Использование нечетких множеств. Нечеткие множества и их особенности

ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ НЕЧЕТКИХ МНОЖЕСТВ И ЛИНГВИСТИЧЕСКИХ ПЕРЕМЕННЫХ

1. Понятие и основные характеристики нечеткого множества

Определение 1.1. ПустьX – универсальное множество.Нечетким множеством A на множествеX (нечетким подмножествомA множестваX ) называется совокупность пар

A = {<μ A (x ),x >}, (1.1)

где x X ,μ A (x ) .X называетсяобластью определения нечеткого множестваA , аμ A –функцией принадлежности этого множества. Значение функции принадлежностиμ A (x ) для конкретного элементаx X называетсястепенью принадлежности этого элемента нечеткому множествуA .

Интерпретацией функции принадлежности является субъективная мера того, насколько элемент x X соответствует понятию, смысл которого формализуется нечетким множествомA . При этом значение, равное 1, означает полное (абсолютное) соответствие, значение, равное 0 – полное (абсолютное) несоответствие.

Определение 1.2. Нечеткие множества с дискретной областью определения называютдискретными нечеткими множествами , не-

четкие множества с непрерывной областью определения – непрерыв-

ными нечеткими множествами.

Обычные (четкие) множества можно также рассматривать в нечетком контексте. Функция принадлежности обычного множества может принимать только два значения: 0, если элемент не принадлежит множеству, и 1, если элемент ему принадлежит.

В литературе можно встретить различные формы записи нечетких множеств. Для дискретной области определения X ={x 1 ,x 2 , …,x n } (возможен также случайn = ∞) существуют следующие формы:

A = {, , …, };

A = {μ A (x 1 )/x 1 ,μ A (x 2 )/x 2 , …,μ A (x n )/x n };

A =μ A (x 1 )/x 1 +μ A (x 2 )/x 2 +…+μ A (x n )/x n =∑ μ A (x j ) /x j .

j = 1

где знак интеграла имеет смысл поточечного объединения наX . Кроме того, как для дискретного, так и для непрерывного случаев применяется обобщенная форма записи:

B = {x x ≈ 2} – множество вещественных чисел,приблизительно равных 2, иC = {x x >> 1} – множество вещественных чисел,на-

много бóльших 1. Возможные формы функций принадлежности этих множеств схематически представлены на рис.1.1 и рис.1.2 соответственно.

Рис. 1.1. Функция принадлежности

Рис. 1.2. Функция принадлежности

нечеткого множества чисел,

нечеткого множества чисел,

приблизительно равных 2

намного бóльших 1

В качестве примера дискретного нечеткого множества можно рассмотреть D = {n n ≈ 1} – множество целых чисел,близких к 1,

возможная форма задания которого следующая:

N = {0.2/-3; 0.4/-2; 0.6/-1; 0.8/0; 1/1; 0.8/2; 0.6/3; 0.4/4; 0.2/5} (остальные точки имеют нулевую степень принадлежности).

Конкретный вид функции принадлежности зависит от смысла, вкладываемого в формализуемое понятие в условиях конкретной задачи, и часто имеет субъективную природу. Большинство методов построения функций принадлежности в той или иной мере основано на обработке информации, получаемой экспертным путем.

Примечание 1. Здесь sup (супремум) – точная верхняя грань функции принадлежности. Если множествоX (область определения) является замкнутым, то супремум функции совпадает с ее максимумом.

Определение 1.5. Еслиh A = 1, то нечеткое множествоA называ-

ется нормальным, иначе (hA < 1) – субнормальным.

Определение 1.6. Носителем нечеткого множестваA называется множество

элементы области определения, хоть в какой-то степени соответствующие формализуемому понятию.

Примечание 2. Не следует путать обозначения sup и Supp. Первое является сокращением отsupremum , второе – отsupport .

Определение 1.7. Множеством уровняα (α -срезом) нечеткого

Ядро нечеткого множества, тем самым, содержит все элементы области определения, полностью соответствующие формализуемому понятию.

откуда следует, что элемент, принадлежащий множеству уровня α , принадлежит также всем множествам меньших уровнейβ ≤α .

Определение 1.9. ПустьA иB – нечеткие множества на множествеX с функциями принадлежностиμ A иμ B соответственно. Гово-

рят, что Aявляется нечетким подмножеством B(B включает в себя

A ), если выполнено следующее условие:

Среди нечетких множеств с числовой областью определения выделяют также класс нечетких чисел инечетких интервалов . Для определения этого класса вводится понятие выпуклости нечетких множеств.

Определение 1.11. Нечеткое подмножествоA вещественной оси называетсявыпуклым , если выполняется следующее условие:

На рис. 1.3 показаны примеры выпуклого (слева) и невыпуклого (справа) нечетких множеств.

Рис. 1.3. К определению выпуклости нечеткого множества

Основные понятия теории нечетких множеств

Определение 1.12. Нечетким интерваломназывается выпуклое нормальное нечеткое множество на числовой области определения, имеющее непрерывную функцию принадлежности и непустое ядро. Нечетким числомназывается нечеткий интервал, ядро которого содержит в точности один элемент.

Для нечетких интервалов и чисел существует теорема представления, согласно которой нечеткое подмножество A вещественной оси является нечетким интервалом тогда и только тогда, когда его функция принадлежности представима в виде:

LA (x), a0 ≤ x< a1 ,

1, a1 ≤ x≤ b1

(x )=

(x), b< u≤ b

Функции L A иR A называются соответственно левой и правой ветвью функции принадлежности нечеткого числа. Эти функции непрерывны, при этомL A на отрезке возрастает отL A (a 0 ) = 0 до

L A (a 1 ) = 1, аR A на отрезке убывает отR A (b 1 ) = 1 доR A (b 0 ) = 0 (рис. 1.4).

Рис. 1.4. К определению нечеткого интервала

Определение 1.13. ПустьA = {A 1 ,A 2 ,… ,A n } – семейство нечетких множеств, заданных на области определенияX .Ã называетсянечетким разбиением X с параметромα (0 <α ≤ 1), если все множестваA j являются выпуклыми и нормальными, и выполняется условие:

x X j {1,… ,n }μ A j (x )≥ α

(т.е. любой элемент области определения принадлежит хотя бы одному из множеств семейства Ã со степенью, не меньшейα – рис. 1.5).

Аннотация: В лекции представлены методы моделирования экономических задач с использованием нечетких множеств в среде Mathcad. Введены основные понятия теории нечетких множеств. На примерах показаны операции над множествами, расчет свойств. Рассмотрены оригинальные задачи, в которых применен нечетко-множественный подход в процессе принятия решения. Техника моделирования реализована с помощью матриц программы Mathcad.

Цель лекции. Познакомить с нечеткими множествами. Научить ставить задачу для построения нечетко-множественной модели. Показать, как строить нечеткие множества и производить действия над ними в Mathcad. Представить методы решения нечетко-множественной модели в процессе решения задач.

6.1 Нечетко-множественное моделирование

При моделировании широкого класса реальных объектов возникают необходимость принимать решения в условиях неполной нечеткой информации. Современным перспективным направлением моделирования различного вида неопределенностей является теория нечетких множеств. В рамках теории нечетких множеств разработаны методы формализации и моделирования рассуждений человека, таких понятий как "более или менее высокий уровень инфляции", "устойчивое положение на рынке", "более ценный" и т.д.

Впервые понятие нечетких множеств предложил американский ученый Л.А.Заде (1965 г). Его идеи послужили развитию нечеткой логики. В отличие от стандартной логики с двумя бинарными состояниями (1/0, Да/Нет, Истина/Ложь), нечеткая логика позволяет определять промежуточные значения между стандартными оценками. Примерами таких оценок являются: "скорее да, чем нет", "наверное да", "немного вправо", "резко влево" в отличие от стандартных: "вправо" или "влево", "да". В теории нечетких множеств введены нечеткие числа как нечеткие подмножества специализированного вида, соответствующих высказываниям типа " значение переменной примерно равно а". В качестве примера рассмотрим треугольное нечеткое число , где выделяются три точки: минимально возможное, наиболее ожидаемое и максимально возможное значение фактора. Треугольные числа – это самый часто используемый на практике тип нечетких чисел, причем, чаще всего их используют в качестве прогнозных значений параметра. Например, ожидаемое значение инфляции на следующий год. Пусть наиболее вероятное значение – 10%, минимально возможное – 5%, а максимально возможное – 20%, тогда все эти значения могут быть сведены к виду нечеткого подмножества или нечеткого числа A: А: (5, 10, 20)

С введением нечетких чисел оказалось возможным прогнозировать будущие значения параметров, которые меняются в установленном расчетном диапазоне. Вводится набор операций над нечеткими числами, которые сводятся к алгебраическим операциям с обычными числами при задании определенного интервала достоверности (уровня принадлежности). Применение нечетких чисел позволяет задавать расчетный коридор значений прогнозируемых параметров. Тогда ожидаемый эффект оценивается экспертом также как нечеткое число со своим расчетным разбросом (степенью нечеткости).

Нечеткая логика , как модель человеческих мыслительных процессов, встроена в системы искусственного интеллекта и в автоматизированные средства поддержки принятия решений (в частности, в системы управления технологическими процессами).

6.2 Основные понятия теории нечетких множеств

Множество - неопределяемое понятие математики. Георг Кантор (1845 – 1918) – немецкий математик, чьи работы лежат в основе современной теории множеств, дает такое понятие: "…множество - это многое, мыслимое как единое".

Множество, включающее в себя все объекты, рассматриваемые в задаче, называют универсальным множеством. Универсальное множество принято обозначать буквой . Универсальное множество является максимальным множеством в том смысле, что все объекты являются его элементами, т.е. утверждение в рамках задачи всегда истинно. Минимальным множеством является пустое множество – , которое не содержит ни одного элемента. Все остальные множества в рассматриваемой задаче являются подмножествами множества . Напомним, что множество называют подмножеством множества , если все элементы являются также элементами . Задание множества - это правило, позволяющее относительно любого элемента универсального множества однозначно установить, принадлежит множеству или не принадлежит. Другими словами, это правило, позволяющее определить, какое из двух высказываний, или , является истинным, а какое ложным. Одним из способов задания множеств является задание с помощью характеристической функции.

Характеристической функцией множества называют функцию , заданную на универсальном множестве и принимающую значение единица на тех элементах множества , которые принадлежат , и значение нуль на тех элементах, которые не принадлежат :

(6.1)

В качестве примера рассмотрим универсальное множество и два его подмножества: - множество чисел, меньших 7, и - множество чисел, немного меньших 7. Характеристическая функция множества имеет вид

(6.2)

Множество в данном примере является обычным множеством.

Записать характеристическую функцию множества , используя лишь 0 и 1, невозможно. Например, включать ли в числа 1 и 2? "намного" или "ненамного" число 3 меньше 7? Ответы на эти и подобные им вопросы могут быть получены в зависимости от условий задачи, в которой используются множества и , а также от субъективного взгляда того, кто решает эту задачу. Множество называется нечетким множеством. При составлении характеристической функции нечеткого множества решающий задачу (эксперт) может высказать свое мнение относительно того, в какой степени каждое из чисел множества принадлежит множеству . В качестве степени принадлежности можно выбрать любое число с отрезка . При этом означает полную уверенность эксперта в том, что - столь же полную уверенность, что говорит о том, что эксперт затрудняется в ответе на вопрос, принадлежит ли множеству или не принадлежит. Если , то эксперт склонен отнести к множеству , если же , то не склонен.

Функцией принадлежности нечеткого множества называют функцию , которая

Такую функцию называют функцией принадлежности нечеткому множеству . - Максимальное значение функции принадлежности , присутствующее в множестве - верхняя грань - называется супремум. Функция принадлежности отражает субъективный взгляд специалиста на задачу, вносит индивидуальность в ее решение.

Характеристическую функцию обычного множества можно рассматривать как функцию принадлежности этому множеству, но в отличие от нечеткого множества , принимает лишь два значения: 0 или 1.

Нечетким множеством называют пару , где - универсальное множество , - функция принадлежности нечеткого множества .

Несущим множеством или носителем нечеткого множества называют подмножество множества , состоящее из элементов, на которых .

Точкой перехода нечеткого множества называют элемент множества , на котором .

В рассматриваемом примере, где , - множество чисел, меньших 7, - множество чисел, немного меньших 7, субъективно выбираем значения для множества , которые будут составлять функцию принадлежности . В таблице 6.1 представлены функции принадлежности и для и .

Таблица 6.1.
1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 0 0 0 0
0 0 0,5 0,6 0,8 0,9 0 0 0 0

Часто используется более компактная запись конечных или счетных нечетких множеств. Так, вместо приведенного выше табличного представления подмножеств и , эти подмножества можно записать следующим образом.

По традиции четкие множества принято иллюстрировать кругами с резко оконтуренными границами. Нечеткие же множества – это круги, образованные отдельными точками: в центре круга точек много, а ближе к периферии их густота уменьшается до нуля; круг как бы растушевывается на краях. Такие «нечеткие множества» можно увидеть... в тире – на стене, куда вывешиваются мишени. Следы от пуль образуют случайные множества, математика которых известна. Оказалось, что для оперирования нечеткими множествами годится уже давно разработанный аппарат случайных множеств...

Понятие нечеткого множества – попытка математической формализации нечеткой информации с целью ее использования при построении математических моделей сложных систем. В основе этого понятия лежит представление о том, что составляющие данное множество элементы, обладающие общим свойством, могут обладать этим свойством в различной степени и, следовательно, принадлежать данному множеству с различной степенью.

Один из простейших способов математического описания нечеткого множества – характеризация степени принадлежности элемента множеству числом, например, из интервала . Пусть Х – некоторое множество элементов. В дальнейшем мы будем рассматривать подмножества этого множества.

Нечетким множеством А в Х называется совокупность пар вида (x, m A (x) ), где xÎX, а m А – функция x ® , называемая функцией принадлежности (membership function) нечеткого множества А . Значение m A (x) этой функции для конкретного x называется степенью принадлежности этого элемента нечеткому множеству А .

Как видно из этого определения, нечеткое множество вполне описывается своей функцией принадлежности, поэтому мы часто будем использовать эту функцию как обозначение нечеткого множества.

Обычные множества составляют подкласс класса нечетких множеств. Действительно, функцией принадлежности обычного множества B ÌX является его характеристическая функция: m В (x) =1, если x ÎB и m В (x) =0, если x ÏB. Тогда в соответствии с определением нечеткого множества обычное множество В можно также определить как совокупность пар вида (x, m В (x) ). Таким образом, нечеткое множество представляет собой более широкое понятие, чем обычное множество, в том смысле, что функция принадлежности нечеткого множества может быть, вообще говоря, произвольной функцией или даже произвольным отображением.

Мы говорим нечеткое множество . А множество чего? Если быть последовательным, то приходится констатировать, что элементом нечеткого множества оказывается... новое нечеткое множество новых нечетких множеств и т.д. Обратимся к классическому примеру – к куче зерна . Элементом этого нечеткого множества будет миллион зерен , например. Но миллион зерен это никакой не четкий элемент , а новое нечеткое множество . Ведь считая зерна (вручную или автоматически), немудрено и ошибиться – принять за миллион 999 997 зерен, например. Тут можно сказать, что элемент 999 997 имеет значение функции принадлежности к множеству “миллион”, равное 0.999997. Кроме того, само зерно – это опять же не элемент, а новое нечеткое множество: есть полноценное зерно, а есть два сросшихся зерна, недоразвитое зерно или просто шелуха. Считая зерна, человек должен какие-то отбраковывать, принимать два зерна за одно, а в другом случае одно зерно за два. Нечеткое множество не так-то просто запихнуть в цифровой компьютер с классическими языками: элементами массива (вектора) должны быть новые массивы массивов (вложенные вектора и матрицы, если говорить о Mathcad ). Классическая математика четких множеств (теория чисел, арифметика и т.д.) – это крюк, с помощью которого человек разумный фиксирует (детерминирует) себя в скользком и нечетком окружающем мире. А крюк, как известно, – инструмент довольно грубый, нередко портящий то, за что им цепляются. Термины, отображающие нечеткие множества – «много», «слегка», «чуть-чуть» и т.д. и т.п., – трудно «запихнуть» в компьютер еще и потому, что они контекстно зависимы . Одно дело сказать «Дай мне немного семечек» человеку, у которого стакан семечек, а другое дело – человеку, сидящему за рулем грузовика с семечками.



Нечеткое подмножество А множества Х характеризуется функцией принадлежности m A : Х→ , которая ставит в соответствие каждому элементу x ÎX число m A (x) из интервала , характеризующее степень принадлежности элемента х подмножеству А . Причем 0 и 1 представляют соответственно низшую и высшую степень принадлежности элемента к определенному подмножеству.

Дадим основные определения.

· Величина sup m A (x ) называется высотой нечеткого множества A . Нечеткое множество A нормально , если его высота равна 1 , т.е. верхняя граница его функции принадлежности равна 1. При sup m A (x )<1 нечеткое множество называется субнормальным.

· Нечеткое множество называется пустым , если его функция принадлежности равна нулю на всем множестве Х , т.е. m 0 (x)= 0 " x ÎX .

Нечеткое множество пусто , если " x ÎE m A (x )=0 . Непустое субнормальное множество можно нормализовать по формуле

(рис. 1).

Рис.1. Нормализация нечеткого множества с функцией принадлежности. .

Носителем нечеткого множества А (обозначение supp A ) с функцией принадлежности m A (x) называется множество вида suppA ={x|x ÎX, m A (x)> 0}. Для практических приложений носители нечетких множеств всегда ограничены. Так, носителем нечеткого множества допустимых режимов для системы может служить четкое подмножество (интервал), для которого степень допустимости не равна нулю (рис.2).

Рис. 3. Ядро, носитель и α- сечение нечеткого множества

Значение α называют α -уровнем . Носитель (ядро) можно рассматривать как сечение нечеткого множества на нулевом (единичном) α -уровне.

Рис. 3 иллюстрирует определения носителя, ядра, α- сечения и α- уровня нечеткого множества.

Под четким множеством или просто множеством, обычно понимают некоторую совокупность определенных и различимых между собой объектов нашей интуиции и интеллекта мыслимую как единое целое. В данном высказывании отметим следующий момент: множество A есть совокупность определенных объектов. Это означает, что относительно любого х можно однозначно сказать, принадлежит ли он множеству A или нет.

Условие принадлежности элемента х множеству A можно записать, используя понятие функции принадлежности m(х), a именно

Следовательно, множество можно задать в виде совокупности пар: элемента и значения его функции принадлежности

A = {(х|m(х)} (1)

Пример 1. Кафедра предлагает пять элективных курсов x 1 , x 2 , x 3 , x 4 и x 5 . В соответствии с программой необходимо сд три курса. Студент выбрал для изучения курсы x 2 , х 3 и x 5 . Запишем этот факт с помощью функции принадлежности

где первый элемент каждой пары означает название курса, а второй - описывает факт принадлежности его к подмножеству выбранному данным студентом ("да" или "нет").

Примеров четких множеств можно привести бесконечно много: список студентов учебной группы, множество домов на данной улице города, множество молекул в капле воды и т.д.

Между тем, огромный объем человеческих знаний и связей с внешним миром включают такие понятия, которые нельзя назвать множествами в смысле (1). Их следует скорее считать классами с нечеткими границами, когда переход от принадлежности одному классу к принадлежности другому происходит постепенно, не резко. Тем самым предполагается, что логика человеческого рассуждения основывается не на классической двузначной логике, а на логике с нечеткими значениями истинности, - нечеткими связками и нечеткими правилами вывода . Вот несколько тому примеров: объем статьи примерно 12 страниц, большая часть территории, подавляющее превосходство в игре, группа из нескольких человек.

Остановимся на последнем примере. Ясно, что группа людей из 3, 5, или 9 человек принадлежит к понятию: "группа людей, состоящее из нескольких человек". Однако для них будет неодинаковой степень уверенности в принадлежности к этому понятию, которая зависит от различных, в том числе и от субъективных, обстоятельств. Формализовать эти обстоятельства можно, если предположить, что функция принадлежности может принимать любые значения на отрезке . Причем крайние значения предписываются в том случае, если элемент безусловно не принадлежит или однозначно принадлежит данному понятию. В частности, множество людей A из нескольких человек может быть описано выражением вида:


A = {(1½0), 2½0.1), 3½0.4), (4½1), (5½1), (6½1), (7½0.8), (8½0.3), (9½0.1), (a½0)

Приведем определение нечеткого множества, данное основателем теории нечетких множеств Л.А.Заде. Пусть х есть элемент конкретного универсального (так называемого базового) множества E. Тогда нечетким (размытым) множеством A заданным на базовом множестве E называют множество упорядоченных пар

A = {xúm A ((x)}, "x Î E,

где m A (х) - функция принадлежности , отображающая множество E в единичный интервал , т.е. m A (х): E ® .

Очевидно, что если область значений m A (х) ограничить двумя числами 0 и 1, то данное определение будет совпадать с понятием обычного (четкого) множества.

Функция принадлежности нечеткого множества может задаваться не только перечислением всех ее значений для каждого элемента базового множества, но и в виде аналитического выражения. Например, множество вещественных чисел Z очень близких к числу 2, может быть задано так:

Z = {xúm Z (x)}, "x Î R,

где m Z (x) = .

Множество же вещественных чисел Y, достаточно близких к числу 2, есть

Y = {xúm Y (x)}, "x Î R,

M Y Z (x) = .

Графическое изображение этих двух функций принадлежности дано на рис.3.9.

Определение. Нечеткое множество A называется нечетким подмножеством B , если и A и B заданы на одном и том же базовом множестве E и "x Î E: m A (x) £ m B (x), что обозначают как A Ì B .

Условия равенства двух нечетких множеств A и B , заданных на одном и том же базовом множестве E, имеет следующий вид

A = B или "х Î E: m A (x) = m B (x).

Замечание . Между разными по своей сути понятиями "нечеткости" и "вероятности" чувствуется некоторое сходство. Во-первых, эти понятия используются в задачах, где встречается неопределенность либо неточность наших знаний или же принципиальная невозможность точных предсказаний результатов решений. Во-вторых, интервалы изменения и вероятности и функции принадлежности совпадают:

и P Î и m A (x) Î .

Вместе с тем вероятность является характеристикой объективной и выводы, полученные на основе применения теории вероятностей, в принципе могут быть проверены на опыте.

Функция же принадлежности определяется субъективно, хотя обычно она отражает реальные соотношения между рассматриваемыми объектами. Об эффективности применения методов, основанных на теории нечетких множеств, обычно судят после получения конкретных результатов.

Если в теории вероятностей предполагается, что вероятность достоверного события равна единице, т.е.

то соответствующая сумма всех значений функции принадлежности может принимать любые значения от 0 до ¥.

Итак, чтобы задать нечеткое множество A необходимо определить базовое множество элементов E, и сформировать функцию принадлежности m A (х), являющуюся субъективной мерой уверенности, с которой каждый элемент x из E принадлежит данному нечеткому множеству A .

Современную науку и технику невозможно представить без широкого применения математического моделирования, поскольку далеко не всегда могут быть поставлены натурные эксперименты, зачастую они слишком дороги и требуют значительного времени, во многих случаях они связаны с риском и большими материальными или моральными издержками. Сущность математического моделирования состоит в замене реального объекта его «образом» – математической моделью – и дальнейшим изучением модели с помощью реализуемых на компьютерах вычислительно-логических алгоритмов. Важнейшим требованием, предъявляемым к математической модели, является условие ее адекватность (правильного соответствия) изучаемому реальному объекту относительно выбранной системы его свойств. Под этим, прежде всего, понимается правильное количественное описание рассматриваемых свойств объекта. Построение таких количественных моделей возможно для простых систем.

Иначе дело обстоит со сложными системами. Для получения существенных выводов о поведении сложных систем необходимо отказаться от высокой точности и строгости при построении модели и привлекать при ее построении подходы, которые являются приближенными по своей природе. Один из таких подходов связан с введением лингвистических переменных, описывающих нечеткое отражение человеком окружающего мира. Для того чтобы лингвистическая переменная стала полноправным математическим объектом, было введено понятие нечеткого множества.

В теории четких множеств была рассмотрена характеристическая функция четкого множества в универсальном пространстве , равная 1, если элемент удовлетворяет свойству и, следовательно, принадлежит множеству , и равная 0 в противном случае. Таким образом, речь шла о четком мире (булевой алгебре), в котором наличие или отсутствие заданного свойства определяется значениями 0 или 1 («нет» или «да»).

Однако в мире нельзя все разделить только на белое и черное, истину и лож. Так, еще Будда видел мир, заполненный противоречиями, вещи могли быть истинны в некоторой степени и, в некоторой степени, ложны в то же самое время. Платон положил основу того, что станет нечеткой логикой, указывая, что имелась третья область (вне Истины и Лжи) где эти противоречия относительны.

Профессор Калифорнийского университета Заде опубликовал в 1965 статью «Нечеткие множества», в которой он расширил двузначную оценку 0 или 1 до неограниченной многозначной оценки выше 0 и ниже 1 в замкнутом интервале и впервые ввел понятие «нечеткого множества». Вместо термина «характеристическая функция» Заде использовал термин «функция принадлежности». Нечеткое множество (оставлено то же обозначение, что и для четкого множества) в универсальном пространстве
через функцию принадлежности (то же обозначение, что и для характеристической функции) определяется следующим образом

Функция принадлежности чаще всего интерпретируется следующим образом: величина означает субъективную оценку степени принадлежности элемента нечеткому множеству , например, означает, что на 80% принадлежит . Следовательно, должны существовать «моя функция принадлежности», «твоя функция принадлежности», «функция принадлежности специалиста» и т. п. Графическое представление нечеткого множества диаграмма Венна представляет собой концентрические окружности рис. 1. Функция принадлежности нечеткого множества имеет колоколообразный график в отличие от прямоугольного характеристической функции четкого множества рис. 1.

Следует обратить внимание на связь четкого и нечеткого множеств. Два значения {0,1} характеристической функции принадлежат замкнутому интервалу значений функции принадлежности. Следовательно, четкое множество является частным случаем нечеткого множества, а понятие нечеткого множества является расширенным понятием, охватывающим и понятие четкого множества. Другими словами четкое множество является и нечетким множеством.

Нечеткое множество строго определяется с помощью функции принадлежности и не содержит какой-либо нечеткости. Дело в том, что нечеткое множество строго определяется с помощью оценочных значений замкнутого интервала , а это и есть функция принадлежности. В случае если универсальное множество состоит из дискретного конечного набора элементов, то исходя из практических соображений, указывают значение функции принадлежности и соответствующий элемент, используя знаки разделения / и +. Например, пусть универсальное множество состоит из целых чисел меньших 10, тогда нечеткое множество «малые числа» можно представить в виде

A=1/0 + 1/1 + 0,8/2 + 0,5/3 + 0,1/4

Здесь, например, 0,8/2 означает . Знак + обозначает объединение. При написании нечеткого множества в приведенном выше виде опускаются элементы универсального множества со значениями функции принадлежности, равными нулю. Обычно записывают все элементы универсального множества с соответствующими значениями функции принадлежности. Используется запись нечеткого множества, как в теории вероятностей,

Определение. В общем случае нечеткое подмножество универсального множества определяется как множество упорядоченных пар