Синтетическая биология - Synthetic Biology. Синтетическая биология

Впервые термин «синтетическая биология» был употреблён в 1980 году Barbara Hobom при описании бактерии, которая была генетически модифицирована с помощью технологии рекомбинантных ДНК. Затем этот термин был снова предложен в 2000 году Eric Kool и другими докладчиками ежегодного собрания Американского химического общества в Сан-Франциско. Он был использован при описании синтеза искусственных органических молекул, играющих определённую роль в живых системах.

Синтетическая биология - новая область биологии, целью которой является проектирование и создание новых биологических систем, не встречающихся в природе. Она занимается добавление к уже имеющимся у организма свойствам, например, бактерии, новых свойств или модифицирование уже существующих. В будущем планируется создавать отдельные способные к самостоятельному существованию и воспроизводству организмы со строго заданными свойствами.

Главных целей синтетической биологии три:

  • Узнать о жизни больше, строя её из атомов и молекул, а не разбирая на части, как это делали раньше.
  • Сделать генную инженерию достойной её названия - превратить её из искусства в строгую дисциплину, которая непрерывно развивается, стандартизируя предыдущие искусственные создания и повторно комбинируя их, чтобы делать новые, более сложные живые системы, которых раньше не существовало в природе.
  • Стереть границу между живым и машинами, чтобы прийти к действительно программируемым организмам.

Рассмотрим возможности синтетической биологии для различных дисциплин. Во-первых, биологи смогут лучше понять природные биологические системы (стоит вспомнит слова Ричарда Фейнмана: «What I cannot create, I do not understand» («Я не могу создать то, что я не понимаю»)).

Во-вторых, для химиков синтетическую биологию можно представить как следующий логически необходимый шаг в синтетической химии (синтез лекарств, новых материалов, разработка более совершенных методов анализа).

Синтетическая биология начинает свою историю в 1989 году, когда команда биологов из Цюриха (руководитель Стивена Беннера (Steven Benner)) синтезировала ДНК, содержащую две искусственных нуклеотидных пары, помимо четырёх известных, используемых всеми живыми организмами Земли (аденин, гуанин, цитозин, тимин - ДНК, в РНК - цитозин заменён на урацил)(рис.1).


3. Этические вопросы

Синтетическая биология — термин, долго использовавшийся для описания подходов в биологии, стремящихся интегрировать различные области исследования для того, чтобы создать более целостный подход к пониманию концепции жизни.

В последнее время термин используется в другом значении, сигнализируя о новой области исследования, которая объединяет науку и инженерию с целью проектирования и построения новых биологических функций и систем.

Синтетическая биология — это новое направление генной инженерии. Развивается небольшой плеядой учёных. Главные цели следующие:

  1. Узнать о жизни больше, строя её из атомов и молекул, а не разбирая на части, как это делалось ранее.
  2. Сделать генную инженерию достойной её названия — превратить её из искусства в строгую дисциплину, которая непрерывно развивается, стандартизируя предыдущие искусственные создания и повторно комбинируя их, чтобы делать новые, более сложные живые системы, которых раньше не существовало в природе.
  3. Стереть границу между живым и машинами, чтобы прийти к действительно программируемым организмам.

Более 100 лабораторий по всему миру занимаются синтетической биологией. Работы в этой области разобщены; над их систематизацией работает биолог Дрю Энди из Массачусетского технологического института. Это позволит проектировать живые системы, которые ведут себя предсказуемым образом и используют взаимозаменяемые детали из стандартного набора генов. Учёные стремятся создать обширный генетический банк, позволяющий создавать любой нужный организм. Банк составляют биокирпичи — фрагменты ДНК, чья функция строго определена и которые можно внедрить в геном клетки для синтеза заранее известного белка. Все отобранные биокирпичи спроектированы так, чтобы хорошо взаимодействовать со всеми другими на двух уровнях:

  • механическом — чтобы их легко было изготовить, хранить и включать в генетическую цепочку;
  • программном — чтобы каждый кирпич посылал определённые химические сигналы и взаимодействовал с другими фрагментами кода.

Сейчас в Массачусетском технологическом институте создали и систематизировали уже более 140 биокирпичей. Сложность заключается в том, что очень многие сконструированные фрагменты ДНК при внедрении в генетический код клетки-реципиента уничтожают её.

Синтетическая биология способна создать генинженерные бактерии, которые могут производить сложнейшие и дефицитные лекарства дёшево и в промышленных объёмах. Спроектированные геномы могут привести к появлению альтернативных источников энергии или к бактериям, которые помогут удалять излишний углекислый газ из атмосферы.

В последнее время вместо привычной генетической инженерии стали много говорить о «синтетической биологии» - новом подходе к работе с ДНК, который включает в себя создание совершенно новых генов, не существующих в природе. Синтетической биологией интересуются все: молодые учёные, биохакеры, занимающиеся ею самостоятельно, а также инвесторы, вкладывающиеся в биологические стартапы. Look At Me разбирается, как устроена новая ветвь биологии.

Как любое манипулирование с генами, синтетическая биология может быть одновременно полезной и очень опасной. Дрю Энди, биолог Стэнфордского университета, называет это «рампой гибели», сравнивая синтетическую биологию со скейтерской рампой, у которой есть два конца, а между ними перекатывается скейтер. С одной стороны, с помощью синтетической биологии можно делать полезные вещи, решать проблемы с голодом, лечить болезни и создавать новые организмы. С другой - всегда есть опасность создать смертельный вирус или запустить в природу организм, которого не должно было существовать. Или даже - поскольку в среде синтетической биологии популярен DIY-подход - вызвать новую волну биотерроризма.

Как менялись цены
на секвенсирование ДНК
(за 1 млн спаренных оснований)

Миллиарды лет эволюции породили великое разнообразие организмов. Но ещё есть масса направлений для развития. А ждать ещё миллиард лет до появления чего-то нужного — учёные не хотят. Новое направление генной инженерии ставит перед собой грандиозную цель: создание принципиально иной жизни.

«Скажите, что я должен изменить растение так, чтобы оно меняло цвет в присутствии тротила, — говорит биолог Дрю Энди (Drew Endy) из Массачусетского технологического института (MIT).

— Я могу начать изменять генетическую последовательность, чтобы сделать это и, если повезёт, после года или двух лет работы я смогу получить заказанное „живое устройство“ для обнаружения мин. Но это не поможет мне позже построить, к примеру, клетку, которая плавает и ест отложения на стенках артерий. И это не поможет мне вырастить небольшую микролинзу. В основном текущая практика биоинженерии — это искусство».

Именно это положение дел стремиться исправить молодая наука — синтетическая биология (Synthetic Biology), которую сейчас развивает небольшая плеяда учёных. Мистер Энди — в их числе.

Главных целей три:

  1. Узнать о жизни больше, строя её из атомов и молекул, а не разбирая на части, как это делали раньше.
  2. Сделать генную инженерию достойной её названия — превратить её из искусства в строгую дисциплину, которая непрерывно развивается, стандартизируя предыдущие искусственные создания и повторно комбинируя их, чтобы делать новые, более сложные живые системы, которых раньше не существовало в природе.
  3. Стереть границу между живым и машинами, чтобы прийти к действительно программируемым организмам.

Создание биодетектора скрытых мин. Нужные генетические «фразы» из пробирок встраиваются в геном бактерии. Бактерии распыляют на местности. Там, где есть тротил в почве (а он неизбежно просачивается из мины наружу) — бактерии синтезируют флуоресцентный белок. Приходим ночью и обезвреживаем мины (иллюстрация с сайта sciam.com).

Практических приложений новой науки видится масса. Например, создание генинженерных микробов, которые сидели бы в чанах и производили бы сложнейшие и дефицитные лекарства — дёшево и в промышленных объёмах.

При этом, что важно, адепты синтетической биологии намерены прийти к такому положению дел, когда любой нужный организм биотехнологии создавали бы, пользуясь набором генетических последовательностей из обширного банка.

Это должно напоминать создание электронной схемы из промышленных транзисторов и диодов. Человек, собирающий новую схему, даже не обязан знать, что у этих деталей внутри и принцип, по которому они действуют. Ему важно только знать характеристики используемой детали — что имеем на входе, и что — на выходе.

Группа учёных MIT разложила на составляющие вирус Т7, словно машину (иллюстрация с сайта sciam.com).

Корни синтетической биологии уходят в 1989 год, когда команда биологов из Цюриха под руководством Стивена Беннера (Steven Benner) синтезировала ДНК, содержащую два искусственных генетических слова (или букв, в общем — нуклеотидных пар), помимо четырёх известных, используемых всеми живыми организмами Земли.

Представьте, что всё разнообразие жизни кодируется длиннейшими цепочками чередующихся четырёх нуклеотидных «букв». Упрощённо представим такую запись как ВААГБАВАГБББААГВ и так далее, и тому подобное.

На самом деле — это вещества — аденин, цитозин, гуанин и тимин, но для простоты обозначим их именно первыми буквами алфавита.

И тут вдруг учёные добавляют в этот язык никогда не применявшиеся в природе Д и Е — другие вещества, вплетающиеся в код жизни. Есть от чего взяться за голову.

Конечно, от шестибуквенной генетической последовательности до целых «шестибуквенных» организмов — большая дистанция, но впору говорить о зарождении Жизни 2.0.

А ведь и без этих необычных опытов биоинженеры были способны на чудеса.

Так группа учёных из университета Принстона (Princeton University) создала бактерии кишечной палочки, сверкающие, как новогодняя ёлка. А биологи из университета Бостона (Boston University) и вовсе наделили эту бактерию элементарной цифровой бинарной памятью.

Они соединили в бактерии два новых гена, активирующихся в противофазе — в зависимости от химических компонентов на входе эти бактерии «переключались» между двумя устойчивыми состояниями, словно триггер на транзисторах.

Но вот что интересно — ни та, ни другая работа, как ни странно, ни на шаг не приблизила учёных к созданию, допустим, светящейся бактерии кишечной палочки, которую можно было бы по желанию включать и выключать, как лампочку. Хотя, кажется, оба компонента, только в разных организмах, уже были созданы.

Потому-то Энди сейчас активно работает над созданием механизма, инфраструктуры или, если угодно, науки, которая позволила бы систематизировать такие работы, свести их в систему.

Тогда можно будет проектировать живые системы, которые ведут себя предсказуемым (и заказанным по желанию) образом и используют взаимозаменяемые детали из стандартного набора кирпичиков жизни.

Нужно сказать, что многое в этом направлении уже сделано. Например, Энди охотно показывает посетителям своей лаборатории ящичек с 50 колбами, заполненными густыми жидкостями.

В каждой колбе — строго определённый фрагмент ДНК (в МIТ их называют биокирпичами — BioBrick), функция которого определена. Его можно внедрить в геном клетки, и та начнёт синтезировать заранее известный белок.

Все отобранные биокирпичи спроектированы так, чтобы хорошо взаимодействовать со всеми другими на двух уровнях. Чисто механически — чтобы его легко было изготовить, хранить и, наконец — включать в генетическую цепочку.

И, так сказать, программно — чтобы каждый кирпич посылал определённые химические сигналы и взаимодействовать с другими фрагментами кода.


Из ДНК можно составлять логические схемы (иллюстрация с сайта sciam.com).

Сейчас в MIT создали и систематизировали уже более 140 таких элементарных кирпичиков — фрагментов ДНК.

Зная заранее характеристики этих кирпичиков, учёный может произвольно соединять их, программируя отклик живого на те ли иные химические сигналы.

Любопытно, что один из созданных Энди кирпичиков — это генетический аналог компьютерного оператора НЕ. Когда на его входе высокий сигнал (определённые молекулы), то на выходе — низкий уровень синтеза определённого белка. И наоборот: химический сигнал на входе низкий — высокий сигнал (то есть синтез белка) — на выходе.

Другой биокирпичик спроектирован так, что является биохимическим оператором И. То есть он имеет два химических входа и синтезирует белок, только когда сигнал есть на каждом из них одновременно.

Комбинируя эти фрагменты ДНК, можно сделать живой оператор НЕ-И, а из Булевой алгебры известно, что из должного числа таких операторов можно организовать любую логическую схему, реализующую любые двоичные вычисления.

О двоичной памяти из отдельных бактерий мы уже сказали — вот вам и скрещивание живого и машинного.

Дальнейшее продвижение идеи тормозится одной сложностью — поместив сконструированную ДНК в некую клетку, мы, невольно, заставляем взаимодействовать новые последовательности с теми, что имеются у исходной клетки.

Точнее — со всех биохимией, которая крутится там, в соответствии с закодированной в исходном геноме информацией.

Очень многие из кирпичиков, которые пробовали внедрять в генетический код клетки реципиента — просто уничтожали её. А ведь именно клетка должна обеспечивать жизнь нашей искусственной ДНК, её копирование и распространение.

Ведь мы же хотим создавать искусственные организмы.

Да и непонятно пока, как заставить реагировать на химические сигналы только отдельный, допустим, ДНК-транзистор, ведь рядом с ним в одном котле клетки будут «вариться» ещё несколько таких же элементов. Тут пора думать о создании искусственного биохимического провода.

Но, так или иначе, работа движется вперёд. Вот, прошлой осенью группа учёных из американского института биологических энергетических альтернатив (Institute for Biological Energy Alternatives) всего за две недели собрала на пустом месте живой вирус-бактериофаг phiX174, синтезировав шаг за шагом его ДНК — а это 5 тысяч 386 нуклеотидных пар.

Биолог Дрю Энди перебирает пробирки с кирпичиками жизни — синтезированными генетическими кодами (фото с сайта sciam.com).

Синтезированный вирус вёл себя точно так же, как и его природные собратья.

Конечно, вирус — очень маленький объект. Но всё равно достижение впечатляет — представьте по аналогии, что учёные взяли воду, железо, натрий, калий, серу, цинк, марганец, фосфор и так далее, и тому подобное, и синтезировали из этого всего живого кота. Или человека.

Создание бактерий, способных переваривать химическое оружие или очищать воду от ядовитых тяжёлых металлов — уже на подходе. А дальше?

Скептики говорят, что благодаря таким вещам, как Интернет, и тому факту, что никакие плодотворные исследования невозможны в изоляции учёных от своих коллег — дело кончится тем, что какая-нибудь радикальная группировка соберёт из кирпичиков жизни страшное биологическое оружие и поставит под угрозу саму жизнь на планете.

Энди говорит, что это — неизбежный риск, как в любой области прогресса. Об этом нужно говорить и думать. Но разве мы не хотим построить более благополучное общество, где тысячи людей будут спасены от болезней или старых мин, благодаря синтетической биологии?

Что предпочесть — риск терроризма (любое важное открытие можно превратить в оружие) и благо для нуждающихся, или — отсутствие риска плюс гибель многих людей от болезней?

Энди верит, что хороших людей больше, чем плохих.

Статья на конкурс «био/мол/текст»: Недавно вышедшая статья от гарвардских биологов заставила многие информагентства выпустить заметки : ученые превратили кишечную палочку в биологический аналог компьютера, роль электрических сигналов в котором играют короткие молекулы РНК. В своей статье я хотел бы дать небольшой обзор достижений современных биоинженеров, а затем рассказать широкой публике о том, как же работают «биокомпьютеры» и чего мы от них ждем.

Генеральный спонсор конкурса - компания : крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.


Спонсором приза зрительских симпатий и партнером номинации «Биомедицина сегодня и завтра» выступила фирма «Инвитро ».


«Книжный» спонсор конкурса - «Альпина нон-фикшн »

На протяжении всего существования человечества основным способом узнать что-либо было наблюдение. Аристотель разбивал куриные яйца на разных стадиях инкубации и зарисовывал увиденное, в дальнейшем пытаясь это объяснить. С течением времени появился чуть более достоверный метод - эксперимент, в котором мы полностью управляем условиями наблюдения. Однако в последнее время ученым все больше хочется вмешаться в живые процессы, придумать новые полезные человечеству гены, или же просто что-нибудь там сломать и посмотреть, что будет.

В современной биологии вопросами вмешательства в живые системы занимаются синтетические биологи и биоинженеры. Они разрабатывают рациональные подходы к управлению и программированию клеточных функций; изучают методы создания искусственных генетических конструкций, схем и сетей. Можно как искать вдохновение в природе, перемещая гены между организмами, так и придумывать совершенно новые, не имеющие аналогов в живом мире системы.

Для лучшего понимания материала быстро освежим школьные знания.

Генетический аппарат за 30 секунд

Современные базовые положения молекулярной биологии кратко описываются так называемой центральной догмой (рис. 1): генетическая информация кодирует последовательность белка и в клетке хранится в виде ДНК, а РНК переносит информацию об аминокислотах к молекулярной машине синтеза белка - рибосоме . Необходимо ввести два термина: транскрипция - процесс синтеза РНК по матрице ДНК, - и трансляция - процесс синтеза белка из аминокислот по матрице РНК.

Рисунок 1. Центральная догма молекулярной биологии. На схеме показаны основные процессы передачи и реализации генетической информации в клетке.

Для того чтобы дать подробный обзор современных достижений синтетической биологии, потребовалась бы целая серия статей, так что я ограничусь несколькими избранными, наиболее полезными для человека, или же просто самыми захватывающими разработками.

Начнем с простого - с поломки

Направленный мутагенез открывает сравнительно простой способ определить роль конкретного гена/белка в клеточных процессах - тот процесс, что перестал работать вследствие поломки этого гена или белка, очевидным образом зависит от их функции. Например, выключаем некий интересный нам ген у растения → вместо нормальных цветков видим только тычинки и пестики → вывод: ген участвует в формировании частей цветка. Казалось бы, в природе и так полно мутантов, зачем же создавать новых? Но найти, какой ген выключился у природного мутанта, гораздо сложнее, чем вручную сломать определенный нами же ген.

Чужие гены

Вместо того чтобы заниматься выключением генов, можно попробовать внести в организм гены из других видов. Классические исследования в области генной модификации направлены на сельское хозяйство и скотоводство , но это не значит, что мы не можем решать и более интересные проблемы теми же методами.

Тропические заболевания в последнее время привлекают все больше медийного внимания. Это и вирус Зика , и лихорадка Денге, и малярия. И именно последняя инфекция вызывает больше всего опасений. В прошлом веке малярийный плазмодий стал устойчивым почти ко всем классическим препаратам . Артемизинин , разработанный в 1970-е годы (за его разработку, кстати, вручили Нобелевскую премию 2015 года ), стал новой надеждой врачей и действительно привел к резкому снижению смертности от малярии за последние десятилетия. Сейчас артемизинин коммерчески производят с использованием искусственного биохимического пути - ферменты, проводящие нужные реакции, собрали из разных бактерий в один модифицированный штамм. C точки зрения химиков-технологов это замечательное решение - мы не заботимся о выделении промежуточных продуктов, тратим меньше энергии на проведение реакций, да и выделить продукт легко - всего лишь отфильтровать бактерий.

Для решения проблемы заболеваний, переносимых насекомыми, есть другое решение - мутагенная цепная реакция , . Название звучит страшновато, и это во многом соответствует действительности. Суть метода - сделать изменение в геноме распространяющимся в популяции, с потенциальной возможностью изменить в итоге абсолютно все организмы данного вида. На рисунке 2 показано, как мутантный тип (обозначен синим цветом ) может стать доминирующим в популяции . Мы нарушаем менделевские законы наследования с помощью внесения в геном модифицирующих его же ферментов.

С помощью мутагенной цепной реакции можно сделать комаров неспособными переносить малярию , причем все потомки модифицированного комара также будут не способны заражать людей.

У многих ученых мутагенная цепная реакция вызывает большие опасения. Мутация, однажды введенная в геном единственной особи, неконтролируемо распространяется в геномах детей, внуков, правнуков и всех последующих поколений популяции. Из-за этого «дикие» организмы могут исчезнуть с лица земли.

Менее радикальный, но очень похожий метод применяют уже сейчас . В Бразилии фабрики производят ГМ-комаров, потомство которых стерильно, и выпускают их в природу. Это помогает снизить количество комаров, переносящих Денге, Зика, малярию и тому подобное. Однако так как метод работает всего на двух поколениях, опасности, что что-то выйдет из под контроля, нет .

Всё происходит по законам популяционной генетики: модифицированные самцы на равных конкурируют за размножение с природными, поэтому количество жизнеспособных детей в следующем поколении снижается, а значит, снижается и численность. Профит!

Brain in technicolor

Рестриктазы - те самые ферменты, что редактировали геном комаров и дрозофил, - могут также помочь нам и в задачах нейронаук.

Метод Brainbow позволил ученым-нейрологам покрасить каждый нейрон мозга (в данном случае крысы) в индивидуальный цвет. И дело тут не только в том, что выглядит это безумно красиво, но также и в том, что структура мозга стала различима еще на один уровень точнее: теперь мы можем проследить взаимосвязи нейронов, находящихся в одном слое коры, найти менее очевидные пути проведения сигналов, чуть-чуть приблизить нас к составлению коннектома - карты всех контактов нейронов в мозге. Работает это так: в геном встраивается несколько флуоресцентных белков разных цветов, и, когда клетка дифференцируется в нейрон, рестриктазы случайным образом выключают некоторые из них. Таким образом, каждый нейрон обладает своим цветом и четко выделяется на фоне остальных (рис. 3).

Сети, схемы, и циклы

Но не будем надолго останавливаться на модификациях и вставках одиночных (невзаимодействующих) генов, ведь вся сложность и запутанность живых систем обусловлена, в основном, огромным количеством и многообразием регуляторных систем, действующих как на уровне транскрипции, так и трансляции. Сейчас мы знаем о регуляции достаточно, чтобы пытаться создавать сети генов, работающие как и когда нам нужно.

Один из важных типов генных сетей - осцилляторы . Это системы, которые циклически переключаются между несколькими состояниями. К примеру, осцилляторные сети регулируют циркадные ритмы у животных , суточные ритмы цианобактерий. Искусственные осцилляторы - одна из первых тем исследований биоинженеров. Бактерии, которые циклически меняют цвет в результате замкнутого круга активаций и выключений разных генов (видео), появились еще в 2008 году . Обладание таким «временным» контролем производства белка может быть очень важно, ведь вся природа живет циклично.

При этом более новые статьи говорят о возможности добиться синхронности смены цвета в целой колонии.

Видео. Бактерии, которые осциллируют между флуоресцентным и бесцветным состоянием.

Другой «цветной» пример - бактерии, которые реагируют на свет, в результате окрашиваясь в тот цвет, которым их освещали . Такое «бактериальное ТВ» (пример на рисунке 4) открывает для нас новый способ контроля за геномом бактерий, который не требует никакого химического воздействия на культуру. Действительно, разные длины волн света, облучающего клетки - нечто вроде кнопок на пульте, включающих синтез разных белков.

Рисунок 4. Ученые из Массачусетского технологического института изобразили логотип своего вуза на чашке Петри с модифицированными бактериями (слева вверху - изображение, которое проецировалось на колонию).

РНК

Не забыт ученым и другой тип макромолекул - рибонуклеиновые кислоты. Не будем сейчас останавливаться на всей важности РНК для клеток и ее роли в процессах появления жизни и эволюции, а поговорим больше о практической стороне ее использования в синтетической биологии.

С одной стороны, РНК гораздо более многолика, чем ДНК и белки: множество конформаций (пространственных структур) позволяет РНК играть любую роль, начиная с носителя генетической информации, рецептора/сенсора, структурного каркаса, заканчивая даже ферментативной активностью.

С другой же - РНК максимально неустойчива в чистом виде , не живет в клетке продолжительное время, и работа с ней требует больше времени и сил.

Причины этого немного нетривиальны: РНК химически реагирует сама с собой, а еще люди выделяют очень много РНКаз (ферментов, деградирующих РНК) с пóтом и дыханием, что играет роль первого барьера защиты от вирусов.

Тем не менее, и в этой области есть красивые и сложные разработки. Ученые из Гарвардского университета разработали РНК-биосенсоры : модифицированные клетки нарабатывают распознающие РНК, которые потом в виде клеточного экстракта наносятся на бумагу. Такие тест-полоски высушиваются и могут храниться долгое время. При использовании на них наносят воду и образец, РНК-рецептор узнает некую мишень и запускает синтез цветного белка (рис. 5).

Так получаются недорогие, стойкие и точные анализаторы, которые могут с помощью капли слюны или крови идентифицировать болезнь или инфекцию за минуту вне лаборатории в любой точке мира.

Биокомпьютер

От обзора общих достижений синтетической биологии теперь можно перейти к обещанному рассмотрению темы «биокомпьютеров». Впереди нас ждет самая сложная часть материала, но от этого она не становится менее интересной и красивой. Для начала вспомним, что же делают вычислительные устройства: они принимают некие сигналы на вход, производят их обработку (например, сравнивают, суммируют, выбирают один из нескольких), а затем выдают вывод, соответствующий входным данным.

Все живые организмы формально и являются биокомпьютерами: они на основании внешних условий (свет, наличие еды, плотность популяции и многих других) решают, какие синтезировать белки, в каком направлении двигаться, когда размножаться и делать запасы... Но вот только все эти действия - не то, что мы хотим получить. Синтетические биологи хотят сами определять сигналы, процесс «вычислений» и результат. Зачем нам это нужно? Применения «живым вычислениям» можно найти и в биотехнологии, и в медицине, и даже в самой научной деятельности. Они помогут нам добиться значительной автоматизации процессов, будь то анализ крови или мониторинг биотехнологического процесса. И сейчас это во многом реально воплотить в жизнь.

Наглядный пример - лактозный оперон , работа которого начинается только при выполнении двух условий: ЕСТЬ лактоза И НЕТ глюкозы. Работа оперона - вывод; глюкоза, лактоза - вводы, условия - обработка.

Логика

Важный элемент в вычислениях - это логические элементы (так называемые вентили ), выполняющие базовые операции, такие как И, ИЛИ, НЕ, и так далее. Они позволяют уменьшить количество сигналов, дают возможность добавить ветвление (если... то... и т.д.) в будущую программу. Такие схемы могут быть реализованы как на уровне генов (рис. 6), так и на стадии трансляции с использованием коротких синтезированных молекул РНК . Цепочки белков-активаторов и репрессоров вполне могут считаться транзисторами.

Память

Компьютер немыслим без памяти, и биологи понимают это. Первая статья, посвященная искусственной биологической памяти, была опубликована еще в 2000 году . Используя внешний сигнал, ученые смогли переключать клетку между двумя стабильными состояниями (к примеру, между синтезами двух разных белков), формально являющимися единичным битом памяти (рис. 7).

Рисунок 7. Схема генного переключателя. Индукторы 1 и 2 - управляющие сигналы, гены-репрессоры обеспечивают одновременную работу только одной половины (одного из двух состояний) системы.

Такие базовые элементы открывают огромный простор для фантазии - к примеру, существуют схемы, считающие количество событий , определяющие границу света и тени ... Но все же впереди еще долгий путь исследований, идей и прорывов.

iGEM

В это верится с трудом, но у синтетической биологии довольно низкий порог вхождения (естественно только при наличии желания и знаний). Как это возможно? Путь лежит через соревнование iGEM (International Genetically Engineered Machine ), основанное в 2004 году. Сейчас участвовать могут команды до шести человек из школьников и студентов-бакалавров (есть также отдельная секция для всех кто «старше»).

iGEM представляет из себя настоящий биохакатон: ведь по духу соревнование очень близко движению биохакинга , набирающему популярность в течение последних 10 лет . Весной команды регистрируются и придумывают идею проекта. За лето им предстоит научить бактерий (как самый стандартный и любимый объект) чему-нибудь новому и необычному.

Для этого, естественно, требуются наличие лаборатории, умение нетривиально мыслить, хорошая теоретическая подготовка и правильно поставленные лабораторные навыки.

А вот с реактивами и исходными материалами все гораздо интереснее: MIT содержит «реестр стандартных биологических запчастей» - базу простейших компонентов, таких как плазмиды, праймеры, промоторы, терминаторы, белки, белковые домены и многое другое (рис. 8), которые хранятся в формате молекул ДНК. Сейчас там содержится более 20 000 зарегистрированных частей, так что можно найти почти все что угодно, начиная с классических флуоресцентных белков, заканчивая сенсорами тяжелых металлов и знаменитым CRISPR/Cas . После того как оргкомитет одобряет проект зарегистрировавшейся команды, им высылают все необходимые компоненты из реестра.

Победителя выбирает коллегия из 120 признанных ученых на ежегодной осенней конференции в Бостоне.

Для примера расскажу об одном из проектов студентов Имперского колледжа Лондона (Imperial College London ), выигравшем Гранд-приз в 2016 году. Основная идея - регулировать видовое соотношение бактерий в совместных культурах. Это в дальнейшем может позволить по полной реализовать потенциал целых синтетических экосистем . Студенты скомбинировали систему бактериального чувства кворума (с помощью которой бактерии общаются и координируют свое поведение внутри вида), вычислительные схемы из РНК, которые сравнивали кворум-сигналы разных видов, и белки, ингибирующие рост (общая схема показана на рис. 8). Таким образом бактерии всегда в курсе численности всех видов, и за счет ингибиторов роста имеют возможность сохранять ее соотношение постоянным. РНК-компараторы были разработаны с нуля, и также был представлен софт для записи и анализа данных роста совместных культур.

Мероприятие это довольно популярно в университетских кругах, количество участников достигает пяти тысяч человек, и даже в России недавно снова появилась своя