Как найти проекцию точки на плоскость: методика определения и пример решения задачи. Проекция точки на плоскость, координаты проекции точки на плоскость Основные проекции точки

В этой статье мы найдем ответы на вопросы о том, как создать проекцию точки на плоскость и как определить координаты этой проекции. Опираться в теоретической части будем на понятие проецирования. Дадим определения терминам, сопроводим информацию иллюстрациями. Закрепим полученные знания при решении примеров.

Проецирование, виды проецирования

Для удобства рассмотрения пространственных фигур используют чертежи с изображением этих фигур.

Определение 1

Проекция фигуры на плоскость – чертеж пространственной фигуры.

Очевидно, что для построения проекции существует ряд используемых правил.

Определение 2

Проецирование – процесс построения чертежа пространственной фигуры на плоскости с использованием правил построения.

Плоскость проекции - это плоскость, в которой строится изображение.

Использование тех или иных правил определяет тип проецирования: центральное или параллельное .

Частным случаем параллельного проецирования является перпендикулярное проецирование или ортогональное: в геометрии в основном используют именно его. По этой причине в речи само прилагательное «перпендикулярное» часто опускают: в геометрии говорят просто «проекция фигуры» и подразумевают под этим построение проекции методом перпендикулярного проецирования. В частных случаях, конечно, может быть оговорено иное.

Отметим тот факт, что проекция фигуры на плоскость по сути есть проекция всех точек этой фигуры. Поэтому, чтобы иметь возможность изучать пространственную фигуру на чертеже, необходимо получить базовый навык проецировать точку на плоскость. О чем и будем говорить ниже.

Напомним, что чаще всего в геометрии, говоря о проекции на плоскость, имеют в виду применение перпендикулярной проекции.

Произведем построения, которые дадут нам возможность получить определение проекции точки на плоскость.

Допустим, задано трехмерное пространство, а в нем - плоскость α и точка М 1 , не принадлежащая плоскости α . Начертим через заданную точку М 1 прямую а перпендикулярно заданной плоскости α . Точку пересечения прямой a и плоскости α обозначим как H 1 , она по построению будет служить основанием перпендикуляра, опущенного из точки М 1 на плоскость α .

В случае, если задана точка М 2 , принадлежащая заданной плоскости α , то М 2 будет служить проекцией самой себя на плоскость α .

Определение 3

– это либо сама точка (если она принадлежит заданной плоскости), либо основание перпендикуляра, опущенного из заданной точки на заданную плоскость.

Нахождение координат проекции точки на плоскость, примеры

Пускай в трехмерном пространстве заданы: прямоугольная система координат O x y z , плоскость α , точка М 1 (x 1 , y 1 , z 1) . Необходимо найти координаты проекции точки М 1 на заданную плоскость.

Решение очевидным образом следует из данного выше определения проекции точки на плоскость.

Обозначим проекцию точки М 1 на плоскость α как Н 1 . Согласно определению, H 1 является точкой пересечения данной плоскости α и прямой a , проведенной через точку М 1 (перпендикулярной плоскости). Т.е. необходимые нам координаты проекции точки М 1 – это координаты точки пересечения прямой a и плоскости α .

Таким образом, для нахождения координат проекции точки на плоскость необходимо:

Получить уравнение плоскости α (в случае, если оно не задано). Здесь вам поможет статья о видах уравнений плоскости;

Определить уравнение прямой a , проходящей через точку М 1 и перпендикулярной плоскости α (изучите тему об уравнении прямой, проходящей через заданную точку перпендикулярно к заданной плоскости);

Найти координаты точки пересечения прямой a и плоскости α (статья – нахождение координат точки пересечения плоскости и прямой). Полученные данные и будут являться нужными нам координатами проекции точки М 1 на плоскость α .

Рассмотрим теорию на практических примерах.

Пример 1

Определите координаты проекции точки М 1 (- 2 , 4 , 4) на плоскость 2 х – 3 y + z - 2 = 0 .

Решение

Как мы видим, уравнение плоскости нам задано, т.е. составлять его необходимости нет.

Запишем канонические уравнения прямой a , проходящей через точку М 1 и перпендикулярной заданной плоскости. В этих целях определим координаты направляющего вектора прямой a . Поскольку прямая а перпендикулярна заданной плоскости, то направляющий вектор прямой a – это нормальный вектор плоскости 2 х – 3 y + z - 2 = 0 . Таким образом, a → = (2 , - 3 , 1) – направляющий вектор прямой a .

Теперь составим канонические уравнения прямой в пространстве, проходящей через точку М 1 (- 2 , 4 , 4) и имеющей направляющий вектор a → = (2 , - 3 , 1) :

x + 2 2 = y - 4 - 3 = z - 4 1

Для нахождения искомых координат следующим шагом определим координаты точки пересечения прямой x + 2 2 = y - 4 - 3 = z - 4 1 и плоскости 2 х - 3 y + z - 2 = 0 . В этих целях переходим от канонических уравнений к уравнениям двух пересекающихся плоскостей:

x + 2 2 = y - 4 - 3 = z - 4 1 ⇔ - 3 · (x + 2) = 2 · (y - 4) 1 · (x + 2) = 2 · (z - 4) 1 · (y - 4) = - 3 · (z + 4) ⇔ 3 x + 2 y - 2 = 0 x - 2 z + 10 = 0

Составим систему уравнений:

3 x + 2 y - 2 = 0 x - 2 z + 10 = 0 2 x - 3 y + z - 2 = 0 ⇔ 3 x + 2 y = 2 x - 2 z = - 10 2 x - 3 y + z = 2

И решим ее, используя метод Крамера:

∆ = 3 2 0 1 0 - 2 2 - 3 1 = - 28 ∆ x = 2 2 0 - 10 0 - 2 2 - 3 1 = 0 ⇒ x = ∆ x ∆ = 0 - 28 = 0 ∆ y = 3 2 0 1 - 10 - 2 2 2 1 = - 28 ⇒ y = ∆ y ∆ = - 28 - 28 = 1 ∆ z = 3 2 2 1 0 - 10 2 - 3 2 = - 140 ⇒ z = ∆ z ∆ = - 140 - 28 = 5

Таким образом, искомые координаты заданной точки М 1 на заданную плоскость α будут: (0 , 1 , 5) .

Ответ: (0 , 1 , 5) .

Пример 2

В прямоугольной системе координат O x y z трехмерного пространства даны точки А (0 , 0 , 2) ; В (2 , - 1 , 0) ; С (4 , 1 , 1) и М 1 (-1, -2, 5). Необходимо найти координаты проекции М 1 на плоскость А В С

Решение

В первую очередь запишем уравнение плоскости, проходящей через три заданные точки:

x - 0 y - 0 z - 0 2 - 0 - 1 - 0 0 - 2 4 - 0 1 - 0 1 - 2 = 0 ⇔ x y z - 2 2 - 1 - 2 4 1 - 1 = 0 ⇔ ⇔ 3 x - 6 y + 6 z - 12 = 0 ⇔ x - 2 y + 2 z - 4 = 0

Запишем параметрические уравнения прямой a , которая будет проходить через точку М 1 перпендикулярно плоскости А В С. Плоскость х – 2 y + 2 z – 4 = 0 имеет нормальный вектор с координатами (1 , - 2 , 2) , т.е. вектор a → = (1 , - 2 , 2) – направляющий вектор прямой a .

Теперь, имея координаты точки прямой М 1 и координаты направляющего вектора этой прямой, запишем параметрические уравнения прямой в пространстве:

Затем определим координаты точки пересечения плоскости х – 2 y + 2 z – 4 = 0 и прямой

x = - 1 + λ y = - 2 - 2 · λ z = 5 + 2 · λ

Для этого в уравнение плоскости подставим:

x = - 1 + λ , y = - 2 - 2 · λ , z = 5 + 2 · λ

Теперь по параметрическим уравнениям x = - 1 + λ y = - 2 - 2 · λ z = 5 + 2 · λ найдем значения переменных x , y и z при λ = - 1: x = - 1 + (- 1) y = - 2 - 2 · (- 1) z = 5 + 2 · (- 1) ⇔ x = - 2 y = 0 z = 3

Таким образом, проекция точки М 1 на плоскость А В С будет иметь координаты (- 2 , 0 , 3) .

Ответ: (- 2 , 0 , 3) .

Отдельно остановимся на вопросе нахождения координат проекции точки на координатные плоскости и плоскости, которые параллельны координатным плоскостям.

Пусть задана точки М 1 (x 1 , y 1 , z 1) и координатные плоскости O x y , О x z и O y z . Координатами проекции этой точки на данные плоскости будут соответственно: (x 1 , y 1 , 0) , (x 1 , 0 , z 1) и (0 , y 1 , z 1) . Рассмотрим также плоскости, параллельные заданным координатным плоскостям:

C z + D = 0 ⇔ z = - D C , B y + D = 0 ⇔ y = - D B

И проекциями заданной точки М 1 на эти плоскости будут точки с координатами x 1 , y 1 , - D C , x 1 , - D B , z 1 и - D A , y 1 , z 1 .

Продемонстрируем, как был получен этот результат.

В качестве примера определим проекцию точки М 1 (x 1 , y 1 , z 1) на плоскость A x + D = 0 . Остальные случаи – по аналогии.

Заданная плоскость параллельна координатной плоскости O y z и i → = (1 , 0 , 0) является ее нормальным вектором. Этот же вектор служит направляющим вектором прямой, перпендикулярной к плоскости O y z . Тогда параметрические уравнения прямой, проведенной через точку M 1 и перпендикулярной заданной плоскости, будут иметь вид:

x = x 1 + λ y = y 1 z = z 1

Найдем координаты точки пересечения этой прямой и заданной плоскости. Подставим сначала в уравнение А x + D = 0 равенства: x = x 1 + λ , y = y 1 , z = z 1 и получим: A · (x 1 + λ) + D = 0 ⇒ λ = - D A - x 1

Затем вычислим искомые координаты, используя параметрические уравнения прямой при λ = - D A - x 1:

x = x 1 + - D A - x 1 y = y 1 z = z 1 ⇔ x = - D A y = y 1 z = z 1

Т.е., проекцией точки М 1 (x 1 , y 1 , z 1) на плоскость будет являться точка с координатами - D A , y 1 , z 1 .

Пример 2

Необходимо определить координаты проекции точки М 1 (- 6 , 0 , 1 2) на координатную плоскость O x y и на плоскость 2 y - 3 = 0 .

Решение

Координатной плоскости O x y будет соответствовать неполное общее уравнение плоскости z = 0 . Проекция точки М 1 на плоскость z = 0 будет иметь координаты (- 6 , 0 , 0) .

Уравнение плоскости 2 y - 3 = 0 возможно записать как y = 3 2 2 . Теперь просто записать координаты проекции точки M 1 (- 6 , 0 , 1 2) на плоскость y = 3 2 2:

6 , 3 2 2 , 1 2

Ответ: (- 6 , 0 , 0) и - 6 , 3 2 2 , 1 2

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Найти острый угол между диагоналями параллелограмма, построенного на векторах

5) Определить координаты вектора с, направленного по биссектрисе угла между векторами a и b, если вектор с= 3корней из 42. a={2;-3;6}, b={-1;2;-2}

Найдем единичный вектор e_a сонаправленный с a:

аналогично e_b = b/|b|,

тогда искомый вектор будет направлен также как векторная сумма e_a+e_b, т.к. (e_a+e_b) это диагональ ромба, которая явл. биссектрисой его угла.

Обозначим (e_a+e_b)=d,

Найдем единичный вектор, который направлен по биссектрисе: e_c = d/|d|

Если |c| = 3*sqrt(42), тогда c = |c|*e_c. Вот и все.

Найти линейную зависимость между данными четырьмя некомпланарными векторами: p=a+b; q=b-c; r=a-b+c; s=b+(1/2)*c

Из первых трех равенств попробуйте выразить `a,b,c` через `p,q,r` (начните со сложения второго и третьего уравнений). Затем замените в последнем уравнении `b` и `c` найденными выражениями через `p,q,r`.

13) Найти уравнение плоскости, проходящей через точки А(2, -1, 4) и В(3, 2, -1) перпендикулярно плоскости х + у + 2z – 3 = 0. Искомое уравнение плоскости имеет вид: Ax + By + Cz + D = 0, вектор нормали к этой плоскости (A, B, C). Вектор (1, 3, -5) принадлежит плоскости. Заданная нам плоскость, перпендикулярная искомой имеет вектор нормали (1, 1, 2). Т.к. точки А и В принадлежат обеим плоскостям, а плоскости взаимно перпендикулярны, то Таким образом, вектор нормали (11, -7, -2). Т.к. точка А принадлежит искомой плоскости, то ее координаты должны удовлетворять уравнению этой плоскости, т.е. 11×2 + 7×1 - 2×4 + D = 0; D = -21. Итого, получаем уравнение плоскости: 11x - 7y – 2z – 21 = 0.

14) Уравнение плоскости проходящее через прямую паралелльно вектору.

Пусть, искомая плоскость проходит через прямую (x-x1)/a1 = (y-y1)/b1 = (z-z1)/c1 параллельно прямой (x-x2)/a2 = (y-y2)/b2 = (z-z2)/c2 .

Тогда нормальный вектор плоскости есть векторное произведение направляющих векторов этих прямых:

Пусть, координаты векторного произведения (A;B;C). Искомая плоскость проходит через точку (x1;y1;z1). Нормальный вектор и точка, через которую проходит плоскость - однозначно определяют уравнение искомой плоскости:



A·(x-x1) + B·(y-y1) + C·(z-z1) = 0

17) Найти уравнение прямой, проходящей через точку A(5, -1) перпендикулярно к прямой 3x - 7y + 14 = 0.

18) Составить уравнение прямой, проходящей через точку М перпендикулярно к данной плоскости М(4,3,1) x+3y+5z-42=0

(x - x0) / n = (y - y0) / m = (z - z0) / p

M(x0,y0,z0) - твоя точка М(4,3,1)

{n, m, p} - направляющий вектор прямой, он же вектро нормали для заданной поверхности {1, 3, 5} (коэффициенты при переменных x,y,z в уравнении плоскости)

Найти проекцию точки на плоскость

Точка М(1,-3,2), плоскость 2x+5y-3z-19=0

Изучение свойств фигур в пространстве и на плоскости невозможно без знания расстояний между точкой и такими геометрическими объектами, как прямая и плоскость. В данной статье покажем, как находить эти расстояния, рассматривая проекцию точки на плоскость и на прямую.

Уравнение прямой для двумерного и трехмерного пространств

Расчет расстояний точки до прямой и плоскости осуществляется с использованием ее проекции на эти объекты. Чтобы уметь находить эти проекции, следует знать, в каком виде задаются уравнения для прямых и плоскостей. Начнем с первых.

Прямая представляет собой совокупность точек, каждую из которых можно получить из предыдущей с помощью переноса на параллельные друг другу вектора. Например, имеется точка M и N. Соединяющий их вектор MN¯ переводит M в N. Имеется также третья точка P. Если вектор MP¯ или NP¯ параллелен MN¯, тогда все три точки на одной прямой лежат и образуют ее.

В зависимости от размерности пространства уравнение, задающее прямую, может изменять свою форму. Так, всем известная линейная зависимость координаты y от x в пространстве описывает плоскость, которая параллельна третьей оси z. В связи с этим в данной статье будем рассматривать только векторное уравнение для прямой. Оно имеет одинаковый вид для плоскости и трехмерного пространства.

В пространстве прямую можно задать следующим выражением:

(x; y; z) = (x 0 ; y 0 ; z 0) + α*(a; b; c)

Здесь значения координат с нулевыми индексами соответствуют принадлежащей прямой некоторой точки, u¯(a; b; c) - координаты направляющего вектора, который лежит на данной прямой, α - произвольное действительное число, изменяя которое можно получить все точки прямой. Это уравнение называется векторным.

Часто приведенное уравнение записывают в раскрытом виде:

Аналогичным образом можно записать уравнение для прямой, находящейся в плоскости, то есть в двумерном пространстве:

(x; y) = (x 0 ; y 0) + α*(a; b);

Уравнение плоскости

Чтобы уметь находить расстояние от точки до плоскостей проекций, необходимо знать, как задается плоскость. Так же, как и прямую, ее можно представить несколькими способами. Здесь рассмотрим один единственный: общее уравнение.

Предположим, что точка M(x 0 ; y 0 ; z 0) плоскости принадлежит, а вектор n¯(A; B; C) ей перпендикулярен, тогда для всех точек (x; y; z) плоскости справедливым будет равенство:

A*x + B*y + C*z + D = 0, где D = -1*(A*x 0 + B*y 0 + C*z 0)

Следует запомнить, что в этом общем уравнении плоскости коэффициенты A, B и C являются координатами нормального к плоскости вектора.

Расчет расстояний по координатам

Перед тем как переходить к рассмотрению проекций на плоскость точки и на прямую, следует напомнить, как следует рассчитывать расстояние между двумя известными точками.

Пусть имеются две пространственные точки:

A 1 (x 1 ; y 1 ; z 1) и A 2 (x 2 ; y 2 ; z 2)

Тогда дистанция между ними вычисляется по формуле:

A 1 A 2 = √((x 2 -x 1) 2 +(y 2 -y 1) 2 +(z 2 -z 1) 2)

С помощью этого выражения также определяют длину вектора A 1 A 2 ¯.

Для случая на плоскости, когда две точки заданы всего парой координат, можно записать аналогичное равенство без присутствия в нем члена с z:

A 1 A 2 = √((x 2 -x 1) 2 +(y 2 -y 1) 2)

Теперь рассмотрим различные случаи проекции на плоскости точки на прямую и на плоскость в пространстве.

Точка, прямая и расстояние между ними

Предположим, что имеется некоторая точка и прямая:

P 2 (x 1 ; y 1);

(x; y) = (x 0 ; y 0) + α*(a; b)

Расстояние между этими геометрическими объектами будет соответствовать длине вектора, начало которого лежит в точке P 2 , а конец находится в такой точке P на указанной прямой, для которой вектор P 2 P ¯ этой прямой перпендикулярен. Точка P называется проекцией точки P 2 на рассматриваемую прямую.

Ниже приведен рисунок, на котором изображена точка P 2 , ее расстояние d до прямой, а также вектор направляющий v 1 ¯. Также на прямой выбрана произвольная точка P 1 и от нее до P 2 проведен вектор. Точка P здесь совпадает с местом, где перпендикуляр пересекает прямую.

Видно, что оранжевые и красные стрелки образуют параллелограмм, сторонами которого являются вектора P 1 P 2 ¯ и v 1 ¯, а высотой - d. Из геометрии известно, что для нахождения высоты параллелограмма следует разделить его площадь на длину основания, на которое опущен перпендикуляр. Поскольку площадь параллелограмма вычисляется как векторное произведение его сторон, то получаем формулу для расчета d:

d = ||/|v 1 ¯|

Все вектора и координаты точек в этом выражении известны, поэтому можно им пользоваться без выполнения каких-либо преобразований.

Решить эту задачу можно было бы иначе. Для этого следует записать два уравнения:

  • скалярное произведение P 2 P ¯ на v 1 ¯ должно равняться нулю, поскольку эти вектора взаимно перпендикулярны;
  • координаты точки P должны удовлетворять уравнению прямой.

Этих уравнений достаточно, чтобы найти координаты P, а затем и длину d по формуле, приведенной в предыдущем пункте.

Задача на нахождение дистанции между прямой и точкой

Покажем, как использовать данные теоретические сведения для решения конкретной задачи. Допустим, известны следующая точка и прямая:

(x; y) = (3; 1) - α*(0; 2)

Необходимо найти точки проекции на прямую на плоскости, а также расстояние от M до прямой.

Обозначим проекцию, которую следует найти, точкой M 1 (x 1 ; y 1). Решим эту задачу двумя способами, описанными в предыдущем пункте.

Способ 1. Направляющий вектор v 1 ¯ координаты имеет (0; 2). Чтобы построить параллелограмм, выберем принадлежащую прямой какую-нибудь точку. Например, точку с координатами (3; 1). Тогда вектор второй стороны параллелограмма будет иметь координаты:

(5; -3) - (3; 1) = (2; -4)

Теперь следует вычислить произведение векторов, задающих стороны параллелограмма:

Подставляем это значение в формулу, получаем расстояние d от M до прямой:

Способ 2. Теперь найдем другим способом не только расстояние, но и координаты проекции M на прямую, как это требует условие задачи. Как было сказано выше, для решения задачи необходимо составить систему уравнений. Она примет вид:

(x 1 -5)*0+(y 1 +3)*2 = 0;

(x 1 ; y 1) = (3; 1)-α*(0; 2)

Решаем эту систему:

Проекция исходной точки координаты имеет M 1 (3; -3). Тогда искомое расстояние равно:

d = |MM 1 ¯| = √(4+0) = 2

Как видим, оба способа решения дали одинаковый результат, что говорит о правильности выполненных математических операций.

Проекция точки на плоскость

Теперь рассмотрим, что представляет собой проекция точки, заданной в пространстве, на некоторую плоскость. Несложно догадаться, что этой проекцией также является точка, которая вместе с исходной образует перпендикулярный плоскости вектор.

Предположим, что проекция на плоскость точки М координаты имеет следующие:

Сама плоскость описывается уравнением:

A*x + B*y + C*z + D = 0

Исходя из этих данных, мы можем составить уравнение прямой, пересекающей плоскость под прямым углом и проходящей через M и M 1:

(x; y; z) = (x 0 ; y 0 ; z 0) + α*(A; B; C)

Здесь переменные с нулевыми индексами - координаты точки M. Рассчитать положение на плоскости точки M 1 можно исходя из того, что ее координаты должны удовлетворять обоим записанным уравнениям. Если этих уравнений при решении задачи будет недостаточно, то можно использовать условие параллельности MM 1 ¯ и вектора направляющего для заданной плоскости.

Очевидно, что проекция точки, принадлежащей плоскости, совпадает сама с собой, а соответствующее расстояние равно нулю.

Задача с точкой и плоскостью

Пусть дана точка M(1; -1; 3) и плоскость, которая описывается следующим общим уравнением:

Следует вычислить координаты проекции на плоскость точки и рассчитать расстояние между этими геометрическими объектами.

Для начала построим уравнение прямой, проходящей через М и перпендикулярной указанной плоскости. Оно имеет вид:

(x; y; z) = (1; -1; 3) + α*(-1; 3; -2)

Обозначим точку, где эта прямая пересекает плоскость, M 1 . Равенства для плоскости и прямой должны выполняться, если в них подставить координаты M 1 . Записывая в явном виде уравнение прямой, получаем следующие четыре равенства:

X 1 + 3*y 1 -2*z 1 + 4 = 0;

y 1 = -1 + 3*α;

Из последнего равенства получим параметр α, затем подставим его в предпоследнее и во второе выражение, получаем:

y 1 = -1 + 3*(3-z 1)/2 = -3/2*z 1 + 3,5;

x 1 = 1 - (3-z 1)/2 = 1/2*z 1 - 1/2

Выражение для y 1 и x 1 подставим в уравнение для плоскости, имеем:

1*(1/2*z 1 - 1/2) + 3*(-3/2*z 1 + 3,5) -2*z 1 + 4 = 0

Откуда получаем:

y 1 = -3/2*15/7 + 3,5 = 2/7;

x 1 = 1/2*15/7 - 1/2 = 4/7

Мы определили, что проекция точки M на заданную плоскость соответствует координатам (4/7; 2/7; 15/7).

Теперь рассчитаем расстояние |MM 1 ¯|. Координаты соответствующего вектора равны:

MM 1 ¯(-3/7; 9/7; -6/7)

Искомое расстояние равно:

d = |MM 1 ¯| = √126/7 ≈ 1,6

Три точки проекции

Во время изготовления чертежей часто приходится получать проекции сечений на взаимно перпендикулярные три плоскости. Поэтому полезно рассмотреть, чему будут равны проекции некоторой точки M с координатами (x 0 ; y 0 ; z 0) на три координатные плоскости.

Не сложно показать, что плоскость xy описывается уравнением z = 0, плоскость xz соответствует выражению y = 0, а оставшаяся плоскость yz обозначается равенством x = 0. Нетрудно догадаться, что проекции точки на 3 плоскости будут равны:

для x = 0: (0; y 0 ; z 0);

для y = 0: (x 0 ; 0 ; z 0);

для z = 0: (x 0 ; y 0 ; 0)

Где важно знать проекции точки и ее расстояния до плоскостей?

Определение положения проекции точек на заданную плоскость важно при нахождении таких величин, как площадь поверхности и объем для наклонных призм и пирамид. Например, расстояние от вершины пирамиды до плоскости основания является высотой. Последняя входит в формулу для объема этой фигуры.

Рассмотренные формулы и методики определения проекций и расстояний от точки до прямой и плоскости являются достаточно простыми. Важно лишь запомнить соответствующие формы уравнений плоскости и прямой, а также иметь хорошее пространственное воображение, чтобы успешно их применять.

При решении геометрических задач в пространстве часто возникает проблема определения расстояния между плоскостью и точкой. В некоторых случаях это необходимо для комплексного решения. Эту величину можно вычислить, если найти проекцию на плоскость точки. Рассмотрим этот вопрос подробнее в статье.

Уравнение для описания плоскости

Перед тем как перейти к рассмотрению вопроса касательно того, как найти проекцию точки на плоскость, следует познакомиться с видами уравнений, которые задают последнюю в трехмерном пространстве. Подробнее - ниже.

Уравнением общего вида, определяющим все точки, которые принадлежат данной плоскости, является следующее:

A*x + B*y + C*z + D = 0.

Первые три коэффициента - это координаты вектора, который называется направляющим для плоскости. Он совпадает с нормалью для нее, то есть является перпендикулярным. Этот вектор обозначают n¯(A; B; C). Свободный коэффициент D однозначно определяется из знания координат любой точки, принадлежащей плоскости.

Понятие о проекции точки и ее вычисление

Предположим, что задана некоторая точка P(x 1 ; y 1 ; z 1) и плоскость. Она определена уравнением в общем виде. Если провести перпендикулярную прямую из P к заданной плоскости, то очевидно, что она пересечет последнюю в одной определенной точке Q (x 2 ; y 2 ; z 2). Q называется проекцией P на рассматриваемую плоскость. Длина отрезка PQ называется расстоянием от точки P до плоскости. Таким образом, сам PQ является перпендикулярным плоскости.

Как можно найти координаты проекции точки на плоскость? Сделать это не сложно. Для начала следует составить уравнение прямой, которая будет перпендикулярна плоскости. Ей будет принадлежать точка P. Поскольку вектор нормали n¯(A; B; C) этой прямой должен быть параллелен, то уравнение для нее в соответствующей форме запишется так:

(x; y; z) = (x 1 ; y 1 ; z 1) + λ*(A; B; C).

Где λ - действительное число, которое принято называть параметром уравнения. Изменяя его, можно получить любую точку прямой.

После того как записано векторное уравнение для перпендикулярной плоскости линии, необходимо найти общую точку пересечения для рассматриваемых геометрических объектов. Ее координаты и будут проекцией P. Поскольку они должны удовлетворять обоим равенствам (для прямой и для плоскости), то задача сводится к решению соответствующей системы линейных уравнений.

Понятие проекции часто используется при изучении чертежей. На них изображаются боковые и горизонтальные проекции детали на плоскости zy, zx, и xy.

Вычисление расстояния от плоскости до точки

Как выше было отмечено, знание координат проекции на плоскость точки позволяет определить дистанцию между ними. Используя обозначения, введенные в предыдущем пункте, получаем, что искомое расстояние равно длине отрезка PQ. Для его вычисления достаточно найти координаты вектора PQ¯, а затем рассчитать его модуль по известной формуле. Конечное выражение для d расстояния между P точкой и плоскостью принимает вид:

d = |PQ¯| = √((x 2 - x 1) 2 + (y 2 - y 1) 2 + (z 2 - z 1) 2).

Полученное значение d представлено в единицах, в которых задается текущая декартова координатная система xyz.

Пример задачи

Допустим, имеется точка N(0; -2; 3) и плоскость, которая описывается следующим уравнением:

Следует найти точки проекцию на плоскость и вычислить между ними расстояние.

В первую очередь составим уравнение прямой, которая пересекает плоскость под углом 90 o . Имеем:

(x; y; z) = (0; -2; 3) + λ*(2; -1; 1).

Записывая это равенство в явном виде, приходим к следующей системе уравнений:

Подставляя значения координат из первых трех равенств в четвертое, получим значение λ, определяющее координаты общей точки прямой и плоскости:

2*(2*λ) - (-2 - λ) + λ + 3 + 4 = 0 =>

6*λ + 9 = 0 =>

λ = 9/6 = 3/2 = 1,5.

Подставим найденный параметр в и найдем координаты проекции исходной точки на плоскость:

(x; y; z) = (0; -2; 3) + 1,5*(2; -1; 1) = (3; -3,5; 4,5).

Для вычисления дистанции между заданными в условии задачи геометрическими объектами применим формулу для d:

d = √((3 - 0) 2 + (-3,5 + 2) 2 + (4,5 - 3) 2) = 3,674.

В данной задаче мы показали, как находить проекцию точки на произвольную плоскость и как вычислять между ними расстояние.