Реликтовое излучение (физика). Фоновое реликтовое излучение

Реликтовое излучение

Внегалактическое микроволновое фоновое излучение приходится на диапазон частот от 500 МГц до 500 ГГц, что соответствует длинам волн от 60 см до 0,6 мм. Это фоновое излучение несет информацию о процессах, происходивших во Вселенной до образования галактик, квазаров и др. объектов. Это излучение, названное реликтовым, было обнаружено в 1965 году, хотя оно было предсказано еще в 40-х годах Георгием Гамовым и исследовалось астрономами в течение десятилетий.

В расширяющейся Вселенной средняя плотность вещества зависит от времени – в прошлом она была больше. Однако при расширении изменяется не только плотность, но и тепловая энергия вещества, значит на ранней стадии расширения Вселенная была не только плотной, но и горячей. Как следствие, в наше время должно наблюдаться остаточное излучение, спектр которого такой же, как спектр абсолютно твердого тела, и это излучение должно быть в высшей степени изотропно. В 1964 году А.А.Пензиас и Р.Вилсон, испытывая чувствительную радиоантенну, обнаружили очень слабое фоновое микроволновое излучение, от которого никаким образом не могли избавиться. Его температура оказалась равной 2,73 К, что близко к предсказанной величине. Из экспериментов по исследованию изотропии было показано, что источник микроволнового фонового излучения не может находиться внутри Галактики, так как тогда должна была бы наблюдаться концентрация излучения к центру Галактики. Источник излучения не мог находиться и внутри Солнечной системы, т.к. наблюдалась бы суточная вариация интенсивности излучения. В силу этого был сделан вывод о внегалактической природе этого фонового излучения. Тем самым гипотеза горячей Вселенной получила наблюдательное основание.

Для понимания природы реликтового излучения необходимо обратиться к процессам, имевшим место на ранних стадиях расширения Вселенной. Рассмотрим, как менялись физические условия во Вселенной в процессе расширения.

Сейчас каждый кубический сантиметр пространства содержит около 500 реликтовых фотонов, а вещества на этот объем приходится гораздо меньше. Поскольку отношение числа фотонов к числу барионов в процессе расширения сохраняется, но энергия фотонов в ходе расширения Вселенной со временем уменьшается из-за красного смещения, можно сделать вывод, что когда-то в прошлом плотность энергии излучения была больше плотности энергии частиц вещества. Это время называется радиационной стадией в эволюции Вселенной. Радиационная стадия характеризовалась равенством температуры вещества и излучения. В те времена излучение полностью определяло характер расширения Вселенной. Примерно через миллион лет после начала расширения Вселенной температура понизилась до нескольких тысяч градусов и произошла рекомбинация электронов, бывших до этого свободными частицами, с протонами и ядрами гелия, т.е. образование атомов. Вселенная стала прозрачной для излучения, и именно это излучение мы сейчас улавливаем и называем реликтовым. Правда, с того времени из-за расширения Вселенной фотоны уменьшили свою энергию примерно в 100 раз. Образно говоря, кванты реликтового излучения «запечатлели» эпоху рекомбинации и несут прямую информацию о далеком прошлом.

После рекомбинации вещество впервые начало эволюционировать самостоятельно, независимо от излучения, и в нем начали появляться уплотнения – зародыши будущих галактик и их скоплений. Вот почему так важны для ученых эксперименты по изучению свойств реликтового излучения – его спектра и пространственных флуктуаций. Их усилия не пропали даром: в начале 90-х гг. российский космический эксперимент «Реликт-2» и американский «Кобе» обнаружили различия температуры реликтового излучения соседних участков неба, причем величина отклонения от средней температуры составляет всего около тысячной доли процента. Эти вариации температуры несут информацию об отклонении плотности вещества от среднего значения в эпоху рекомбинации. После рекомбинации вещество во Вселенной было распределено почти равномерно, а там, где плотность была хоть немного выше средней, сильнее было притяжение. Именно вариации плотности впоследствии привели к образованию наблюдаемых во Вселенной крупномасштабных структур, скоплений галактик и отдельных галактик. По современным представлениям, первые галактики должны были образоваться в эпоху, которая соответствует красным смещениям от 4 до 8.

А есть ли шанс заглянуть еще дальше в эпоху, предшествующую рекомбинации? До момента рекомбинации именно давление электромагнитного излучения в основном создавало гравитационное поле, тормозившее расширение Вселенной. На этой стадии температура менялась обратно пропорционально квадратному корню из времени, прошедшего с начала расширения. Рассмотрим последовательно различные стадии расширения ранней Вселенной.

При температуре примерно 1013 Кельвинов во Вселенной рождались и аннигилировали пары различных частиц и античастиц: протоны, нейтроны, мезоны, электроны, нейтрино и др. При понижении температуры до 5*1012 К почти все протоны и нейтроны аннигилировали, превратившись в кванты излучения; остались только те, для которых «не хватило» античастиц. Именно из этих «избыточных» протонов и нейтронов в основном состоит вещество современной наблюдаемой Вселенной.

При Т= 2*1010 К с веществом перестали взаимодействовать всепроникающие нейтрино – от того момента должен был остаться «реликтовый фон нейтрино», обнаружить который, возможно, удастся в ходе будущих нейтринных экспериментов.

Все, о чем сейчас говорилось, происходило при сверхвысоких температурах в первую секунду после начала расширения Вселенной. Спустя несколько секунд после момента «рождения» Вселенной началась эпоха первичного нуклеосинтеза, когда образовывались ядра дейтерия, гелия, лития и бериллия. Она продолжалась приблизительно три минуты, а ее основным результатом стало образование ядер гелия (25% от массы всего вещества Вселенной). Остальные элементы, более тяжелые, чем гелий, составили ничтожно малую часть вещества – около 0,01%.

После эпохи нуклеосинтеза и до эпохи рекомбинации (примерно 106 лет) происходило спокойное расширение и остывание Вселенной, а затем – спустя сотни миллионов лет после начала – появились первые галактики и звезды.

В последние десятилетия развитие космологии и физики элементарных частиц позволило теоретически рассмотреть и самый начальный, «сверхплотный» период расширения Вселенной. Оказывается, в самом начале расширения, когда температура была невероятно высока (больше 1028 К), Вселенная могла находиться в особом состоянии, при котором она расширялась с ускорением, а энергия в единице объема оставалась постоянной. Такую стадию расширения назвали инфляционной. Подобное состояние материи возможно при одном условии – отрицательном давлении. Стадия сверхбыстрого инфляционного расширения охватывала крошечный промежуток времени: она завершилась к моменту примерно 10–36 с. Считается, что настоящее «рождение» элементарных частиц материи в том виде, в каком мы их знаем сейчас, произошло как раз по окончании инфляционной стадии и было вызвано распадом гипотетического поля. После этого расширение Вселенной продолжалось уже по инерции.

Гипотеза инфляционной Вселенной отвечает на целый ряд важных вопросов космологии, которые до недавнего времени считались необъяснимыми парадоксами, в частности на вопрос о причине расширения Вселенной. Если в своей истории Вселенная действительно прошла через эпоху, когда существовало большое отрицательное давление, то гравитация неизбежно должна была вызвать не притяжение, а взаимное отталкивание материальных частиц. И значит, Вселенная начала быстро, взрывоподобно расширяться. Конечно, модель инфляционной Вселенной лишь гипотеза: даже косвенная проверка ее положений требует таких приборов, которые в настоящее время просто еще не созданы. Однако идея ускоренного расширения Вселенной на самой ранней стадии ее эволюции прочно вошла в современную космологию.

Говоря о ранней Вселенной, мы от самых больших космических масштабов вдруг переносимся в область микромира, которая описывается законами квантовой механики. Физика элементарных частиц и сверхвысоких энергий тесно переплетается в космологии с физикой гигантских астрономических систем. Самое большое и самое малое смыкаются здесь друг с другом. В этом и состоит удивительная красота нашего мира, полного неожиданных взаимосвязей и глубокого единства.

Проявления жизни на Земле чрезвычайно многообразны. Жизнь на Земле представлена ядерными и доядерными, одно- и многоклеточными существами; многоклеточные, в свою очередь, представлены грибами, растениями и животными. Любое из этих царств объединяет разнообразные типы, классы, отряды, семейства, роды, виды, популяции и индивидуумы.

Во всем, казалось бы, бесконечном многообразии живого можно выделить несколько разных уровней организации живого: молекулярный, клеточный, тканевый, органный, онтогенетический, популяционный, видовой, биогеоценотический, биосферный. Перечисленные уровни выделены по удобству изучения. Если же попытаться выделить основные уровни, отражающие не столько уровни изучения, сколько уровни организации жизни на Земле, то основными критериями такого выделения должны быть признаны наличие специфических элементарных, дискретных структур и элементарных явлений. При этом подходе оказывается необходимым и достаточным выделять молекулярно-генетический, онтогенетический, популяционно-видовой и биогеоценотический уровни (Н.В. Тимофеев-Ресовский и др.).

Молекулярно-генетический уровень. При изучении этого уровня достигнута, видимо, наибольшая ясность в определении основных понятий, а также в выявлении элементарных структур и явлений. Развитие хромосомной теории наследственности, анализ мутационного процесса, изучение строения хромосом, фагов и вирусов вскрыли основные черты организации элементарных генетических структур и связанных с ними явлений. Известно, что основные структуры на этом уровне (коды наследственной информации, передаваемой от поколения к поколению) представляют собой ДНК, дифференцированную по длине на элементы кода – триплеты азотистых оснований, образующих гены.

Гены на этом уровне организации жизни представляют элементарные единицы. Основными элементарными явлениями, связанными с генами, можно считать их локальные структурные изменения (мутации) и передачу хранящейся в них информации внутриклеточным управляющим системам.

Конвариантная редупликация происходит по матричному принципу путем разрыва водородных связей двойной спирали ДНК с участием фермента ДНК-полимеразы. Затем каждая из нитей строит себе соответствующую нить, после чего новые нити комплементарно соединяются между собой.Пиримидиновые и пуриновые основания комплементарных нитей скрепляются водородными связями между собой ДНК-полимеразой. Этот процесс осуществляется очень быстро. Так, на самосборку ДНК кишечной палочки (Escherichia coli), состоящей примерно из 40 тыс. пар нуклеотидов, требуется всего 100 с. Генетическая информация переносится из ядра молекулами иРНК в цитоплазму к рибосомам и там участвует в синтезе белка. Белок, содержащий тысячи аминокислот, в живой клетке синтезируется за 5–6 мин, а у бактерий быстрее.

Основные управляющие системы как при конвариантной редупликации, так и при внутриклеточной передаче информации используют «матричный принцип», т.е. являются матрицами, рядом с которыми строятся соответствующие специфические макромолекулы. В настоящее время успешно дешифруется заложенный в структуре нуклеиновых кислот код, служащий матрицей при синтезе специфических белковых структур в клетках. Редупликация, основанная на матричном копировании, сохраняет не только генетическую норму, но и отклонения от нее, т.е. мутации (основа процесса эволюции). Достаточно точное знание молекулярно-генетического уровня – необходимая предпосылка для ясного понимания жизненных явлений, происходящих на всех остальных уровнях организации жизни.

Одна из составляющих общего фона косм. эл. магн. излучения. Р. и. равномерно распределено по небесной сфере и по интенсивности соответствует тепловому излучению абсолютно чёрного I тела при темп ре ок. 3 К, обнаружено амер. учёными А. Пензиасом и … Физическая энциклопедия

РЕЛИКТОВОЕ излучение, заполняющее Вселенную космическое излучение, спектр которого близок к спектру абсолютно черного тела с температурой около 3 К. Наблюдается на волнах от нескольких мм до десятков см, практически изотропно. Происхождение… … Современная энциклопедия

Фоновое космическое излучение, спектр которого близок к спектру абсолютно черного тела с температурой ок. 3 К. Наблюдается на волнах от нескольких мм до десятков см, практически изотропно. Происхождение реликтового излучения связывают с эволюцией … Большой Энциклопедический словарь

реликтовое излучение - Фоновое космическое радиоизлучение, которое образовалось на ранних стадиях развития Вселенной. [ГОСТ 25645.103 84] Тематики условия физические косм. пространства EN relict radiation … Справочник технического переводчика

Фоновое космическое излучение, спектр которого близок к спектру абсолютно чёрного тела с температурой около 3°K. Наблюдается на волнах от нескольких миллиметров до десятков сантиметров, практически изотропно. Происхождение реликтового излучения… … Энциклопедический словарь

Электромагнитное излучение, заполняющее наблюдаемую часть Вселенной (См. Вселенная). Р. и. существовало уже на ранних стадиях расширения Вселенной и играло важную роль в её эволюции; является уникальным источником информации о её прошлом … Большая советская энциклопедия

Реликтовое излучение - (от лат. relicium остаток) космическое электромагнитное излучение, связанное с эволюцией Вселенной, начавшей свое развитие после «большого взрыва»; фоновое космическое излучение, спектр которого близок к спектру абсолютно черного тела с… … Начала современного естествознания

Фоновое космич. излучение, спектр к рого близок к спектру абсолютно чёрного тела с темп рой ок. 3 К. Наблюдается на волнах от неск. мм до десятков см, практически изотропно. Происхождение Р. и. связывают с эволюцией Вселенной, к рая в прошлом… … Естествознание. Энциклопедический словарь

Тепловое фоновое космическое излучение, спектр которого близок к спектру абсолютно черного тела с температурой 2,7 К. Происхождение Р. и. связано с эволюцией Вселенной, которая в далёком прошлом имела высокую температуру и плотность излучения… … Астрономический словарь

Космология Возраст Вселенной Большой взрыв Содвижущееся расстояние Реликтовое излучение Космологическое уравнение состояния Тёмная энергия Скрытая масса Вселенная Фридмана Космологический принцип Космологические модели Формировани … Википедия

Книги

  • Комплект таблиц. Эволюция Вселенной (12 таблиц) , . Учебный альбом из 12 листов. Артикул - 5-8676-012. Астрономические структуры. Закон Хаббла. Модель Фридмана. Периоды эволюции Вселенной. Ранняя Вселенная. Первичный нуклеосинтез. Реликтовое…
  • Космология , Стивен Вайнберг. Монументальная монография нобелевского лауреата Стивена Вайнберга обобщает результаты прогресса, достигнутого за последние два десятилетия в современной космологии. Она является уникальной по…

Микроволновое фоновое излучение (реликтовое излучение)

- космич. излучение, имеющее спектр, характерный для при темп-ре ок. ЗК; определяет интенсивность фонового излучения Вселенной в коротковолновом радиодиапазоне (на сантиметровых, миллиметровых и субмиллиметровых волнах). Характеризуется высочайшей степенью изотропии (интенсивность практически одинакова во всех направлениях). Открытие М. ф. и. (А. Пензиас, Р. Вильсон, 1965 г., США) подтвердило т.н. , дало важнейшее экспериментальное свидетельство в пользу представлений об изотропии расширения Вселенной и её однородности в больших масштабах (см. ).

Согласно модели горячей Вселенной, вещество расширяющейся Вселенной имело в прошлом намного более высокую плотность, чем сейчас, и чрезвычайно высокую темп-ру. При Т > 10 8 К первичная , состоявшая из протонов, ионов гелия и электронов, непрерывно излучающих, рассеивающих и поглощающих фотоны, находилась в полном с излучением. В ходе последующего расширения Вселенной темп-ра плазмы и излучения падала. Взаимодействие частиц с фотонами уже не успевало за характерное время расширения заметно влиять на спектр излучения ( Вселенной по тормозному излучению к этому времени стала много меньше единицы). Однако даже при полном отсутствии взаимодействия излучения с веществом в ходе расширения Вселенной чернотельный спектр излучения остаётся чернотельным, уменьшается лишь темп-ра излучения. Пока темп-ра превышала 4000 К, первичное вещество было полностью ионизовано, пробег фотонов от одного акта рассеяния до др. был много меньше . При 4000 К произошла протонов и электронов, плазма превратилась в смесь нейтральных атомов водорода и гелия, Вселенная стала полностью прозрачной для излучения. В ходе её дальнейшего расширения темп-ра излучения продолжала падать, но чернотельный характер излучения сохранился как реликт, как "память" о раннем периоде эволюции мира. Это излучение обнаружили сначала на волне 7,35 см, а затем и на др. волнах (от 0,6 мм до 50 см).

Темп-ра М. ф. и. с точностью до 10% оказалась равной 2,7 К. Ср. энергия фотонов этого излучения крайне мала - в 3000 раз меньше энергии фотонов видимого света, но число фотонов М. ф. и. очень велико. На каждый атом во Вселенной приходится ~ 10 9 фотонов М. ф. и. (в среднем 400-500 фотонов в 1 см 3).

Наряду с прямым методом определения темп-ры М. ф. и. - по кривой распределения энергии в спектре излучения (см. ), существует также косвенный метод - по населённости нижних уровней энергии молекул в межзвёздной среде. При поглощении фотона М. ф. и. молекула переходит из осн. состояния в возбуждённое. Чем выше темп-ра излучения, тем выше плотность фотонов с энергией, достаточной для возбуждения молекул, и тем большая их доля находится на возбуждённом уровне. По количеству возбуждённых молекул (населённости уровней) можно судить о темп-ре возбуждающего излучения. Так, наблюдения оптич. линий поглощения межзвёздного циана (CN) показывают, что его нижние уровни энергии населены так, как будто молекулы CN находятся в поле трёхградусного чернотельного излучения. Этот факт был установлен (но не понят в полной мере) ещё в 1941 г., задолго до обнаружения М. ф. и. прямыми наблюдениями.

Ни звёзды и радиогалактики, ни горячий межгалактич. газ, ни переизлучение видимого света межзвёздной пылью не могут дать излучения, приближающегося по св-вам к М. ф. и.: суммарная энергия этого излучения слишком велика, и спектр его не похож ни на спектр звёзд, ни на спектр радиоисточников (рис. 1). Этим, а также практически полным отсутствием флуктуации интенсивности по небесной сфере (мелкомасштабных угловых флуктуации) доказывается космологич., реликтовое происхождение М. ф. и.

Флуктуации М. ф. и.
Обнаружение небольших различии в интенсивности М. ф. и., принимаемого от разных участков небесной сферы, позволило бы сделать ряд выводов о характере первичных возмущении в веществе, приведших в дальнейшем к образованию галактик и скоплений галактик. Современные галактики и их скопления образовались в результате роста незначительных по амплитуде неоднородностей плотности вещества, существовавших до рекомбинации водорода во Вселенной. Для любой космологич. модели можно найти закон роста амплитуды неоднородностей в ходе расширения Вселенной. Если знать, каковы были амплитуды неоднородности вещества в момент рекомбинации, можно установить, за какое время они могли вырасти и стать порядка единицы. После этого области с плотностью, значительно превышающей среднюю, должны были выделиться из общего расширяющегося фона и дать начало галактикам и их скоплениям. "Рассказать" об амплитуде начальных неоднородностей плотности в момент рекомбинации может лишь реликтовое излучение. Поскольку до рекомбинации излучение было жёстко связано с веществом (электроны рассеивали фотоны), то неоднородности в пространственном распределении вещества приводили к неоднородностям плотности энергии излучения, т. е. к различию темп-ры излучения в разных по плотности областях Вселенной. Когда после рекомбинации вещество перестало взаимодействовать с излучением и стало для него прозрачным, М. ф. и. должно было сохранить всю информацию о неоднородпостях плотности во Вселенной в период рекомбинации. Если неоднородности существовали, то темп-ра М. ф. и. должна флуктуировать, зависеть от направления наблюдения. Однако эксперименты по обнаружению ожидаемых флуктуации пока не обладают достаточно высокой точностью. Они дают лишь верхние пределы значений флуктуации. В малых угловых масштабах (от одной угловой минуты до шести градусов дуги) флуктуации не превышают 10 -4 К. Поиски флуктуации М. ф. и. осложняются также тем, что вклад во флуктуации фона дают дискретные космич. радиоисточники, флуктуирует излучение атмосферы Земли и т. д. Эксперименты в больших угловых масштабах также показали, что темп-ра М. ф. и. практически не зависит от направления наблюдения: отклонения не превышают К. Полученные данные позволили снизить оценку степени анизотропии расширения Вселенной в 100 раз по сравнению с оценкой по данным прямых наблюдений "разбегающихся" галактик.

М. ф. и. как "новый эфир".
М. ф. и. изотропно лишь в системе координат, связанной с "разбегающимися" галактиками, в т.н. сопутствующей системе отсчёта (эта система расширяется вместе с Вселенной). В любой др. системе координат интенсивность излучения зависит от направления. Этот факт открывает возможность измерения скорости движения Солнца относительно системы координат, связанной с М. ф. и. Действительно, в силу Доплера, эффекта фотоны, распространяющиеся навстречу движущемуся наблюдателю, имеют более высокую энергию, нежели догоняющие его, несмотря на то, что в системе, связанной с М. ф. и., их энергии равны. Поэтому и темп-ра излучения для такого наблюдателя оказывается зависящей от направления: , где T 0 - ср. по небу темп-ра излучения, v - скорость наблюдателя, - угол между вектором скорости и направлением наблюдения.

Дипольная анизотропия реликтового излучения, связанная с движением Солнечной системы относительно поля этого излучения, к настоящему времени твердо установлена (рис. 2): в направлении на созвездие Льва темп-ра М. ф. и. на 3,5 мК превышает среднюю, а в противоположном направлении (созвездие Водолея) на столько же ниже средней. Следовательно, Солнце (вместе с Землёй) движется относительно М. ф. и. со скоростью ок. 400 км/с по направлению к созвездию Льва. Точность наблюдений столь высока, что экспериментаторы фиксируют скорость движения Земли вокруг Солнца, составляющую 30 км/с. Учёт скорости движения Солнца вокруг центра Галактики позволяет определить скорость движения Галактики относительно М. ф. и. Она составляет 600 км/с. В принципе, существует метод, позволяющий определить скорости богатых скоплений галактик относительно реликтового излучения (см. ).

Спектр М. ф. и.
На рис. 1 приведены существующие экспериментальные данные о М. ф. и. и планковская кривая распределения энергии в спектре равновесного излучения абсолютно чёрного тела, имеющего темп-ру 2,7 К. Положения экспериментальных точек хорошо согласуются с теоретич. кривой. Это служит веским подтверждением модели горячей Вселенной.

Отметим, что в диапазоне сантиметровых и дециметровых волн измерения темп-ры М. ф. и. возможны с поверхности Земли при помощи радиотелескопов. В миллиметровом и особенно в субмиллиметровом диапазонах излучение атмосферы препятствует наблюдениям М. ф. и., поэтому измерения проводятся широкополосными , установленными на воздушных шарах (баллонах) и ракетах. Ценные данные о спектре М. ф. и. в миллиметровой области получены из наблюдений линий поглощения молекул межзвездной среды в спектрах горячих звезд. Выяснилось, что осн. вклад в плотность энергии М. ф. и. даёт излучение с от 6 до 0,6 мм, темп-ра к-рого близка к 3 К. В этом диапазоне длин волн плотность энергии М. ф. и. =0,25 эВ/см 3 .

Многие из космологич. теорий и теорий образования галактик, к-рые рассматривают процессы вещества и антивещества, диссипацию развитой , крупномасштабных потенциальных движений, испарение первичных малой массы, распад нестабильных , предсказывают значит. энерговыделение на ранних стадиях расширения Вселенной. В то же время любое выделение энергии align="absmiddle" width="127" height="18"> на этапе, когда темп-ра М. ф. и. менялась от до 3 К, должно было заметно исказить его чернотельный спектр. Т.о., спектр М. ф. и. несёт информацию о тепловой истории Вселенной. Более того, эта информация оказывается дифференцированной: выделение энергии на каждом из трёх этапов расширения ( K; 3Т 4000 К). Таких энергичных фотонов крайне мало (~10 -9 от общего их числа). Поэтому рекомбинационное излучение, возникающее при образовании нейтральных атомов, должно было сильно исказить спектр М. ф. и. на волнах 250 мкм.

Ещё один нагрев вещество могло испытать при образовании галактик. Спектр М. ф. и. при этом также мог измениться, поскольку рассеяние реликтовых фотонов на горячих электронах увеличивает энергию фотонов (см. ). Особенно сильные изменения происходят в этом случае в коротковолновой области спектра. Одна из кривых, демонстрирующих возможное искажение спектра М. ф. и., приведена на рис. 1 (штриховая кривая). Имеющиеся изменения в спектре М. ф. и. показали, что вторичный разогрев вещества во Вселенной произошел много позже рекомбинации.

М. ф. и. и космические лучи.

Космич. лучи (протоны и ядра высоких энергий; ультрарелятивнстские электроны, определяющие радиоизлучение нашей и др. галактик в метровом диапазоне) несут информацию о гигантских взрывных процессах в звездах и ядрах галактик, при к-рых они рождаются. Как оказалось, время жизни частиц высоких энергий во Вселенной во многом зависит от фотонов М. ф. и., обладающих малой энергией, но чрезвычайно многочисленных - их в миллиард раз больше, чем атомов во Вселенной (это соотношение сохраняется в процессе расширения Вселенной). При столкновении ультрарелятивистских электронов космич. лучей с фотонами М. ф. и. происходит перераспределение энергии и импульса. Энергия фотона возрастает во много раз, и радиофотон превращается в фотон рентг. излучения, энергия же электрона меняется незначительно. Поскольку этот процесс повторяется многократно, электрон постепенно теряет всю энергию. Наблюдаемое со спутников и ракет рентг. фоновое излучение, по-видимому, частично обязано своим происхождением этому процессу.

Протоны и ядра сверхвысоких энергий также подвержены воздействию фотонов М. ф. и.: при столкновениях с ними ядра расщепляются, а соударения с протонами приводят к рождению новых частиц (электрон-позитронных пар, -мезонов и т.д.). В результате энергия протонов быстро уменьшается до пороговой, ниже к-рой рождение частиц становится невозможным по законам сохранения энергии и импульса. Именно с этими процессами связывают практич. отсутствие в космич. лучах частиц с энергией 10 20 эВ, а также малое количество тяжёлых ядер.

Лит.:
Зельдович Я.Б., "Горячая" модель Вселенной, УФН, 1966, т. 89, в. 4, с. 647; Вайнберг С., Первые три минуты, пер. с англ., М., 1981.

Как, вероятно, уже заметил читатель, история радиоастрономии сложилась так, что важнейшие открытия в этой области науки производились случайно. Само начало радиоастрономии было положено случайным открытием Янским дискретных источников излучения, приходящего на Землю из космоса. При исследовании
явления мерцания радиоволн как случайный, побочный, но гораздо более важный результат, были обнаружены пульсары.

Еще одно крупное открытие наших дней было сде­лано совершенно неожиданно для тех, кто обнаружил новое явление. В 1965 г. Пензиас и Вилсон, два специалиста по радиоаппаратуре, исполняя поручение фирмы Белл, исследовали одно из весьма чувствительных уст­ройств приема радиоизлучения и вносили в него усовершенствования для устранения влияния всех возможных помех. Когда после длительной работы они пришли к выводу, что в этом направлении ими все сделано и влия­ние земных источников радиоизлучения должно быть полностью уничтожено, обнаружилось, что в приемное устройство направленное на небо, продолжает поступать хотя и очень слабое, но уверенно регистрируемое радио­излучение. Особенность его состояла в том, что интен­сивность излучения показывала почти строгое постоян­ство для всех направлений, за исключением, разумеется, тех, в которых расположены дискретные космические Шорники радиоизлучения.

Значение сделанного открытия стало ясным тогда, когда дальнейшие исследования показали, что распре­деление приходящего излучения по длинам волн соответ­ствует излучению «абсолютно черного тела». Оно такое, какое вызывалось бы телом, имеющим чрезвычайно низкую температуру: 3 кельвина (ЗК).В соответствии с законом Вина (λ m · T = 0,2897) максимум энергии излучения при этой температуре приходится на длину волны около 1 мм.

Из почти полной независимости интенсивности обна­руженного радиоизлучения от направления (его изотроп­ности) следует, что Вселенная пронизана этим излуче­нием, оно заполняет все пространство между звездами и галактиками. Распределение энергии в спектре соглас­но закону для абсолютно черного тела с температурой 3 К показывает, что это излучение - не трансформиро­ванное излучение звезд, туманностей и галактик, а явля­ется независимой субстанцией, заполняющей пространство Вселенной. Поэтому оно получило название фонового излучения.