного проводника являются низкое сопротивление потоку движущихся электронов и, следовательно, высокая электропроводность. То есть, лучший проводник характеризуется большим показателем проводимости.

Например кабельная продукция : медный кабель обладает большей электропроводностью по сравнению с алюминиевым.

Что представляют собой диэлектрики?

Диэлектрики – это такие физические вещества, в которых при заниженных температурах отсутствуют электрические заряды. В состав таких веществ входят лишь атомы нейтрального заряда и молекулы. Заряды нейтрального атома имеют тесную связь друг с другом, поэтому лишены возможности свободного перемещения по всему веществу.

Самым лучшим диэлектриком является газ. Другие непроводящие электрический ток материалы – это стеклянные, фарфоровые, керамические изделия, а также резина, картон, сухое дерево, смолы и пластмассы.

Диэлектрические предметы – это изоляторы, свойства которых главным образом зависимы от состояния окружающей атмосферы. Например, при высокой влажности некоторые диэлектрические материалы частично лишаются своих свойств.

Проводники и диэлектрики широко используются в сфере электротехники для решения различных задач.

Например, вся кабельно-проводниковая продукция изготавливается из металлов, как правило, из меди или алюминия. Оболочка проводов и кабелей полимерная, также, как и вилках всех электрических приборов. Полимеры – отличные диэлектрики, которые не допускают пропуска заряженных частиц.

Серебряные, золотые и платиновые изделия – очень хорошие проводники. Но их отрицательная характеристика, которая ограничивает использование, состоит в очень высокой стоимости.

Поэтому применяются такие вещества в сферах, где качество гораздо важнее цены, которая за него уплачивается (оборонная промышленность и космос).

Медные и алюминиевые изделия также являются хорошими проводниками, при этом имеют не столь высокую стоимость. Следовательно, использование медных и алюминиевых проводов распространено повсеместно.

Вольфрамовые и молибденовые проводники имеют менее хорошие свойства, поэтому используются в основном в лампочках накаливания и нагревательных элементах высокой температуры. Плохая электропроводность может существенно нарушить работу электросхемы.

Диэлектрики также различаются между собой своими характеристиками и свойствами. Например, в некоторых диэлектрических материалах также присутствуют свободные электрически заряды, пусть и в небольшом количестве. Свободные заряды возникают из-за тепловых колебаний электронов, т.е. повышение температуры все-таки в некоторых случаях провоцирует отрыв электронов от ядра, что понижает изоляционные свойства материала. Некоторые изоляторы отличаются большим числом «оторванных» электронов, что говорит о плохих изоляционных свойствах.

Самый лучший диэлектрик – полный вакуум, которого очень трудно добиться на планете Земля.

Полностью очищенная вода также имеет высокие диэлектрические свойства, но таковой даже не существует в реальности. При этом стоит помнить, что присутствие каких-либо примесей в жидкости наделяет ее свойствами проводника.

Главный критерий качества любого диэлектрического материала – это степень соответствия возложенным на него функциям в конкретной электрической схеме. Например, если свойства диэлектрика таковы, что утечка тока совсем незначительная и не приносит никакого ущерба работе схемы, то диэлектрик является надежным.

Что такое полупроводник?

Промежуточное место между диэлектриками и проводниками занимают полупроводники. Главное отличие проводников заключается в зависимости степени электропроводности от температуры и количества примесей в составе. При том материалу свойственны характеристики и диэлектрика, и проводника.

С ростом температуры электропроводность полупроводников растет, а степень сопротивления при этом падает. При понижении температуры сопротивление стремится к бесконечности. То есть, при достижении нулевой температуры полупроводники начинают вести себя как изоляторы.

Полупроводниками являются кремний и германий.

Способность проводить электрический ток характеризует электрическое сопротивление древесины. В общем случае полное сопротивление образца древесины, размещенного между двумя электродами, определяется как результирующее двух сопротивлений: объемного и поверхностного. Объемное сопротивление численно характеризует препятствие прохождению тока сквозь толщу образца, а поверхностное сопротивление определяет препятствие прохождению тока по поверхности образца. Показателями электрического сопротивления служат удельное объемное и поверхностное сопротивление. Первый из названных показателей имеет размерность ом на сантиметр (ом х см) и численно равен сопротивлению при прохождении тока через две противоположные грани кубика размером 1X1X1 см из данного материала (древесины). Второй показатель измеряется в омах и численно равен сопротивлению квадрата любого размера на поверхности образца древесины при подведении тока к электродам, ограничивающим две противоположные стороны этого квадрата. Электропроводность зависит от породы древесины и направления движения тока. В качестве иллюстрации порядка величии объемного и поверхностного сопротивления в табл. приведены некоторые данные.

сравнительные данные об удельном объемном и поверхностном сопротивлении древесины

Для характеристики электропроводности наибольшее значение имеет удельное объемное сопротивление. Сопротивление сильно зависит от влажности древесины. С повышением содержания влаги в древесине сопротивление уменьшается. Особенно резкое снижение сопротивления наблюдается при увеличении содержания связанной влаги от абсолютно сухого состояния до предела гигроскопичности. При этом удельное объемное сопротивление уменьшается в миллионы раз. Дальнейшее увеличение влажности вызывает падение сопротивления лишь в десятки раз. Это иллюстрируют данные табл.

удельное объемное сопротивление древесины в абсолютно сухом состоянии

Порода Удельное объемное сопротивление, ом х см
поперек волокон вдоль волокон
Сосна 2,3 х 10 15 1,8 х 10 15
Ель 7,6 х 10 16 3,8 х 10 16
Ясень 3,3 х 10 16 3,8 х 10 15
Граб 8,0 х 10 16 1,3 х 10 15
Клен 6,6 х 10 17 3,3 х 10 17
Береза 5,1 х 10 16 2,3 х 10 16
Ольха 1,0 х 10 17 9,6 х 10 15
Липа 1,5 х 10 16 6,4 х 10 15
Осина 1,7 х 10 16 8,0 х 10 15

влияние влажности на электрическое сопротивление древесины

Поверхностное сопротивление древесины также существенно снижается с увеличением влажности. Повышение температуры приводит к уменьшению объемного сопротивления древесины. Так, сопротивление древесины лжетсуги при повышении температуры с 22-23° до 44-45° С (примерно вдвое) падает в 2,5 раза, а древесины бука при повышении температуры с 20-21° до 50° С - в 3 раза. При отрицательных температурах объемное сопротивление древесины возрастает. Удельное объемное сопротивление вдоль волокон образцов березы влажностью 76% при температуре 0°С составило 1,2 х 10 7 ом см, а при охлаждении до температуры -24° С оно оказалось равным 1,02 х 10 8 ом см. Пропитка древесины минеральными антисептиками (например, хлористым цинком) уменьшает удельное сопротивление, в то время как пропитка креозотом мало отражается на электропроводности. Электропроводность древесины имеет практическое значение тогда, когда она применяется для столбов связи, мачт линий высоковольтных передач, рукояток электроинструментов и т. д. Кроме того, на зависимости электропроводности от влажности древесины основано устройство электрических влагомеров.

электрическая прочность древесины

Электрическая прочность имеет значение при оценке древесины как электро изолирующего материала и характеризуется пробивным напряжением в вольтах на 1 см толщины материала. Электрическая прочность древесины невысока и зависит от породы, влажности, температуры и направления. С увеличением влажности и температуры она снижается; вдоль волокон она значительно ниже, чем поперек. Данные об электрической прочности древесины вдоль и поперек волокон приведены в табл.

электрическая прочность древесины вдоль и поперек волокон

При влажности древесины сосны 10% получено следующую электрическую прочность в киловольтах на 1 см толщины: вдоль волокон 16,8; в радиальном направлении 59,1; в тангенциальном направлении 77,3 (определение производилось на образцах толщиной 3 мм). Как видим, электрическая прочность древесины вдоль волокон примерно в 3,5 раза меньше, чем поперек волокон; в радиальном направлении прочность меньше, чем в тангенциальном, так как сердцевинные лучи уменьшают пробивное напряжение. Повышение влажности с 8 до 15% (вдвое) снижает электрическую прочность поперек волокон примерно в 3 раза (в среднем для бука, березы и ольхи).

Электрическая прочность (в киловольтах на 1 см толщины) .других материалов следующая: слюды 1500, стекла 300, бакелита 200, парафина 150, трансформаторного масла 100, фарфора 100. С целью повышения электрической прочности древесины и снижения электропроводности при использовании в электропромышленности в качестве изолятора ее пропитывают олифой, трансформаторным маслом, парафином, искусственными смолами; эффективность такой пропитки видна из следующих данных о древесине березы: пропитка олифой увеличивает пробивное напряжение вдоль волокон на 30%, трансформаторным маслом - на 80%, парафином - почти вдвое по сравнению с пробивным напряжением для воздушно-сухой не пропитанной древесины.

диэлектрические свойства древесины

Величина, показывающая, во сколько раз увеличивается емкость конденсатора, если воздушную прослойку между пластинами заменить такой же толщины прокладкой из данного материала, называется диэлектрической проницаемостью этого материала. Диэлектрическая проницаемость (диэлектрическая постоянная) для некоторых материалов приведена в табл.

диэлектрическая проницаемость некоторых материалов

Материал Древесина Диэлектрическая проницаемость
Воздух 1,00 Ель сухая: вдоль волокон 3,06
в тангенциальном направлении 1,98
Парафин 2,00
в радиальном направлении 1,91
Фарфор 5,73
Слюда 7,1-7,7 Бук сухой: вдоль волокон 3,18
в тангенциальном направлении 2,20
Мрамор 8,34
в радиальном направлении 2,40
Вода 80,1

Данные для древесины показывают заметное различие между диэлектрической проницаемостью вдоль и поперек волокон; в то же время диэлектрическая проницаемость поперек волокон в радиальном и тангенциальном направлении различается мало. Диэлектрическая проницаемость в поле высокой частоты зависит от частоты тока и влажности древесины. С увеличением частоты тока диэлектрическая проницаемость древесины бука вдоль волокон при влажности от 0 до 12% уменьшается, что особенно заметно для влажности 12%. С увеличением влажности древесины бука диэлектрическая проницаемость вдоль волокон увеличивается, что особенно заметно при меньшей частоте тока.

В поле высокой частоты древесина нагревается; причина нагрева - потери на джоулево тепло внутри диэлектрика, происходящие под влиянием переменного электромагнитного поля. На этот нагрев расходуется часть подводимой энергии, величина которой характеризуется тангенсом угла потерь.

Тангенс угла потерь зависит от направления поля в отношении волокон: вдоль волокон он примерно вдвое больше, чем поперек волокон. Поперек волокон в радиальном и тангенциальном направлении тангенс угла потерь мало различается. Тангенс угла диэлектрических потерь, как и диэлектрическая проницаемость, зависит от частоты тока и влажности древесины. Так, для абсолютно сухой древесины бука тангенс угла потерь вдоль волокон с увеличением частоты сначала увеличивается, достигает максимума при частоте 10 7 гц, после чего начинает снова снижаться. В то же время при влажности 12% тангенс угла потерь с увеличением частоты резко падает, достигает минимума при частоте 10 5 гц, затем так же резко увеличивается.

максимальная величина тангенса угла потерь для сухой древесины

С увеличением влажности древесины бука тангенс угла потерь вдоль волокон резко растет при малой (3 х 10 2 гц) и большой (10 9 гц) частоте и почти не меняется при частоте 10 6 -10 7 гц.

Путем сравнительного исследования диэлектрических свойств древесины сосны и полученных из нее целлюлозы, лигнина и смолы было установлено, что эти свойства определяются в основном целлюлозой. Нагрев древесины в поле токов высокой частоты находит применение в процессах сушки, пропитки и склеивания.

пьезоэлектрические свойства древесины

На поверхности некоторых диэлектриков под действием механических напряжений появляются электрические заряды. Это явление, связанное с поляризацией диэлектрика, носит название прямого пьезоэлектрического эффекта. Пьезоэлектрические свойства были вначале обнаружены у кристаллов кварца, турмалина, сегнетовой соли и др. Эти материалы обладают также обратным пьезоэлектрическим эффектом, заключающимся в том, что размеры их изменяются под действием электрического поля. Пластинки из этих кристаллов находят широкое применение в качестве излучателей и приемников в ультразвуковой технике.

Эти явления обнаруживаются не только у монокристаллов, но и у целого ряда других анизотропных твердых материалов, названных пьезоэлектрическими текстурами. Пьезоэлектрические свойства были обнаружены также в древесине. Было установлено, что основной носитель пьезоэлектрических свойств в древесине - ее ориентированный компонент - целлюлоза. Интенсивность поляризации древесины пропорциональна величине механических напряжений от приложенных внешних усилий; коэффициент пропорциональности называется пьезоэлектрическим модулем. Количественное изучение пьезоэлектрического эффекта, таким образом, сводится к определению значений пьезоэлектрических модулей. В связи с анизотропией механических и пьезоэлектрических свойств древесины указанные показатели зависят от направления механических усилий и вектора поляризации.

Наибольший пьезоэлектрический эффект наблюдается при сжимающей и растягивающей нагрузках под углом 45° к волокнам. Механические напряжения, направленные строго вдоль или поперек волокон, не вызывают в древесине пьезоэлектрического эффекта. В табл. приведены значения пьезоэлектрических модулей для некоторых пород. Максимальный пьезоэлектрический эффект наблюдается в сухой древесине, с увеличением влажности он уменьшается, а затем и совсем исчезает. Так, уже при влажности 6-8% величина пьезоэлектрического эффекта очень мала. С повышением температуры до 100° С величина пьезоэлектрического модуля увеличивается. При малой упругой деформации (высоком модуле упругости) древесины пьезоэлектрический модуль уменьшается. Пьезоэлектрический модуль зависит также от ряда других факторов; однако наибольшее влияние на его величину оказывает ориентация целлюлозной составляющей древесины.

пьезоэлектрические модули древесины

Открытое явление позволяет глубже изучить тонкую структуру древесины. Показатели пьезоэлектрического эффекта могут служить количественными характеристиками ориентации целлюлозы и поэтому очень важны для изучения анизотропии натуральной древесины и новых древесных материалов с заданными в определенных направлениях свойствами.

Диэлектрик - это материал или вещество, которое практически не пропускает электрический ток. Такая проводимость получается вследствие небольшого количества электронов и ионов. Данные частицы образуются в не проводящем электрический ток материале только при достижении высоких температурных свойств. О том, что такое диэлектрик и пойдёт речь в этой статье.

Описание

Каждый электронный или радиотехнический проводник, полупроводник или заряженный диэлектрик пропускает через себя электрический ток, но особенность диэлектрика в том, что в нем даже при высоком напряжении свыше 550 В будет протекать ток малой величины. Электрический ток в диэлектрике - это движение заряженных частиц в определённом направлении (может быть положительным и отрицательным).

Виды токов

В основе электропроводимости диэлектриков лежат:

  • Токи абсорбционные - ток, который протекает в диэлектрике при постоянном токе до тех пор, пока не достигнет состояния равновесия, изменяя направление при включении и подаче на него напряжения и при отключении. При переменном токе напряжённость в диэлектрике будет присутствовать в нём всё время, пока находится в действии электрического поля.
  • Электронная электропроводность - перемещение электронов под действием поля.
  • Ионная электропроводность - представляет собой движение ионов. Находится в растворах электролитов - соли, кислоты, щёлочь, а так же во многих диэлектриках.
  • Молионная электропроводность - движение заряженных частиц, называемых молионами. Находится в коллоидных системах, эмульсиях и суспензиях. Явление движения молионов в электрическом поле называется электрофорезом.

Классифицируют по агрегатному состоянию и химической природе. Первые делятся на твёрдые, жидкостные, газообразные и затвердевающие. По химической природе делятся на органику, неорганику и элементоорганические материалы.

По агрегатному состоянию:

  • Электропроводимость газов. У газообразных веществ достаточно малая проводимость тока. Он может возникать при наличии свободных заряженных частиц, что появляется из-за воздействия внешних и внутренних, электронных и ионных факторов: излучение рентгена и радиоактивного вида, соударение молекул и заряженных частиц, тепловые факторы.
  • Электропроводимость жидкого диэлектрика. Факторы зависимости: структура молекулы, температура, примеси, присутствие крупных зарядов электронов и ионов. Электропроводимость жидких диэлектриков во многом зависит от наличия влаги и примесей. Проводимость электричества полярных веществ создаётся ещё при помощи жидкости с диссоциированными ионами. При сравнении полярных и неполярных жидкостей, явное преимущество в проводимости имеют первые. Если очистить жидкость от примесей, то это поспособствует уменьшению её проводимых свойств. При росте проводимости и его температуры возникает уменьшение её вязкости, приводящее к увеличению подвижности ионов.
  • Твёрдые диэлектрики. Их электропроводимость обуславливается как перемещение заряженных частиц диэлектрика и примесей. В сильных полях электрического тока выявляется электропроводимость.

Физические свойства диэлектриков

При удельном сопротивлении материала равном меньше 10-5 Ом*м их можно отнести к проводникам. Если больше 108 Ом*м — к диэлектрикам. Возможны случаи, когда удельное сопротивление будет в разы больше сопротивления проводника. В интервале 10-5-108 Ом*м находится полупроводник. Металлический материал — отличный проводник электрического тока.

Из всей таблицы Менделеева только 25 элементов относятся к неметаллам, причём 12 из них, возможно, будут со свойствами полупроводника. Но, разумеется, кроме веществ таблицы, существует ещё множество сплавов, композиций или химических соединений со свойством проводника, полупроводника или диэлектрика. Исходя из этого, трудно провести определённую грань значений различных веществ с их сопротивлениями. Для примера, при пониженном температурном факторе полупроводник станет вести себя подобно диэлектрику.

Применение

Использование не проводящих электрический ток материалов очень обширно, ведь это один из популярно используемых классов электротехнических компонентов. Стало достаточно ясно, что их можно применять благодаря свойствам в активном и пассивном виде.

В пассивном виде свойства диэлектриков используют для применения в электроизоляционном материале.

В активном виде они используются в сегнетоэлектрике, а также в материалах для излучателей лазерной техники.

Основные диэлектрики

К часто встречающимся видам относятся:

  • Стекло.
  • Резина.
  • Нефть.
  • Асфальт.
  • Фарфор.
  • Кварц.
  • Воздух.
  • Алмаз.
  • Чистая вода.
  • Пластмасса.

Что такое диэлектрик жидкий?

Поляризация данного вида происходит в поле электрического тока. Жидкостные токонепроводящие вещества используются в технике для заливки или пропитки материалов. Есть 3 класса жидких диэлектриков:

Нефтяные масла - являются слабовязкими и в основном неполярными. Их часто используют в высоковольтных аппаратурах: высоковольтные воды. - это неполярный диэлектрик. Кабельное масло нашло применение в пропитке изоляционно-бумажных проводов с напряжением на них до 40 кВ, а также покрытий на основе металла с током больше 120 кВ. Масло трансформаторное по сравнению с конденсаторным имеет более чистую структуру. Данный вид диэлектрика получил широкое распространение в производстве, несмотря на большую себестоимость по сравнению с аналоговыми веществами и материалами.

Что такое диэлектрик синтетический? В настоящее время практически везде он запрещён из-за высокой токсичности, так как производится на основе хлорированного углерода. А жидкий диэлектрик, в основе которого кремний органический, является безопасным и экологически чистым. Данный вид не вызывает металлической ржавчины и имеет свойства малой гигроскопичности. Существует разжиженный диэлектрик, содержащий фторорганическое соединение, которое особо популярно из-за своей негорючести, термических свойств и окислительной стабильности.

И последний вид, это растительные масла. Они являются слабо полярными диэлектриками, к ним относятся льняное, касторовое, тунговое, конопляное. Касторовое масло является сильно нагреваемым и применяется в бумажных конденсаторах. Остальные масла - испаряемые. Выпаривание в них обуславливается не естественным испарением, а химической реакцией под названием полимеризация. Активно применяется в эмалях и красках.

Заключение

В статье было подробно рассмотрено, что такое диэлектрик. Были упомянуты различные виды и их свойства. Конечно, чтобы понять всю тонкость их характеристик, придётся более углубленно изучить раздел физики о них.

При появлении в нашей жизни электричества, мало кто знал о его свойствах и параметрах, и в качестве проводников использовали различные материалы, было заметно, что при одной и той же величине напряжения источника тока на потребителе было разное значение напряжения. Было понятно, что на это влияет вид материала применяемого в качестве проводника. Когда ученные занялись вопросом по изучению этой проблемы они пришли к выводу, что в материале носителями заряда являются электроны. И способность проводить электрический ток обосабливается наличием свободных электронов в материале. Было выяснено, что у некоторых материалов этих электронов большое количество, а у других их вообще нет. Таким образом существуют материалы, которые , а некоторые не обладают такой способностью.
Исходя из всего выше сказанного, все материалы поделились на три группы:

  • проводники;
  • полупроводники;
  • диэлектрики;

Каждая из групп нашла широкое применение в электротехнике.

Проводники

Проводниками являются материалы, которые хорошо проводят электрический ток, их применяют для изготовления проводов, кабельной продукции, контактных групп, обмоток, шин, токопроводящих жил и дорожек. Подавляющее большинство электрических устройств и аппаратов выполнена на основе проводниковых материалов. Мало того, скажу, что вся электроэнергетика не могла б существовать не будь этих веществ. В группу проводников входят все металлы, некоторые жидкости и газы.

Так же стоит упомянуть, что среди проводников есть супер проводники, сопротивление которых практически равно нулю, такие материалы очень редки и дороги. И проводники с высоким сопротивлением — вольфрам, молибден, нихром и т.д. Такие материалы используют для изготовления резисторов, нагревательных элементов и спиралей осветительных ламп.

Но львиная доля в электротехнической сфере принадлежит рядовым проводникам: медь, серебро, алюминий, сталь, различные сплавы этих металлов. Эти материалы нашли самое широкое и огромное применение в электротехнике, особенно это касается меди и алюминия, так как они сравнительно дешевы, и их применение в качестве проводников электрического тока наиболее целесообразно. Даже медь ограничена в своем использовании, её применяют в качестве обмоточных проводов, многожильных кабелях, и более ответственных устройствах, еще реже встречаются медные шинопроводы. А вот алюминий считается королем среди проводников электрического тока, пускай он обладает более высоким удельным сопротивлением чем медь, но это компенсируется его весьма низкой стоимостью и устойчивостью к коррозии. Он широко применяется в электроснабжении, в кабельной продукции, в воздушных линиях, шинопроводах, обычных проводах и т.д.

Полупроводники

Полупроводники , что-то среднее между проводниками и полупроводниками. Главной их особенностью является их зависимость проводить электрический ток от внешних условий. Ключевым условием является, наличие различных примесей в материале, которые как раз-таки обеспечивают возможность проводить электрический ток. Так же при определенной компоновку двух полупроводниковых материалов. На основе этих материалов на данный момент, произведено множество полупроводниковых устройств: , светодиоды, транзисторы, семисторы, тиристоры, стабисторы, различные микросхемы. Существует целая наука, посвященная полупроводникам и устройствам на их основе: электронная техника. Все компьютеры, мобильные устройства. Да что там говорить, практически вся наша техника содержит в себе полупроводниковые элементы.

К полупроводниковым материалам относят: кремний, германий, графит, графен, индий и т.д.

Диэлектрики

Ну и последняя группа материалов, это диэлектрики , вещества не способные проводить электрический ток. К таким материалам относят: дерево, бумага, воздух, масло, керамика, стекло, пластмассы, полиэтилен, поливинилхлорид, резина и т.д. Диэлектрики получили широкое применение благодаря своим качествам. Их применяют в качестве изолирующего материала. Они предохраняют соприкосновение двух токоведущих частей, не допускают прямого прикосновения человека с этими частями. Роль диэлектриком в электротехнике не менее важна чем роль проводников, так как обеспечивают стабильную, безопасную работу всех электротехнических и электронных устройств. У всех диэлектриков существует предел, до которого они не способны проводить электрический ток, его называют пробивным напряжением. Это такой показатель, при котором диэлектрик начинает пропускать электрический ток, при этом происходит выделение тепла и разрушение самого диэлектрика. Это значение пробивного напряжения для каждого диэлектрического материала разное и приведено в справочных материалах. Чем он выше, тем лучше, надежней считается диэлектрик.

Параметром, характеризующим способность проводить электрический ток является удельное сопротивление R , единица измерения [ Ом ] и проводимость , величина обратная сопротивлению . Чем выше этот параметр, тем хуже материал проводит электрический ток. У проводников он равен от нескольких десятых, до сотен Ом. У диэлектриков сопротивление достигает десятков миллионов ом.

Все три вида материалов нашли широкое применение в электроэнергетике и электротехнике. А так же тесно взаимосвязаны друг с другом.

Величина, показывающая, во сколько раз увеличивается емкость конденсатора, если воздушную прослойку между пластинами заменить такой же толщины прокладкой из данного материала, называется диэлектрической проницаемостью этого материала. Диэлектрическая проницаемость (диэлектрическая постоянная) для некоторых материалов приведена в табл. 26.

Таблица 26. Диэлектрическая проницаемость некоторых материалов.

Материал

Диэлектрическая проницаемость

Древесина

Диэлектрическая проницаемость

Ель сухая: вдоль волокон

в тангенциальном направлении

в радиальном направлении

Бук сухой: вдоль волокон

в тангенциальном направлении

в радиальном направлении

Данные для древесины показывают заметное различие между диэлектрической проницаемостью вдоль и поперек волокон; в то же время диэлектрическая проницаемость поперек волокон в радиальном и тангенциальном направлении различается мало. Диэлектрическая проницаемость в поле высокой частоты зависит от частоты тока и влажности древесины. С увеличением частоты тока диэлектрическая проницаемость древесины бука вдоль волокон при влажности от 0 до 12% уменьшается, что особенно заметно для влажности 12% (рис. 45). С увеличением влажности древесины бука диэлектрическая проницаемость вдоль волокон увеличивается, что особенно заметно при меньшей частоте тока.

В поле высокой частоты древесина нагревается; причина нагрева - потери на джоулево тепло внутри диэлектрика, происходящие под влиянием переменного электромагнитного поля. На этот нагрев расходуется часть подводимой энергии, величина которой характеризуется тангенсом угла потерь.

Тангенс угла потерь зависит от направления поля в отношении волокон: вдоль волокон он примерно вдвое больше, чем поперек волокон. Поперек волокон в радиальном и тангенциальном направлении тангенс угла потерь мало различается. Тангенс угла диэлектрических потерь, как и диэлектрическая проницаемость, зависит от частоты тока и влажности древесины. Так, для абсолютно сухой древесины бука тангенс угла потерь вдоль волокон с увеличением частоты сначала увеличивается, достигает максимума при частоте 10 7 гц, после чего начинает снова снижаться. В то же время при влажности 12% тангенс угла потерь с увеличением частоты резко падает, достигает минимума при частоте 10 5 гц, затем так же резко увеличивается (рис. 46).

Таблица 27. Максимальная величина тангенса угла потерь для сухой древесины.

С увеличением влажности древесины бука тангенс угла потерь вдоль волокон резко растет при малой (3 х 10 2 гц) и большой (10 9 гц) частоте и почти не меняется при частоте 10 6 -10 7 гц (см. рис. 46).

Путем сравнительного исследования диэлектрических свойств древесины сосны и полученных из нее целлюлозы, лигнина и смолы было установлено, что эти свойства определяются в основном целлюлозой. Нагрев древесины в поле токов высокой частоты находит применение в процессах сушки, пропитки и склеивания.