Способы разложения воды на водород и кислород. Способ получения водорода и кислорода из воды

тра. Данная методика обсуждалась выше в параграфе об очистке водорода монооксида углерода СО. Хотя на первый взгляд этот способ получения во рода может показаться привлекательным, однако его практическая реализа" достаточно сложна.

Представим себе такой эксперимент. В цилиндрическом сосуде под п шнем находится 1 кмоль чистого водяного пара. Вес поршня создает в cocj постоянное давление, равное 1 атм. Пар в сосуде нагревают до температ> 3000 К. Указанные значения давления и температуры были выбраны произвс. но в качестве примера.

Если в сосуде находятся только молекулы Н20, то количество свобол энергии системы можно определить с помошью соответствующих таблиц TeD динамических свойств воды и водяного пара Однако на самом деле по край мере часть молекул водяного пара подвергается разложению на составляг ее химические элементы, т. е. водород и кислород:

поэтому полученная смесь, содержащая молекулы Н20 , Н2 и 02, будет хар-«. теризоваться другим значением свободной энергии.

Если бы все молекулы водяного пара диссоциировали, то в сосуде оказалась газовая смесь, содержащая 1 кмоль водорода и 0,5 кмоля кислорода. Количе^ свободной энергии этой газовой смеси при тех же значениях давления (1 а и температуры (3000 К) оказывается больше количества свободной энер чистого водяного пара. Отметим, что 1 кмоль водяного пара был преобразован 1 кмоль водорода и 0,5 кмоля кислорода, т. е. общее количество вещества те: составляет А"оГ)||(=1,5 кмоля. Таким образом, парциальное давление водорода б> равно 1/1,5 атм, а парциальное давление кислорода - 0.5/1,5 атм.

При любом реалистичном значении температуры диссоциация водяного п будет неполной. Обозначим долю продиссоциировавших молекул перемен F. Тогда количество водяного пара (кмоль), который не подвергся разложен будет равно (1 - F) (считаем, что в сосуде находился 1 кмоль водяного пара). К личество образовавшегося водорода (кмоль) будет равно F, а кислорода - F Получившаяся смесь будет имеет состав

(l-F)n20 + FH2 + ^F02.

Общее количество газовой смеси (кмоль)

Рис. 8.8. Зависимость свободной энергии смеси водяного пара, водорода и кислорода от мольной доли продиссоциировавшего водяного пара

Свободная энергия компонента смеси зависит от давления в соответствии соотношением

8i = 8i +RTnp(, (41)

гле g - - свободная энергия /-го компонента смеси в расчете на 1 киломоль ftp и давлении 1 атм (см. «Зависимость свободной энергии от температуры в гл. 7).

Зависимость свободной энергии смеси от F, определяемая уравнением (42 показана на рис. 8.8. Как видно из рисунка, свободная энергия смеси водя - го пара, кислорода и водорода при температуре 3000 К и давлении 1 атм го: минимум, если доля продиссоциировавших молекул водяного пара состав

14,8 %. В этой точке скорость обратной реакции н, + - СУ, -> Н-,0 равна ско

1 2 сти прямой реакции Н20 -» Н2 + - 02 , т. е. устанавливается равновесие.

Чтобы определить точку равновесия, необходимо найти значение F при

тором СП11Х имеет минимум.

d Gmjy -$ -$ 1 -$

-^ = - Ян2о + Яи2 + 2^о2 +

Sh2o “ Sn2 ~ 2 go2

Константа равновесия Кр зависит от температуры и от стехиометрических коэффициентов в уравнении химической реакции. Значение Кр для реакции

Н-0 -» Н2 + ^02 отличается от значения для реакции 2Н20 -» 2Н2 + 02 . При зтом константа равновесия не зависит от давления. Действительно, если обра­титься к формуле (48), то можно увидеть, что значения свободной энергии g* определены при давлении 1 атм и не зависят от давления в системе. Более того, г»ли водяной пар содержит примесь инертного газа, например аргона, то это тткже не изменит значения константы равновесия, так как значение g"Ar равно тлю1*.

Соотношение между константой равновесия Кр и долей продиссоциировав - гго водяного пара /’может быть получено, если выразить парциальные давле­ния компонентов смеси в функции от F, как это было сделано в формулах (38), 39) и (40). Отметим, что эти формулы справедливы только для частного случая, гда полное давление равно 1 атм. В общем случае, когда газовая смесь нахо - іся при некотором произвольном давлении р, парциальные давления можно ссчитать по следующим соотношениям:

Как следует из приведенной выше информации, прямое термическое ра жение воды возможно только при очень высокой температуре. Как показано рис. 8.9, при температуре плавления палладия (1825 К) при атмосферном. лении только незначительная доля водяного пара подвергается диссоциа Это означает, что парциальное давление водорода, полученного термичсс- разложением воды, будет слишком низким для использования в практичес задачах.

Повышение давления водяного пара не исправит ситуацию, так как при резко уменьшается степень диссоциации (рис. 8.10).

Определение константы равновесия можно распространить на случай более сложных реакций. Так, например, для реакции

Величина -246 МДж/кмоль - это значение энергии образования воды, усре ненное в интервале температуры от нуля до 3000 К. Приведенное соотноше является еще одним примером уравнения Больцмана.

Бесс Руфф - аспирантка из Флориды, работает над получением степени PhD по географии. Получила степень магистра экологии и менеджмента в Бренской школе экологии и менеджмента Калифорнийского университета в Санта-Барбаре в 2016 году.

Количество источников, использованных в этой статье: . Вы найдете их список внизу страницы.

Процесс расщепления воды (H 2 O) на ее составляющие (водород и кислород) с помощью электричества называется электролизом. Полученные в результате электролиза газы можно использовать сами по себе - например, водород служит одним из чистейших источников энергии. Хотя название данного процесса, возможно, и звучит несколько заумно, на самом деле это проще, чем может показаться, если у вас есть подходящее оборудование, знания и немного опыта.

Шаги

Часть 1

Подготовьте оборудование
  1. Возьмите стакан объемом 350 миллилитров и налейте в него теплую воду. Нет необходимости заполнять стакан до краев, хватит небольшого количества воды. Подойдет и холодная вода, хотя теплая лучше проводит электричество.

    • Подойдет как водопроводная, так и бутилированная вода.
    • Теплая вода имеет меньшую вязкость , благодаря чему в ней легче перемещаются ионы.
  2. Растворите в воде 1 столовую ложку (20 граммов) поваренной соли. Насыпьте в стакан соль и перемешайте воду, чтобы она растворилась. В результате у вас получится солевой раствор.

    • Хлорид натрия (то есть поваренная соль) является электролитом, который увеличивает электропроводность воды. Сама по себе вода плохо проводит электричество.
    • После того как вы повысите электропроводность воды, созданный батарейкой ток будет легче проходить через раствор и эффективнее расщеплять молекулы на водород и кислород.
  3. Заточите два твердо-мягких карандаша с обоих концов, чтобы обнажился графитовый стержень. Не забудьте снять с карандашей ластик. На обоих концах должен выступить графитовый стержень.

    • Графитовые стержни послужат изолированными электродами, к которым вы подключите батарейку.
    • Графит хорошо подходит для данного эксперимента, поскольку он не растворяется и не корродирует в воде.
  4. Вырежьте достаточно большой лист картона, чтобы его можно было положить поверх стакана. Используйте довольно толстый картон, который не провиснет после того, как вы проделаете в нем два отверстия. Вырежьте квадратный кусок из коробки для обуви или чего-нибудь подобного.

    • Картон нужен для того, чтобы удерживать карандаши в воде, так чтобы они не касались стенок и дна стакана.
    • Картон не проводит ток, поэтому его можно без опаски положить на стакан.
  5. Проделайте с помощью карандашей два отверстия в картоне. Проткните картон карандашами - в этом случае они окажутся плотно зажатыми и не будут выскальзывать. Проследите, чтобы графит не касался стенок или дна стакана, иначе это помешает провести эксперимент.

    Часть 2

    Проведите эксперимент
    1. Подсоедините к каждой клемме батарейки по одному проводу с зажимами «крокодил». Источником электрического тока послужит батарейка, и через провода с зажимами и графитовые стержни ток достигнет воды. Подключите один провод с зажимом к положительному, а второй - к отрицательному полюсу батарейки.

      • Используйте 6-вольтовую батарейку. Если у вас нет такой батарейки, вместо нее можно взять 9-вольтовую батарейку.
      • Подходящую батарейку можно приобрести в магазине электрических товаров или супермаркете.
    2. Подсоедините вторые концы проводов к карандашам. Как следует закрепите металлические зажимы проводов на графитовых стержнях. Возможно, придется счистить с карандашей еще немного дерева, чтобы зажимы не соскальзывали с графитовых стержней.

      • Таким образом вы замкнете цепь, и через воду потечет ток от батарейки.
    3. Положите картон на стакан так, чтобы свободные концы карандашей погрузились в воду. Лист картона должен быть достаточно большим, чтобы устойчиво лежать на стакане. Действуйте аккуратно, чтобы не нарушить правильное расположение карандашей.

      • Чтобы эксперимент удался, графит не должен касаться стенок и дна стакана. Еще раз проверьте это и при необходимости поправьте карандаши.
    4. Понаблюдайте, как вода расщепляется на водород и кислород. От опущенных в воду графитовых стержней начнут подниматься пузырьки газа. Это водород и кислород. Водород будет выделяться на отрицательном, а кислород - на положительном полюсе.

      • Как только вы подключите провода к батарейке и графитовым стержням, через воду потечет электрический ток.
      • Больше пузырьков газа будет образовываться на том карандаше, который подсоединен к отрицательному полюсу, поскольку каждая молекула воды состоит из двух атомов водорода и одного атома кислорода.
    • Если у вас нет карандашей с графитовыми стержнями, вместо них можно использовать две небольшие проволочки. Просто оберните одним концом каждой проволочки соответствующий полюс батарейки, а второй опустите в воду. Получится тот же результат, что и с карандашами.
    • Попробуйте использовать другую батарейку. От вольтажа батарейки зависит величина протекающего тока, которая, в свою очередь, влияет на скорость расщепления молекул воды.

    Предупреждения

    • Если вы добавите в воду электролит, например соль, то учтите, что в ходе эксперимента будет образовываться небольшое количество такого побочного продукта, как хлор. В таких малых количествах он безопасен, однако вы можете почувствовать легкий запах хлора.
    • Проводите данный эксперимент под наблюдением взрослых. Он связан с электричеством и газами, поэтому может представлять опасность, хотя это маловероятно.

Водород - самое экологически чистое топливо на Земле: при его сгорании образуется только вода. В качестве энергоносителя водород можно использовать для получения электричества и тепла в промышленности, в быту, на транспорте. В частности, с помощью водородных топливных элементов, в которых происходит прямое преобразование химической энергии в электричество, уже созданы опытные образцы электромобилей (см. "Наука и жизнь № ). Существует также много способов безопасного хранения и транспортировки водорода. А не нанесут ли вреда природе технологические процессы получения водорода?

В настоящее время водород в промышленных масштабах получают паровой конверсией метана (природного газа). При температуре 750-850 о С в присутствии водяного пара метан и вода расщепляются на водород и монооксид углерода, затем при 200-250°С происходит превращение монооксида углерода и воды в водород и диоксид углерода. Оба процесса эндотермические, и для их поддержания приходится сжигать около половины объема исходного газа, из-за чего экологический эффект оказывается очень низким.

Предлагается использовать для нагрева и подвода тепла высокотемпературные ядерные реакторы с гелиевым теплоносителем. Таким образом можно экономить углеводородное сырье и поставлять на рынки развивающихся стран водородное топливо вместо ядерных реакторов.

Дальнейшее развитие атомно-водородной энергетики пойдет по пути использования в качестве сырья не метана, а воды. Здесь могут быть использованы электролиз, а также термохимические и комбинированные методы получения водорода.

Известный способ термического разложения воды, которое происходит при температуре 2500°С, вряд ли применим, поскольку сложно предотвратить последующую рекомбинацию молекул воды. Однако возможен термохимический процесс разложения воды при температурах порядка 1000°С в присутствии соединений брома и йода. Правда, здесь требуется подведение тепла, и кпд составляет около 50%. На отдельных стадиях процесса наряду с термическим воздействием используется электролиз.

Электролитический водород получить проще всего, но экономически это невыгодно: на получение одного кубометра водорода требуется 4,8 киловатт-часа энергии. Если проводить электролиз перегретого пара, то эффективность процесса повышается, и на получение кубометра водорода уходит около 2,5 киловатт-часа.

В настоящее время "Курчатовский институт" и американская компания "GA" совместно разрабатывают очень перспективный проект газовой турбины-модульного гелиевого реактора. При генерации электричества с использованием прямого газотурбинного цикла можно достичь кпд, равного 50%.

Изобретение предназначено для энергетики и может быть использовано при получении дешевых и экономичных источников энергии. Получают в незамкнутом пространстве перегретый водяной пар с температурой 500-550 o C. Перегретый водяной пар пропускают через постоянное электрическое поле высокого напряжения (6000 В) с получением водорода и кислорода. Способ прост в аппаратурном оформлении, экономичен, пожаро- и взрывобезопасен, высокопроизводителен. 3 ил.

Водород при соединении с кислородом-окислении, занимает первое место по калорийности на 1 кг топлива среди всех горючих используемых для поучения электроэнергии и тепла. Но высокая калорийность водорода до сих пор не используется в получении электроэнергии и тепла и не может конкурировать с углеводородным топливом. Препятствием для использования водорода в энергетике является дорогой способ его получения, который экономически не оправдывается. Для получения водорода в основном применяются электролизные установки, которые малопроизводительны и энергия, затраченная на получение водорода, равна энергии, полученной от сжигания этого водорода. Известен способ получения водорода и кислорода из перегретого водяного пара с температурой 1800-2500 o C, описанный в заявке Великобритании N 1489054 (кл. C 01 B 1/03, 1977). Этот способ сложен, энергоемок и трудноосуществим. Наиболее близким к предложенному является способ получения водорода и кислорода из водяного пара на катализаторе при пропускании этого пара через электрическое поле, описанный в заявке Великобритании N 1585527 (кл. C 01 B 3/04, 1981). К недостаткам этого способа относятся: - невозможность получения водорода в больших количествах; - энергоемкость; - сложность устройства и использование дорогих материалов; -невозможность осуществления этого способа при использовании технической воды, т. к. при температуре насыщенного пара на стенках устройства и на катализаторе будут образовываться отложения и накипь, что приведет к ее быстрому выходу из строя; - для сбора полученных водорода и кислорода используются специальные сборные емкости, что делает способ пожаро- и взрывоопасным. Задачей, на которую направлено изобретение, является устранение вышеуказанных недостатков, а также получение дешевого источника энергии и тепла. Это достигается тем, что в способе получения водорода и кислорода из пара воды, включающем пропускание этого пара через электрическое поле, согласно изобретению используют перегретый пар с температурой 500-550 o C и пропускают его через электрическое поле постоянного тока высокого напряжения, вызывая тем самым диссоциацию пара и разделение его на атомы водорода и кислорода. Предложенный способ основан на следующем. 1. Электронная связь между атомами водорода и кислорода ослабевает пропорционально повышению температуры воды. Это подтверждается практикой при сжигании сухого каменного угля. Перед тем как сжигать сухой уголь, его поливают водой. Мокрый уголь дает больше тепла, лучше горит. Это происходит от того, что при высокой температуре горения угля вода распадается на водород и кислород. Водород сгорает и дает дополнительные калории углю, а кислород увеличивает объем кислорода воздуха в топке, что способствует лучшему и полному сгоранию угля. 2. Температура воспламенения водорода от 580 до 590 o C, разложение воды должно быть ниже порога зажигания водорода. 3. Электронная связь между атомами водорода и кислорода при температуре 550 o C еще достаточна для образования молекул воды, но орбиты электронов уже искажены, связь с атомами водорода и кислорода ослаблена. Для того, чтобы электроны сошли со своих орбит и атомная связь между ними распалась, нужно электронам добавить еще энергии, но уже не тепла, а энергию электрического поля высокого напряжения. Тогда потенциальная энергия электрического поля преобразуется в кинетическую энергию электрона. Скорость электронов в электрическом поле постоянного тока возрастает пропорционально квадратному корню напряжения, приложенного к электродам. 4. Разложение перегретого пара в электрическом поле может происходить при небольшой скорости пара, а такую скорость пара при температуре 550 o C можно получить только в незамкнутом пространстве. 5. Для получения водорода и кислорода в больших количествах нужно использовать закон сохранения материи. Из этого закона следует: в каком количестве была разложена вода на водород и кислород, в таком же количестве получим воду при окислении этих газов. Возможность осуществления изобретения подтверждается примерами, осуществляемыми в трех вариантах установок. Все три варианта установок изготавливаются из одинаковых, унифицированных изделий цилиндрической формы из стальных труб. 1. Работа и устройство установки первого варианта (схема 1). Во всех трех вариантах работа установок начинается с приготовления перегретого пара в незамкнутом пространстве с температурой пара 550 o C. Незамкнутое пространство обеспечивает скорость по контуру разложения пара до 2 м/с. Приготовление перегретого пара происходит в стальной трубе из жаропрочной стали /стартер/, диаметр и длина которого зависит от мощности установки. Мощность установки определяет количество разлагаемой воды, литров/с. Один литр воды содержит 124 л водорода и 622 л кислорода, в пересчете на калории составляет 329 ккал. Перед пуском установки стартер разогревается от 800 до 1000 o C /разогрев производится любым способом/. Один конец стартера заглушен фланцем, через который поступает дозированная вода для разложения на рассчитанную мощность. Вода в стартере нагревается до 550 o C, свободно выходит из другого конца стартера и поступает в камеру разложения, с которой стартер соединен фланцами. В камере разложения перегретый пар разлагается на водород и кислород электрическим полем, создаваемым положительным и отрицательным электродами, на которые подается постоянный ток с напряжением 6000 В. Положительным электродом служит сам корпус камеры /труба/, а отрицательным электродом служит труба из тонкостенной стали, смонтированная по центру корпуса, по всей поверхности которой имеются отверстия диаметром по 20 мм. Труба - электрод представляет собой сетку, которая не должна создавать сопротивление для входа в электрод водорода. Электрод крепится к корпусу трубы на проходных изоляторах и по этому же креплению подается высокое напряжение. Конец трубы отрицательного электрода оканчивается электроизоляционной и термостойкой трубой для выхода водорода через фланец камеры. Выход кислорода из корпуса камеры разложения через стальной патрубок. Положительный электрод /корпус камеры/ должен быть заземлен и заземлен положительный полюс у источника питания постоянного тока. Выход водорода по отношению к кислороду 1:5. 2. Работа и устройство установки по второму варианту (схема 2). Установка второго варианта предназначена для получения большого количества водорода и кислорода за счет параллельного разложения большого количества воды и, окисления газов в котлах для получения рабочего пара высокого давления для электростанций, работающих на водороде /в дальнейшем ВЭС/. Работа установки, как и в первом варианте, начинается с приготовления перегретого пара в стартере. Но этот стартер отличается от стартера в 1-м варианте. Отличие заключается в том, что на конце стартера приварен отвод, в котором смонтирован переключатель пара, имеющий два положения - "пуск" и "работа". Полученный в стартере пар поступает в теплообменник, который предназначен для корректировки температуры восстановленной воды после окисления в котле /К1/ до 550 o C. Теплообменник /То/ - труба, как и все изделия с таким же диаметром. Между фланцами трубы вмонтированы трубки из жаропрочной стали, по которым проходит перегретый пар. Трубки обтекаются водой из замкнутой системы охлаждения. Из теплообменника перегретый пар поступает в камеру разложения, точно такую же, как и в первом варианте установки. Водород и кислород из камеры разложения поступают в горелку котла 1, в которой водород поджигается зажигалкой, - образуется факел. Факел, обтекая котел 1, создает в нем рабочий пар высокого давления. Хвост факела из котла 1 поступает в котел 2 и своим теплом в котле 2 подготавливает пар для котла 1. Начинается непрерывное окисление газов по всему контуру котлов по известной формуле: 2H 2 + O 2 = 2H 2 O + тепло В результате окисления газов восстанавливается вода и выделяется тепло. Это тепло в установке собирают котлы 1 и котлы 2, превращая это тепло в рабочий пар высокого давления. А восстановленная вода с высокой температурой поступает в следующий теплообменник, из него в следующую камеру разложения. Такая последовательность перехода воды из одного состояния в другое продолжается столько раз, сколько требуется получить от этого собранного тепла энергии в виде рабочего пара для обеспечения проектной мощности ВЭС. После того, как первая порция перегретого пара обойдет все изделия, даст контуру расчетную энергию и выйдет из последнего в контуре котла 2, перегретый пар по трубе направляется в переключатель пара, смонтированный на стартере. Переключатель пара из положения "пуск" переводится в положение "работа", после чего он попадает в стартер. Стартер отключается /вода, разогрев/. Из стартера перегретый пар поступает в первый теплообменник, а из него в камеру разложения. Начинается новый виток перегретого пара по контуру. С этого момента контур разложения и плазмы замкнут сам на себя. Вода установкой расходуется только на образование рабочего пара высокого давления, которая берется из обратки контура отработанного пара после турбины. Недостаток силовых установок для ВЭС - это их громоздкость. Например, для ВЭС на 250 МВт нужно разлагать одновременно 455 л воды в одну секунду, а для этого потребуется 227 камер разложения, 227 теплообменников, 227 котлов /К1/, 227 котлов /К2/. Но такая громоздкость стократ будет оправдана уже только тем, что топливом для ВЭС будет только вода, не говоря уже о экологической чистоте ВЭС, дешевой электрической энергии и тепле. 3-й вариант силовой установки (схема 3). Это точно такая же силовая установка, как и вторая. Разница между ними в том, что эта установка работает постоянно от стартера, контур разложения пара и сжигания водорода в кислороде не замкнут сам на себя. Конечным изделием в установке будет теплообменник с камерой разложения. Такая компоновка изделий позволит получать кроме электрической энергии и тепла, еще водород и кислород или водород и озон. Силовая установка на 250 МВт при работе от стартера будет расходовать энергию на разогрев стартера, воду 7,2 м 3 /ч и воду на образование рабочего пара 1620 м 3 /ч/вода используется из обратного контура отработанного пара/. В силовой установке для ВЭС температура воды 550 o C. Давление пара 250 ат. Расход энергии на создание электрического поля на одну камеру разложения ориентировочно составит 3600 кВтч. Силовая установка на 250 МВт при размещении изделий на четырех этажах займет площадь 114 х 20 м и высоту 10 м. Не учитывая площадь под турбину, генератор и трансформатор на 250 кВА - 380 х 6000 В. Изобретение имеет следующие преимущества. 1. Тепло, полученное при окислении газов, можно использовать непосредственно на месте, причем водород и кислород получаются при утилизации отработанного пара и технической воды. 2. Небольшой расход воды при получении электроэнергии и тепла. 3. Простота способа. 4. Значительная экономия энергии, т.к. она затрачивается только на разогрев стартера до установившегося теплового режима. 5. Высокая производительность процесса, т.к. диссоциация молекул воды длится десятые доли секунды. 6. Взрыво- и пожаробезопасность способа, т.к. при его осуществлении нет необходимости в емкостях для сбора водорода и кислорода. 7. В процессе работы установки вода многократно очищается, преобразуясь в дистиллированную. Это исключает осадки и накипь, что увеличивает срок службы установки. 8. Установка изготавливается из обычной стали; за исключением котлов, изготавливаемых из жаропрочных сталей с футеровкой и экранированием их стенок. То есть не требуются специальные дорогие материалы. Изобретение может найти применение в промышленности путем замены углеводородного и ядерного топлива в силовых установках на дешевое, распространенное и экологически чистое - воду при сохранении мощности этих установок.

Формула изобретения

Способ получения водорода и кислорода из пара воды, включающий пропускание этого пара через электрическое поле, отличающийся тем, что используют перегретый пар воды с температурой 500 - 550 o C, пропускаемый через электрическое поле постоянного тока высокого напряжения для диссоциации пара и разделения его на атомы водорода и кислорода.

Похожие патенты:

Изобретение относится к технологии углеграфитовых материалов, в частности к устройству, обеспечивающему возможность получения соединений внедрения в графит сильных кислот (СВГ), например H2SO4, HNO3 и др., путем анодного окисления графита в растворах указанных кислот

Если найти дешёвый и простой способ электролиза/фотолиза воды, то мы получим невероятно богатый и чистый источник энергии - водородное топливо. Сгорая в кислороде, водород не образует никаких побочных выделений, кроме воды. Теоретически, электролиз - очень простой процесс: достаточно пропустить электрический ток через воду, и она разделяется на водород и кислород. Но сейчас все разработанные техпроцессы требуют такого большого количества энергии, что электролиз становится невыгодным.

Теперь учёные решили часть головоломки. Исследователи из Технион-Израильского технологического института разработали метод проведения второго из двух шагов окислительно-восстановительной реакции - восстановления - в видимом (солнечном) свете с энергетической эффективностью 100% , значительно превзойдя предыдущий рекорд 58,5%.

Осталось усовершенствовать полуреакцию окисления.

Столь высокой эффективности удалось добиться благодаря тому, что в процессе используется только энергия света. Катализаторами (фотокатализаторами) выступают наностержни длиной 50 нм. Они абсорбируют фотоны от источника освещения - и выдают электроны.

В полуреакции окисления производятся четыре отдельных атома водорода и молекула О 2 (которая не нужна). В полуреакции восстановления четыре атома водорода спариваются в две молекулы H 2 , производя полезную форму водорода - газ H 2 ,

Эффективность 100% означает, что все фотоны, поступившие в систему, участвуют в генерации электронов.

На такой эффективности каждый наностержень генерирует около 100 молекул H 2 в секунду.

Сейчас учёные работают над оптимизацией техпроцесса, который пока что требует щелочной среды с невероятно высоким pH. Такой уровень никак не приемлем для реальных условий эксплуатации.

К тому же, наностержни подвержены коррозии, что тоже не слишком хорошо.

Тем не менее, сегодня человечество стало на шажок ближе к получению неиссякаемого источника чистой энергии в виде водородного топлива.