Что больше десятые или сотые доли. Чтение десятичных дробей

Десятичная дробь в обязательном порядке содержит запятую. Та числовая часть дроби, которая располагается левее запятой, называется целой; правее - дробной:

5,28 5 - целая часть 28 - дробная часть

Дробная часть десятичной дроби состоит из десятичных знаков (десятичных разрядов):

  • десятые - 0,1 (одна десятая);
  • сотые - 0,01 (одна сотая);
  • тысячные - 0,001 (одна тысячная);
  • десятитысячные - 0,0001 (одна десятитысячная);
  • стотысячные - 0,00001 (одна стотысячная);
  • миллионные - 0,000001 (одна миллионная);
  • десятимиллионные - 0,0000001 (одна десятимиллионная);
  • стомиллионные - 0,00000001 (одна стомиллионная);
  • миллиардные - 0,000000001 (одна миллиардная) и т. д.
  • прочитать число, составляющее целую часть дроби и добавить слово "целых ";
  • прочитать число, составляющее дробную часть дроби и добавить название младшего разряда.

Например:

  • 0,25 - ноль целых двадцать пять сотых;
  • 9,1 - девять целых одна десятая;
  • 18,013 - восемнадцать целых тринадцать тысячных;
  • 100,2834 - сто целых две тысячи восемьсот тридцать четыре десятитысячных.

Запись десятичных дробей

Чтобы записать десятичную дробь, необходимо:

  • записать целую часть дроби и поставить запятую (число, означающее целую часть дроби всегда заканчивается словом "целых ");
  • записать дробную часть дроби таким образом, чтобы последняя цифра попала в нужный разряд (при отсутствии значащих цифр в определенных десятичных разрядах они заменяются нулями).

Например:

  • двадцать целых девять десятых - 20,9 - в этом примере все просто;
  • пять целых одна сотая - 5,01 - слово "сотая" означает, что после запятой должны стоять две цифры, но, поскольку в числе 1 нет разряда десятых, он заменяется нулем;
  • ноль целых восемьсот восемь тысячных - 0,808;
  • три целых пятнадцать десятых - такую десятичную дробь записать невозможно, потому, что в произношении дробной части допущена ошибка - число 15 содержит два разряда, а слово "десятых" подразумевает только один. Правильно будет три целых пятнадцать сотых (или тысячных, десятитысячных и т. д.).

Сравнение десятичных дробей

Сравнение десятичных дробей проводится аналогично сравнению натуральных чисел .

  1. сначала сравниваются целые части дробей - больше будет та десятичная дробь у которой больше ее целая часть;
  2. если целые части дробей равны, сравнивают поразрядно дробные части, слева направо, начиная от запятой: десятые, сотые, тысячные и т.д. Сравнение ведут до первого несовпадения - больше будет та десятичная дробь у которой будет больше неравная цифра в соответствующем разряде дробной части. Например: 1,28 3 > 1,27 9, т. к. в сотых разрядах у первой дроби стоит 8, а у второй 7.

Десятичная дробь отличается от обыкновенной дроби тем, что знаменатель у нее — это разрядная единица.

Например:

Десятичные дроби выделены из обыкновенных дробей в отдельный вид, что привело к собственным правилам сравнения, сложения, вычитания, умножения и деления этих дробей. В принципе, с десятичными дробями можно работать и по правилам обыкновенных дробей. Собственные правила преобразования десятичных дробей упрощают вычисления, а правила преобразования обыкновенных дробей в десятичные, и наоборот, служат связкой между этими видами дроби.

Запись и чтение десятичных дробей позволяет их записывать, сравнивать и производить действия над ними по правилам, очень похожим на правила действий с натуральными числами.

Впервые система десятичных дробей и действий над ними была изложена в XV в. самаркандским математиком и астрономом Джемшид ибн-Масудаль-Каши в книге «Ключ к искусству счета».

Целая часть десятичной дроби отделена от дробной части запятой, в некоторых странах (США) ставят точку. Если в десятичной дроби нет целой части, то перед запятой ставят число 0.

К дробной части десятичной дроби справа можно дописывать любое количество нулей, это величину дроби не изменяет. Дробная часть десятичной дроби читается по последнему значащему разряду.

Например:
0,3 — три десятых
0,75 - семьдесят пять сотых
0,000005 - пять миллионных.

Чтение целой части десятичной дроби такое же, как и натуральных чисел.

Например:
27,5 - двадцать семь...;
1,57 — одна...

После целой части десятичной дроби произносится слово «целых».

Например:
10.7 — десять целых семь десятых

0,67 - ноль целых шестьдесят семь сотых.

Десятичные знаки - это цифры дробной части. Дробная часть читается не по разрядам (в отличие от натуральных чисел), а целиком, поэтому дробная часть десятичной дроби определяется последним справа значащим разрядом. Разрядная система дробной части десятичной дроби несколько иная, чем у натуральных чисел.

  • 1-й разряд после занятой — разряд десятых
  • 2-й разряд после запятой — разряд сотых
  • 3-й разряд после запятой - разряд тысячных
  • 4-й разряд после запятой — разряд десятитысячных
  • 5-й разряд после запятой — разряд стотысячных
  • 6-й разряд после запятой — разряд миллионных
  • 7-й разряд после запятой — разряд десятимиллионных
  • 8-й разряд после запятой — разряд стомиллионных

В вычислениях чаще всего используются первые три разряда. Большая разрядность дробной части десятичных дробей используется только в специфических отраслях знаний, где вычисляются бесконечно малые величины.

Перевод десятичной дроби в смешанную дробь состоит н следующем: число, стоящее до запятой записать целой частью смешанной дроби; число, стоящее после запятой - числителем ее дробной части, а в знаменателе дробной части записать единицу со столькими нулями, сколько цифр стоит после запятой.

3.4 Правильный порядок
В предыдущем разделе мы сравнивали числа по их положению на числовой прямой. Это хороший способ сравнивать величины чисел в десятичной записи. Этот способ работает всегда, но это трудоемко и неудобно делать всякий раз, когда нужно сравнить два числа. Существует другой хороший способ выяснить, какое из двух чисел больше.

Пример A.

Рассмотрим числа из предыдущего раздела и сравним 0,05 и 0,2.


Чтобы выяснить, какое число больше, сравним сначала их целые части. Оба числа в нашем примере имеют равное количество целых - 0. Сравним тогда их десятые части. Число 0,05 имеет 0 десятых, а число 0,2 имеет 2 десятых. То, что число 0,05 имеет 5 сотых, ни имеет значения, поскольку десятые доли определяют, что число 0,2 больше. Мы можем, таким образом, записать:

Оба числа имеют 0 целых и 6 десятых, и мы пока не можем определить, какое из них больше. Однако, число 0,612 имеет всего 1 сотую часть, а число 0,62 – две. Тогда, мы можем определить, что

0,62 > 0,612

То, что число 0,612 имеет 2 тысячных, не играет роли, оно все равно меньше, чем 0,62.

Мы можем это проиллюстрировать на картинке:

0,612

0,62

Для того, чтобы определить, какое из двух чисел в десятичной записи больше, нужно сделать следующее:

1. Сравнить целые части. То число, у которого целая часть больше и будет больше.

2 . Если целые части равны, сравнить десятые части. То число, у которого десятых частей больше, и будет больше.

3 . Если десятые части равны, сравнить сотые части. То число, у которого сотых частей больше, и будет больше.

4 . Если сотые части равны, сравнить тысячные части. То число, у которого тысячных частей больше, и будет больше.


В этой статье мы рассмотрим тему «сравнение десятичных дробей ». Сначала обсудим общий принцип сравнения десятичных дробей. После этого разберемся, какие десятичные дроби являются равными, а какие – неравными. Дальше научимся определять, какая десятичная дробь больше, а какая меньше. Для этого изучим правила сравнения конечных, бесконечных периодических и бесконечных непериодических дробей. Всю теорию снабдим примерами с подробными решениями. В заключение остановимся на сравнении десятичных дробей с натуральными числами, обыкновенными дробями и смешанными числами.

Сразу скажем, что здесь мы будем говорить лишь о сравнении положительных десятичных дробей (смотрите положительные и отрицательные числа). Остальные случаи разобраны в статьях сравнение рациональных чисел и сравнение действительных чисел .

Навигация по странице.

Общий принцип сравнения десятичных дробей

Исходя из этого принципа сравнения, выводятся правила сравнения десятичных дробей, позволяющие обойтись без перевода сравниваемых десятичных дробей в обыкновенные дроби. Эти правила, а также примеры их применения, мы разберем в следующих пунктах.

По схожему принципу сравниваются конечные десятичные дроби или бесконечные периодические десятичные дроби с натуральными числами , обыкновенными дробями и смешанными числами : сравниваемые числа заменяются соответствующими им обыкновенными дробями, после чего сравниваются обыкновенные дроби.

Что касается сравнения бесконечных непериодических десятичных дробей , то оно обычно сводится к сравнению конечных десятичных дробей. Для этого рассматривается такое количество знаков сравниваемых бесконечных непериодических десятичных дробей, которое позволяет получить результат сравнения.

Равные и неравные десятичные дроби

Сначала введем определения равных и неравных конечных десятичных дробей .

Определение.

Две конечные десятичные дроби называются равными , если равны соответствующие им обыкновенные дроби, в противном случае эти десятичные дроби называются неравными .

На основании этого определения легко обосновать следующее утверждение: если в конце данной десятичной дроби приписать или отбросить несколько цифр 0 , то получится равная ей десятичная дробь. Например, 0,3=0,30=0,300=… , а 140,000=140,00=140,0=140 .

Действительно, дописывание или отбрасывание в конце десятичной дроби нуля справа соответствует умножению или делению на 10 числителя и знаменателя соответствующей обыкновенной дроби. А мы знаем основное свойство дроби , которое гласит, что умножение или деление числителя и знаменателя дроби на одно и то же натуральное число дает дробь, равную исходной. Этим доказано, что дописывание или отбрасывание нулей справа в дробной части десятичной дроби дает дробь, равную исходной.

Например, десятичной дроби 0,5 отвечает обыкновенная дробь 5/10 , после дописывания нуля справа получается десятичная дробь 0,50 , которой отвечает обыкновенная дробь 50/100 , а . Таким образом, 0,5=0,50 . Обратно, если в десятичной дроби 0,50 отбросить справа 0 , то мы получим дробь 0,5 , так от обыкновенной дроби 50/100 мы придем к дроби 5/10 , но . Следовательно, 0,50=0,5 .

Переходим к определению равных и неравных бесконечных периодических десятичных дробей .

Определение.

Две бесконечные периодические дроби равны , если равны отвечающие им обыкновенные дроби; если же соответствующие им обыкновенные дроби не равны, то сравниваемые периодические дроби тоже не равны .

Из данного определения следуют три вывода:

  • Если записи периодических десятичных дробей полностью совпадают, то такие бесконечные периодические десятичные дроби равны. Например, периодические десятичные дроби 0,34(2987) и 0,34(2987) равны.
  • Если периоды сравниваемых десятичных периодических дробей начинаются с одинаковой позиции, первая дробь имеет период 0 , вторая – период 9 , и значение разряда, предшествующего периоду 0 на единицу больше, чем значение разряда, предшествующего периоду 9 , то такие бесконечные периодические десятичные дроби равны. Например, периодические дроби 8,3(0) и 8,2(9) равны, также равны дроби 141,(0) и 140,(9) .
  • Две любые другие периодические дроби не являются равными. Приведем примеры неравных бесконечных периодических десятичных дробей: 9,0(4) и 7,(21) , 0,(12) и 0,(121) , 10,(0) и 9,8(9) .

Осталось разобраться с равными и неравными бесконечными непериодическими десятичными дробями . Как известно, такие десятичные дроби не могут быть переведены в обыкновенные дроби (такие десятичные дроби представляют иррациональные числа), поэтому сравнение бесконечных непериодических десятичных дробей нельзя свести к сравнению обыкновенных дробей.

Определение.

Две бесконечные непериодические десятичные дроби равны , если их записи полностью совпадают.

Но есть один нюанс: невозможно увидеть «законченную» запись бесконечных непериодических десятичных дробей, следовательно, невозможно убедиться и в полном совпадении их записей. Как же быть?

При сравнении бесконечных непериодических десятичных дробей рассматривают лишь конечное число знаков сравниваемых дробей, которое позволяет сделать необходимые выводы. Таким образом, сравнение бесконечных непериодических десятичных дробей сводится к сравнению конечных десятичных дробей.

При таком подходе можно говорить о равенстве бесконечных непериодических десятичных дробей лишь с точностью до рассматриваемого разряда. Приведем примеры. Бесконечные непериодические десятичные дроби 5,45839… и 5,45839… равны с точностью до стотысячных, так как равны конечные десятичные дроби 5,45839 и 5,45839 ; непериодические десятичные дроби 19,54… и 19,54810375… равны с точностью до сотых, так как равны дроби 19,54 и 19,54 .

Неравенство бесконечных непериодических десятичных дробей при таком подходе устанавливается вполне определенно. Например, бесконечные непериодические десятичные дроби 5,6789… и 5,67732… не равны, так как очевидны различия в их записях (не равны конечные десятичные дроби 5,6789 и 5,6773 ). Бесконечные десятичные дроби 6,49354… и 7,53789… тоже не равны.

Правила сравнения десятичных дробей, примеры, решения

После установления факта неравенства двух десятичных дробей, часто нужно узнать, какая из этих дробей больше, а какая – меньше другой. Сейчас мы разберем правила сравнения десятичных дробей, позволяющие ответить на поставленный вопрос.

Во многих случаях бывает достаточно сравнить целые части сравниваемых десятичных дробей. Справедливо следующее правило сравнения десятичных дробей : больше та десятичная дробь, целая часть которой больше, и меньше та десятичная дробь, целая часть которой меньше.

Это правило относится как к конечным десятичным дробям, так и к бесконечным. Рассмотрим решения примеров.

Пример.

Сравните десятичные дроби 9,43 и 7,983023… .

Решение.

Очевидно, данные десятичные дроби не равны. Целая часть конечной десятичной дроби 9,43 равна 9 , а целая часть бесконечной непериодической дроби 7,983023… равна 7 . Так как 9>7 (смотрите сравнение натуральных чисел), то 9,43>7,983023 .

Ответ:

9,43>7,983023 .

Пример.

Какая из десятичных дробей 49,43(14) и 1 045,45029… меньше?

Решение.

Целая часть периодической дроби 49,43(14) меньше, чем целая часть бесконечной непериодической десятичной дроби 1 045,45029… , следовательно, 49,43(14)<1 045,45029… .

Ответ:

49,43(14) .

Если целые части сравниваемых десятичных дробей равны, то для выяснения, какая из них больше, а какая - меньше, приходится сравнивать дробные части. Сравнение дробных частей десятичных дробей проводится поразрядно - от разряда десятых к более младшим.

Для начала рассмотрим пример сравнения двух конечных десятичных дробей.

Пример.

Выполните сравнение конечных десятичных дробей 0,87 и 0,8521 .

Решение.

Целые части данных десятичных дробей равны (0=0 ), поэтому переходим к сравнению дробных частей. Значения разряда десятых равны (8=8 ), а значение разряда сотых дроби 0,87 больше, чем значение разряда сотых дроби 0,8521 (7>5 ). Следовательно, 0,87>0,8521 .

Ответ:

0,87>0,8521 .

Иногда, чтобы выполнить сравнение конечных десятичных дробей с разным количеством десятичных знаков, к дроби с меньшим количеством десятичных знаков приходится дописывать некоторое количество нулей справа. Достаточно удобно уравнивать количество десятичных знаков до начала сравнения конечных десятичных дробей, дописав к одной из них некоторое количество нулей справа.

Пример.

Сравните конечные десятичные дроби 18,00405 и 18,0040532 .

Решение.

Очевидно, данные дроби неравны, так как их записи отличаются, но при этом они имеют равные целые части (18=18 ).

Перед поразрядным сравнением дробных частей данных дробей уравняем количество десятичных знаков. Для этого припишем две цифры 0 в конце дроби 18,00405 , при этом получим равную ей десятичную дробь 18,0040500 .

Значения десятичных разрядов дробей 18,0040500 и 18,0040532 равны вплоть до стотысячных, а значение разряда миллионных дроби 18,0040500 меньше значения соответствующего разряда дроби 18,0040532 (0<3 ), поэтому, 18,0040500<18,0040532 , следовательно, 18,00405<18,0040532 .

Ответ:

18,00405<18,0040532 .

При сравнении конечной десятичной дроби с бесконечной, конечная дробь заменяется равной ей бесконечной периодической дробью с периодом 0 , после чего проводится сравнение по разрядам.

Пример.

Сравните конечную десятичную дробь 5,27 с бесконечной непериодической десятичной дробью 5,270013… .

Решение.

Целые части данных десятичных дробей равны. Значения разрядов десятых и сотых данных дробей равны, и чтобы выполнить дальнейшее сравнение, конечную десятичную дробь заменяем равной ей бесконечной периодической дробью с периодом 0 вида 5,270000… . До пятого знака после запятой значения разрядов десятичных дробей 5,270000… и 5,270013… равны, а на пятом знаке имеем 0<1 . Таким образом, 5,270000…<5,270013… , откуда следует, что 5,27<5,270013… .

Ответ:

5,27<5,270013… .

Сравнение бесконечных десятичных дробей также проводится поразрядно , и заканчивается после того, как только значения какого-то разряда оказываются разными.

Пример.

Сравните бесконечные десятичные дроби 6,23(18) и 6,25181815… .

Решение.

Целые части данных дробей равны, также равны значения разряда десятых. А значение разряда сотых периодической дроби 6,23(18) меньше разряда сотых бесконечной непериодической десятичной дроби 6,25181815… , следовательно, 6,23(18)<6,25181815… .

Ответ:

6,23(18)<6,25181815… .

Пример.

Какая из бесконечных периодических десятичных дробей 3,(73) и 3,(737) больше?

Решение.

Понятно, что 3,(73)=3,73737373… и 3,(737)=3,737737737… . На четвертом знаке после запятой поразрядное сравнение заканчивается, так как там имеем 3<7 . Таким образом, 3,73737373…<3,737737737… , то есть, десятичная дробь 3,(737) больше, чем дробь 3,(73) .

Ответ:

3,(737) .

Сравнение десятичных дробей с натуральными числами, обыкновенными дробями и смешанными числами.

Получить результат сравнения десятичной дроби с натуральным числом позволяет сравнение целой части данной дроби с данным натуральным числом. При этом периодические дроби с периодами 0 или 9 нужно предварительно заменить равными им конечными десятичными дробями.

Справедливо следующее правило сравнения десятичной дроби и натурального числа : если целая часть десятичной дроби меньше данного натурального числа, то и вся дробь меньше этого натурального числа; если целая часть дроби больше или равна данному натуральному числу, то дробь больше данного натурального числа.

Рассмотрим примеры применения этого правила сравнения.

Пример.

Сравните натуральное число 7 с десятичной дробью 8,8329… .

Решение.

Так как данное натуральное число меньше, чем целая часть данной десятичной дроби, то это число меньше данной десятичной дроби.

Ответ:

7<8,8329… .

Пример.

Сравните натуральное число 7 и десятичную дробь 7,1 .