Разделы оптики физика. Оптика как раздел физики

Одним из древних и объемных разделов физики является оптика. Ее достижения применяются во многих науках и сферах деятельности: электротехнике, промышленности, медицине и других. Из статьи можно узнать, что изучает эта наука, историю развития представлений о ней, важнейшие достижения, и какие существуют оптические системы и приборы.

Что изучает оптика

Название этой дисциплины имеет греческое происхождение и переводится, как "наука о зрительных восприятиях". Оптика - раздел физики, изучающий природу света, его свойства, законы, связанные с его распространением. Эта наука исследует природу видимого света, инфракрасного и ультрафиолетового излучения. Поскольку именно благодаря свету люди способны видеть окружающий мир, этот раздел физики также является дисциплиной, связанной со зрительным восприятием излучения. И неудивительно: глаз - это сложная оптическая система.

История становления науки

Оптика зародилась еще в античные времена, когда люди пытались понять природу света и выяснить, каким образом удается видеть предметы окружающего мира.

Древние философы считали видимый свет или лучами, выходящими из глаз человека, или потоком мельчайших частиц, разлетающихся от объектов и попадающих в глаз.

В дальнейшем природу света изучали многие видные ученые. Исаак Ньютон сформулировал теорию о корпускулах - крошечных частичках света. Другой ученый, Гюйгенс, выдвинул волновую теорию.

Природу света продолжали исследовать физики 20 века: Максвелл, Планк, Эйнштейн.

В настоящее время гипотезы Ньютона и Гюйгенса объединены в понятии корпускулярно-волнового дуализма, согласно которому, свет имеет свойства и частицы, и волны.

Разделы

Предмет исследований оптики - это не только свет и его природа, но также приборы для этих исследований, законы и свойства этого явления и многое другое. Поэтому в науке выделяются несколько разделов, посвященных отдельным сторонам исследований.

  • геометрическая оптика;
  • волновая;
  • квантовая.

Ниже будет подробно рассмотрен каждый раздел.

Геометрическая оптика

В данном разделе существуют следующие законы оптики:

Закон о прямолинейности распространения света, проходящего через однородную среду. Световой луч рассматривается, как прямая линия, вдоль которой проходят световые частицы.

Закон отражения:

Падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения). Угол отражения γ равен углу падения α.

Закон преломления:

Падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления β есть величина, постоянная для двух данных сред.

Средством изучения свойств света в геометрической оптике являются линзы.

Линза - это прозрачное тело, которое способно пропускать и видоизменять Они делятся на выпуклые и вогнутые, а также на собирающие и рассеивающие. Линза является основной составляющей всех оптических приборов. Когда толщина ее мала по сравнению с радиусами поверхностей, она называется тонкой. В оптике формула тонкой линзы выглядит так:

1/d + 1/f = D, где

d - расстояние от предмета до линзы; f - расстояние до изображения от линзы; D - оптическая сила линзы (измеряется в диоптриях).

Волновая оптика и ее понятия

Поскольку известно, что свет имеет все свойства электромагнитной волны, отдельный раздел физики изучает проявления этих свойств. Он называется волновая оптика.

Основные понятия данного раздела оптики - это дисперсия, интерференция, дифракция и поляризация.

Явление дисперсии было обнаружено Ньютоном, благодаря его опытам с призмами. Это открытие является важным шагом к пониманию природы света. Он обнаружил, что преломление световых лучей зависит от их цвета. Это явление было названо дисперсией или рассеянием света. Сейчас уже известно, что цвет зависит от длины волны. Кроме того, именно Ньютон предложил понятие спектра для обозначения радужной полоски, получаемой при дисперсии посредством призм.

Подтверждением волновой природы света является интерференция его волн, открытая Юнгом. Так называют наложение друг на друга двух или нескольких волн. В результате можно видеть явление усиления и ослабления колебаний света в различных точках пространства. Красивыми и знакомыми каждому проявлениями интерференции являются мыльные пузыри и радужная разноцветная пленка разлитого бензина.

Любому свойственно явление дифракции. Этот термин переводится с латинского, как "разломанный". Дифракция в оптике - это огибание волнами света краев препятствий. Например, если на пути светового пучка расположить шарик, то на экране за ним появятся чередующиеся кольца - светлые и темные. Это называется дифракционная картина. Исследованием явления занимались Юнг и Френель.

Последнее ключевое понятие волновой оптики - это поляризация. Свет называют поляризованным, если направление колебаний его волны является упорядоченным. Поскольку свет является продольной, а не поперечной волной, то и колебания происходят исключительно в поперечном направлении.

Квантовая оптика

Свет - это не только волна, но и поток частиц. На основе этой его составляющей возникла такая отрасль науки, как квантовая оптика. Ее появление связывают с именем Макса Планка.

Квантом называют любую порцию чего-либо. А в данном случае говорят о квантах излучения, то есть порциях света, выбрасываемых при нем. Для обозначения частиц используют слово фотоны (от греческого φωτός - "свет"). Это понятие было предложено Альбертом Эйнштейном. В данном разделе оптики формула Эйнштейна E=mc 2 также применяется для изучения свойств света.

Главная задача этого раздела - изучение и характеристика взаимодействия света с веществом и исследования его распространения в нетипичных условиях.

Свойства света как потока частиц проявляются в таких условиях:

  • тепловое излучение;
  • фотоэффект;
  • фотохимические процессы;
  • вынужденное излучение и др.

В квантовой оптике существует понятие неклассического света. Дело в том, что квантовые характеристики светового излучения невозможно описать в рамках классической оптики. Неклассический свет, например, двухфотонный, сжатый, применяется в разных сферах: для калибровки фотоприемников, при точных измерениях и др. Еще одно применение - квантовая криптография - секретный способ передачи информации с помощью двоичных кодов, где вертикально направленному фотону присвоен 0, а горизонтально направленному - 1.

Значение оптики и оптических приборов

В каких сферах технологии оптики нашли главное применение?

Во-первых, без этой науки не было бы оптических приборов, известных каждому человеку: телескоп, микроскоп, фотоаппарат, проектор и другие. С помощью специально подобранных линз люди получили возможно исследовать микромир, вселенную, небесные объекты, а также запечатлевать и транслировать информацию в виде изображений.

Кроме того, благодаря оптике был сделан ряд важнейших открытий в области природы света, его свойств, открыты явления интерференции, поляризации и другие.

Наконец, широкое применение оптика получила в медицине, например, в изучении рентгеновского излучения, на основании которого был создан аппарат, спасший немало жизней. Благодаря этой науке также был изобретен лазер, широко применяющийся при хирургических вмешательствах.

Оптика и зрение

Глаз - это оптическая система. Благодаря свойствам света и возможностям органов зрения, можно видеть окружающий мир. К сожалению, мало кто может похвастаться идеальным зрением. С помощью этой дисциплины, стало возможно вернуть возможность людям лучше видеть с помощью очков и контактных линз. Поэтому медицинские учреждения, занимающиеся подбором средств коррекции зрения, также получили соответсвующее название - оптика.

Можно подвести итог. Итак, оптика - это наука о свойствах света, затрагивающая многие сферы жизни и имеющая широкое применение в науке и в быту.

Со словом "оптика" мы сталкиваемся, например, когда проходим мимо торговой точки, в которой продаются очки. Также многие помнят, что изучали оптику в школе. Что такое оптика?

Оптика - это раздел физики, который изучает природу света, его свойства, закономерности распространения в различных средах, а также взаимодействие света с веществами. Чтобы лучше понять, что такое оптика, следует разобраться с тем, что такое свет.

Представления о свете в современной физике

Физика рассматривает привычный нам свет как сложное явление, имеющее двойственную природу. С одной стороны, свет считается потоком мельчайших частиц - квантов света (фотонов). С другой стороны, свет можно описать как вид электромагнитных волн, имеющих определенную длину.

Отдельные разделы оптики изучают свет как физическое явление с различных сторон.

Разделы оптики

  • Геометрическая оптика. Рассматривает законы распространения света, а также отражения и преломления световых лучей. Представляет свет как луч, распространяющийся в однородной среде прямолинейно (в этом его сходство с геометрическим лучом). Не учитывает волновую природу света.
  • Волновая оптика. Изучает свойства света как разновидности электромагнитных волн.
  • Квантовая оптика. Изучает квантовые свойства света (исследует фотоэффект, фотохимические процессы, лазерное излучение и т. д.)

Оптика в жизни человека

Изучая природу света и закономерности его распространения, человек использует полученные знания себе на пользу. Наиболее часто встречающиеся в окружающей жизни оптические приборы - это очки, микроскоп, телескоп, фотообъектив, а также оптико-волоконный кабель, используемый для прокладки ЛВС (об этом вы можете узнать в статье

). В этих, а также в междисциплинарных сферах широко применяются достижения прикладной оптики .

Природа света

Оптика оказалась одним из первых разделов физики, где проявилась ограниченность классических представлений о природе. Была установлена двойственная природа света:

  • Волновая теория света , берущая начало от Гюйгенса («Трактат о свете »; 1690), рассматривает свет как совокупность поперечных монохроматических электромагнитных волн , а наблюдаемые оптические эффекты как результат сложения (интерференции) этих волн. При этом считается, что в отсутствие перехода энергии излучения в другие виды энергии, эти волны не влияют друг на друга в том смысле, что, вызвавшая в некоторой области пространства интерференционные явления, волна продолжает распространяться дальше без изменения своих характеристик. Волновая теория электромагнитного излучения нашла своё теоретическое описание в работах Максвелла в форме уравнений Максвелла . Использование представления о свете, как о волне, позволяет объяснить явления, связанные с интерференцией и дифракцией , в том числе структуру светового поля (построение изображений и голографию).
  • Корпускулярная теория света , берущая начало от Ньютона («{{lang-en|Оптика »; 1704), рассматривает свет как поток частиц - квантов света или фотонов . В соответствии с идеей Планка любое излучение происходит дискретно, причём минимальная порция энергии (энергия фотона) имеет величину ε = h ν {\displaystyle \varepsilon =h\nu } , где частота ν {\displaystyle \nu } соответствует частоте излучённого света, а h {\displaystyle h} - постоянная Планка . Использование представлений о свете, как потоке частиц, объясняет явление фотоэффекта и закономерности теории излучения.

Характеристики света

Длина световой волны λ {\displaystyle \lambda } зависит от скорости распространения волны в среде v {\displaystyle v} и связана с нею и частотой ν {\displaystyle \nu } соотношением:

λ = v ν = c n ν , {\displaystyle \lambda ={\frac {v}{\nu }}={\frac {c}{n\nu }},}

где n {\displaystyle n} - показатель преломления среды. В общем случае показатель преломления среды является функцией длины волны: n = n (λ) {\displaystyle n=n(\lambda)} . Зависимость показателя преломления от длины волны проявляется в виде явления дисперсии света.

Характеристиками света являются:

Скорость света

Универсальным понятием в физике является скорость света c {\displaystyle c} . Её значение в вакууме представляет собой не только предельную скорость распространения электромагнитных колебаний любой частоты, но и вообще предельную скорость распространения информации или любого воздействия на материальные объекты. При распространении света в различных средах фазовая скорость света v {\displaystyle v} обычно уменьшается: v = c / n {\displaystyle v=c/n} , где n {\displaystyle n} есть показатель преломления среды, характеризующий её оптические свойства и зависящий от частоты света: n = n (ν) {\displaystyle n=n(\nu)} . В области аномальной дисперсии света показатель преломления может быть и меньше единицы, а фазовая скорость света больше c {\displaystyle c} . Последнее утверждение не входит в противоречие с теорией относительности , поскольку передача информации с помощью света происходит не с фазовой, а, как правило, с групповой скоростью .

Оптика других диапазонов

Разделы оптики

Геометрическая оптика

Геометрическая оптика (оптика луча ) не занимается рассмотрением вопроса о природе света, а основывается лишь на эмпирических законах его распространения. Центральное понятие геометрической оптики, с помощью которого описывается распространение света, - световой луч , представляющий собой линию , вдоль которой переносится энергия света. В однородной оптической среде световые лучи представляют собой прямые линии .

Геометрическая оптика позволила успешно объяснить многие явления, наблюдающиеся при прохождении света в различных средах. К таким явлениям относятся, например, искривление лучей в земной атмосфере, образование радуг и миражей . Геометрическая оптика позволяет изучать и определять закономерности и правила построения изображений. Её методы широко используются при расчётах и конструировании разнообразных оптических приборов.

Вместе с тем в приближении геометрической оптики невозможно объяснить происхождение многих важных оптических эффектов, таких, например, как дифракция , интерференция и поляризация света.

Параксиальное приближение

Следующее упрощение в геометрической оптике - параксиальное приближение , или «приближение малых углов». Математически поведение луча становится линейным, позволяя представить оптические компоненты простыми матрицами. Применение методов Гауссовской оптики позволяет найти свойства первого порядка оптических систем.

Гауссовское распространение луча - расширение параксиальной оптики, описывающее более точную модель поведения лучей. Используя параксиальное приближение и явление дифракции, данный набор методов описывает расширение светового пучка с расстоянием и минимальный размер светового пятна, в которое может быть сосредоточен световой пучок. Тем самым эта модель является промежуточной между геометрической и физической оптикой.

История

Работы Гюйгенса «Волновая теория света», которые были написаны под влиянием фундаментальных работ Ньютона , и вошли потом в «Оптику», оказали большое влияние на современников. Действительно, будучи приверженцем теории цветов Гука , он после работ Ньютона, восхищаясь их экспериментальной стороной, но не разделяя его теоретической интерпретации, пришёл к выводу, что «явление окрашивания остаётся ещё весьма таинственным из-за трудности объяснения этого разнообразия цветов с помощью какого-либо физического механизма». Поэтому он счёл наиболее целесообразным вообще не рассматривать вопроса о цветах в своём трактате.

В своем небольшом трактате первым он рассмотрел прямолинейное распространение света, во второй части - отражение , в третьей - преломление , в четвёртой - атмосферную рефракцию, в пятой -


Здесь представлены конспекты по физике по теме "Оптика" для 10-11 класса.
!!! Конспекты с одинаковыми названиями различаются по степени сложности.

3. Дифракция света - Волновая оптика

4. Зеркала и линзы - Геометрическая оптика

5. Интерференция света - Волновая оптика

6. Поляризация света - Волновая оптика

Оптика, геометрическая оптика, волновая оптика, 11 класс, конспекты, конспекты по физике.

О ЦВЕТЕ. ЗНАЕТЕ ЛИ ВЫ?

Знаете ли Вы, что кусок красного стекла кажется красным и в отраженном и в проходящем свете. А вот у цветных металлов эти цвета различаются - так, золото отражает преимущественно красные и желтые лучи, но тонкая просвечивающая золотая пластинка пропускает зеленый свет.

Ученые XVII века не считали цвет объективным свойством света. Например, Кеплер полагал, что цвет - это качество, которое должны изучать философы, а не физики. И лишь Декарт, хотя и не мог объяснить происхождение цветов, был убежден в существовании связи между ними и объективными характеристиками света.

Созданная Гюйгенсом волновая теория света была большим шагом вперед - так, она дала используемые до сих пор объяснения законов геометрической оптики. Однако главная ее неудача заключалась в отсутствии категории цвета, т.е. она была теорией бесцветного света, несмотря на уже сделанное к тому времени Ньютоном открытие - обнаружение дисперсии света.

Призма - главный инструмент в ньютоновских опытах - была им куплена в аптеке: в те времена наблюдение призматических спектров было распространенным развлечением.

Многие предшественники Ньютона считали, что цвета зарождаются в самих призмах. Так, постоянный оппонент Ньютона Роберт Гук думал, что в солнечном луче не могут содержаться все цвета; это так же странно, считал он, как утверждать, что «в воздухе органных мехов содержатся все тоны».

Опыты Ньютона привели его и к печальному выводу: в сложных приборах с большим количеством линз и призм разложение белого света сопровождается появлением у изображения пестрой цветной каймы. Явление, названное «хроматической аберрацией», удалось впоследствии преодолеть, соединяя несколько слоев стекла с «уравновешивающими» друг друга показателями преломления, что привело к созданию ахроматических линз и подзорных труб с четкими изображениями без цветных бликов и полос.

Идея о том, что цвет определяется частотой колебаний в световой волне, впервые была высказана знаменитым математиком, механиком и физиком Леонардом Эйлером в 1752 году, при этом максимальная длина волны соответствует красным лучам, а минимальная - фиолетовым.

Первоначально Ньютон различал в солнечном спектре только пять цветов, но позже, стремясь к соответствию между числом цветов и числом основных тонов музыкальной гаммы, добавил еще два. Возможно, здесь сказалось пристрастие к древней магии числа «семь», согласно которой на небе было семь планет, а потому в неделе - семь дней, в алхимии - семь основных металлов и так далее.

Гёте, считавший себя выдающимся естествоиспытателем и посредственным поэтом, горячо критикуя Ньютона, замечал, что выявленные в его опытах свойства света не истинны, поскольку свет в них «замучен разного рода орудиями пыток - щелями, призмами, линзами». Правда, в этой критике вполне серьезные физики позже узрели наивное предвосхищение современной точки зрения на роль измерительной аппаратуры.

Теория цветового зрения - о получении всех цветов при помощи смешения трех основных - ведет начало от речи Ломоносова 1756 года «Слово о происхождении света, новую теорию о цветах представляющее...», не замеченной, однако, научным миром. Полвека спустя эту теорию поддержал Юнг, а уж его предположения в 1860-х годах детально развил в трехкомпонентную теорию цвета Гельмгольц.

Если какие-либо пигменты отсутствуют в фоторецепторах сетчатки, то человек не ощущает соответствующих тонов, т.е. становится частично цветослепым. Таким был английский физик Дальтон, по имени которого и назван этот недостаток зрения. А обнаружил его у Дальтона не кто иной, как Юнг.

Явление, носящее название эффекта Пуркине - в честь исследовавшего его знаменитого чешского биолога, прказывает, что различные среды глаза обладают неодинаковым преломлением, и это объясняет возникновение некоторых зрительных иллюзий.

Оптические спектры атомов или ионов - не только богатый источник информации о строении атома, в них заключены сведения и о характеристиках атомного ядра, прежде всего связанных с его электрическим зарядом.

Геометрическая оптика – предельно простой случай оптики. По сути, это упрощенная версия волновой оптики, которая не рассматривает и просто не предполагает таких явлений, как интерференция и дифракция. Тут все упрощено до предела. И это хорошо.

Основные понятия

Геометрическая оптика – раздел оптики, в котором рассматриваются законы распространения света в прозрачных средах, законы отражения света от зеркальных поверхностей, принципы построения изображений при прохождении света через оптические системы.

Важно! Все эти процессы рассматриваются без учета волновых свойств света!

В жизни геометрическая оптика, являясь крайне упрощенной моделью, тем не менее, находит широкое применение. Это как классическая механика и теория относительности. Произвести нужный расчет чаще всего гораздо легче в рамках классической механики.

Основное понятие геометрической оптики – световой луч .

Отметим, что реальный световой пучок не распространяется вдоль линии, а имеет конечное угловое распределение, которое зависит от поперечного размера пучка. Геометрическая оптика пренебрегает поперечными размерами пучка.

Закон прямолинейного распространения света

Этот закон говорит нам о том, что в однородной среде свет распространяется прямолинейно. Иными словами, из точки А в точку Б свет движется по тому пути, который требует минимального времени на преодоление.

Закон независимости световых лучей

Распространение световых лучей происходит независимо друг от друга. Что это значит? Это значит, что геометрическая оптика предполагает, что лучи не влияют друг на друга. И распространяются так, будто других лучей и вовсе нет.

Закон отражения света

Когда свет встречается с зеркальной (отражающей) поверхностью, происходит отражение, то есть изменение направления распространения светового луча. Так вот, закон отражения гласит, что падающий и отраженный луч лежат в одной плоскости вместе с проведенной к точке падения нормалью. Причем угол падения равен углу отражения, т.е. нормаль делит угол между лучами на две равные части.

Закон преломления (Снеллиуса)

На границе раздела сред наряду с отражением происходит и преломление, т.е. луч разделяется на отраженный и преломленный.

Кстати! Для всех наших читателей сейчас действует скидка 10% на .


Отношение синусов углов падения и преломления является постоянной величиной и равняется отношению показателей преломления этих сред. Еще эта величина называется показателем преломления второй среды относительно первой.

Здесь стоит отдельно рассмотреть случай полного внутреннего отражения. При распространении света из оптически более плотной среды в менее плотную угол преломления по величине больше угла падения. Соответственно, при увеличении угла падения будет увеличиваться и угол преломления. При некотором предельном угле падения угол преломления станет равным 90 градусов. При дальнейшем увеличении угла падения свет не будет преломляться во вторую среду, а интенсивность падающего и отраженного лучей будут равны. Это называется полным внутренним отражением.

Закон обратимости световых лучей

Представим, что луч, распространяясь в каком-то направлении, претерпел ряд изменений и преломлений. Закон обратимости световых лучей гласит, что если пустить навстречу этому лучу другой луч, то он пойдет по тому же пути, что и первый, но в обратном направлении.

Мы продолжим изучать основы геометрической оптики, а в будущем мы обязательно рассмотрим примеры решения задач на применение различных законов. Ну а если сейчас у вас имеются какие-либо вопросы, добро пожаловать за верными ответами к специалистам студенческого сервиса . Мы поможем решить любую задачу!