Таблица электрической диссоциации. Примеры диссоциации веществ без учета гидратации (в упрощенной форме)

Данный урок посвящен изучению темы «Электролитическая диссоциация». В процессе изучения этой темы Вы поймете суть некоторых удивительных фактов: почему растворы кислот, солей и щелочей проводят электрический ток; почему температура кипения раствора электролита выше по сравнению с раствором неэлектролита.

Тема: Химическая связь.

Урок: Электролитическая диссоциация

Тема нашего урока - «Электролитическая диссоциация ». Мы попробуем объяснить некоторые удивительные факты:

Почему растворы кислот, солей и щелочей проводят электрический ток.

Почему температура кипения раствора электролита всегда будет выше, чем температура кипения раствора не электролита той же концентрации.

Сванте Аррениус

В 1887 году шведский физико - химик Сванте Аррениус, исследуя электропроводность водных растворов, высказал предположение, что в таких растворах вещества распадаются на заряженные частицы - ионы, которые могут передвигаться к электродам - отрицательно заряженному катоду и положительно заряженному аноду.

Это и есть причина электрического тока в растворах. Данный процесс получил название электролитической диссоциации (дословный перевод - расщепление, разложение под действием электричества). Такое название также предполагает, что диссоциация происходит под действием электрического тока. Дальнейшие исследования показали, что это не так: ионы являются только переносчиками зарядов в растворе и существуют в нем независимо от того, проходит через раствор ток или нет. При активном участии Сванте Аррениуса была сформулирована теория электролитической диссоциации, которою часто называют в честь этого ученого. Основная идея данной теории заключается в том, что электролиты под действием растворителя самопроизвольно распадаются на ионы. И именно эти ионы являются носителями заряда и отвечают за электропроводность раствора.

Электрический ток - это направленное движение свободных заряженных частиц . Вы уже знаете, что растворы и расплавы солей и щелочей электропроводны, так как состоят не из нейтральных молекул, а из заряженных частиц - ионов. При расплавлении или растворении ионы становятся свободными переносчиками электрического заряда.

Процесс распада вещества на свободные ионы при его растворении или расплавлении называют электролитической диссоциацией.

Рис. 1. Схема распада на ионы хлорида натрия

Сущность электролитической диссоциации заключается в том, что ионы становятся свободными под влиянием молекулы воды. Рис.1. Процесс распада электролита на ионы отображают с помощью химического уравнения. Запишем уравнение диссоциации хлорида натрия и бромида кальция. При диссоциации одного моля хлорида натрия образуются один моль катионов натрия и один моль хлорид - анионов. NaCl Na + + Cl -

При диссоциации одного моля бромида кальция образуется один моль катионов кальция и два моля бромид - анионов.

Ca Br 2 Ca 2+ + 2 Br -

Обратите внимание: так как в левой части уравнения записана формула электронейтральной частицы, то суммарный заряд ионов должен быть равен нулю .

Вывод : при диссоциации солей образуются катионы металла и анионы кислотного остатка.

Рассмотрим процесс электролитической диссоциации щелочей. Запишем уравнение диссоциации в растворе гидроксида калия и гидроксида бария.

При диссоциации одного моля гидроксида калия образуются один моль катионов калия и один моль гидроксид-анионов. KOH K + + OH -

При диссоциации одного моля гидроксида бария образуются один моль катионов бария и два моля гидроксид - анионов. Ba (OH ) 2 Ba 2+ + 2 OH -

Вывод: при электролитической диссоциации щелочей образуются катионы металла и гидроксид - анионы.

Нерастворимые в воде основания практически не подвергаются электролитической диссоциации , так как в воде они практически нерастворимы, а при нагревании - разлагаются, так что расплав их получить не удается.

Рис. 2. Строение молекул хлороводорода и воды

Рассмотри процесс электролитической диссоциации кислот. Молекулы кислот образованы ковалентной полярной связью, а значит, кислоты состоят не из ионов, а из молекул.

Возникает вопрос - как же тогда кислота диссоциирует, т. е как в кислотах образуются свободные заряженные частицы? Оказывается, ионы образуются в растворах кислот именно при растворении.

Рассмотрим процесс электролитической диссоциации хлороводорода в воде , но для этого запишем строение молекул хлороводорода и воды. Рис.2.

Обе молекулы образованы ковалентной полярной связью. Электронная плотность в молекуле хлороводорода смещена к атому хлора, а в молекуле воды - к атому кислорода. Молекула воды способна оторвать катион водорода от молекулы хлороводорода, при этом образуется катион гидроксония Н 3 О + .

В уравнении реакции электролитической диссоциации не всегда учитывают образование катиона гидроксония - обычно говорят, что образуется катион водорода.

Тогда уравнение диссоциации хлороводорода выглядит так:

HCl H + + Cl -

При диссоциации одного моля хлороводорода образуются один моль катиона водорода и один моль хлорид - анионов.

Ступенчатая диссоциация серной кислоты

Рассмотри процесс электролитической диссоциации серной кислоты. Серная кислота диссоциирует ступенчато, в две стадии.

I -я стадия диссоциации

На первой стадии отрывается один катион водорода и образуется гидросульфат-анион.

II - я стадия диссоциации

На второй стадии происходит дальнейшая диссоциация гидросульфат - анионов. HSO 4 - H + + SO 4 2-

Эта стадия является обратимой, то есть, образующиеся сульфат - ионы могут присоединять к себе катионы водорода и превращаться в гидросульфат - анионы. Это показано знаком обратимости.

Существуют кислоты, которые даже на первой стадии диссоциируют не полностью - такие кислоты являются слабыми. Например, угольная кислота Н 2 СО 3 .

Теперь мы можем объяснить, почему температура кипения раствора электролита будет выше, чем температура кипения раствора неэлектролита.

При растворении молекулы растворенного вещества взаимодействуют с молекулами растворителя, например - воды. Чем больше частиц растворенного вещества находится в одном объеме воды, тем будет выше его температура кипения. Теперь представим, что в одинаковых объемах воды растворили равные количества вещества-электролита и вещества - неэлектролита. Электролит в воде распадется на ионы, а значит - число его частиц будет больше, чем в случае растворения неэлектролита. Таким образом, наличие свободных частиц в электролите объясняет, почему температура кипения раствора электролита будет выше, чем температура кипения раствора неэлектролита.

Подведение итога урока

На этом уроке вы узнали, что растворы кислот, солей и щелочей электропроводны, так как при их растворении образуются заряженные частицы - ионы. Такой процесс называется электролитической диссоциацией. При диссоциации солей образуются катионы металла и анионы кислотных остатков. При диссоциации щелочей образуются катионы металла и гидроксид-анионы. При диссоциации кислот образуются катионы водорода и анионы кислотного остатка.

1. Рудзитис Г.Е. Неорганическая и органическая химия. 9 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф.Г. Фельдман. М.: Просвещение. 2009 г.119с.:ил.

2. Попель П.П.Химия:8 кл.: учебник для общеобразовательных учебных заведений/П.П. Попель, Л.С.Кривля. -К.: ИЦ «Академия»,2008.-240 с.: ил.

3. Габриелян О.С. Химия. 9 класс. Учебник. Издательство: Дрофа.:2001. 224с.

1. №№ 1,2 6 (с.13) Рудзитис Г.Е. Неорганическая и органическая химия. 9 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф.Г. Фельдман. М.: Просвещение. 2009 г.119с.:ил.

2. Что такое электролитическая диссоциация? Вещества, каких классов относятся к электролитам?

3. Вещества, с каким типом связи являются электролитами?

зависимости от механизма прохождения тока через проводники различают проводники первого и второго рода. К проводникам 1-го рода, обладающим электронной проводимостью, относят металлы, оксиды, сульфиды, уголь. Проводники 2-го рода - это вещества, распадающиеся при определенных условиях на ионы: они обладают ионной проводимостью. Вещества, растворы или расплавы которых проводят электрический ток, называются электролитами. Вещества, растворы или расплавы которых не проводят электрического тока, называются неэлектролитами; К электролитам относят кислоты, основания и почти все соли, к неэлектролитам - большинство органических соединений. В растворе или расплаве электролиты распадаются на ионы. Распад электролитов на ионы при растворении их в воде называется электролитической диссоциацией. Диссоциация в растворах протекает под действием полярных молекул растворителя. В расплавах диссоциация протекает вследствие нагревания вещества. Теория электролитической диссоциации была разработана знаменитым шведским химиком С. Аррениусом (1887 г.). Основные положения современной теории электролитической диссоциации: |Т] При растворении в воде электролиты распадаются (диссоциируют) на положительные и отрицательные частицы (ионы), которые находятся в растворе в хаотическом движении. 1 К°> " Для второй ступени диссоциации HS" <± Н+ + S2" значение константы диссоциации KD равно: n2s К D Для полной диссоциации H9S 7=* 2Н+ + S2" н,s значение константы диссоциации KDr равно произведению констант диссоциации по первой и второй ступени: KH2S V^i® . V D Dl Da . При прочих равных условиях KDj > >... KD . » тогда как отрыв протона от нейтральной молекулы всегда протекает легче, чем от отрицательно заряженных ионов. Важным процессом диссоциации является диссоциация воды: Н20 т± Н+ + ОН". Константа для этого процесса при 25 °С равна: н3о [Н*][ОН~] К° " [Н20] " Поскольку концентрация недиссоциированных молекул воды может быть принята равной общему числу моль воды в 1 л, т. е. [Н20] = 1000/18 - 55,56 моль, то [Н+] [ОН"] -= 10~14. Отсюда и произведение концентрации ионов Н+ и ОН" при данной температуре постоянно. Это произведение называют ионным произведением воды (Kj^q) Поскольку в воде концентрация гидратированных ионов водорода и гидроксид ионов равны, то [Н+] = [ОН"] -= 10~7 моль/л. Раствор с равными концентрациями ионов называют нейтральным; раствор, в котором [Н+] > [ОН~] - кислым; раствор, в котором [Н+] < [ОН"] - щелочным (основным). На практике использование концентрации ионов водорода для характеристики кислотности среды неудобно. Обычно для этой цели применяют величину отрицательного десятичного логарифма концентрации водородных ионов, которую называют водородным показателем рН («пэ аш»): pH--lg. Тогда для нейтральной среды рН = -lglO"7 = 7, для кислых растворов рН < 7, для щелочных рН > 7. Пример 1 Определите концентрации ионов водорода и гидроксид ионов в 5 10~4 М растворе соляной кислоты. Дано: См(НС1) « 5 10"4 М Найти: [Н+]; [ОН"] Решение: Так как НС1 - сильный электролит, то [Н+] будет равной молярной концентрации кислоты, т. е. Сн+ = 5 10~4 моль/л, Ю"14 10"14 = WT ~ 5 > Ю-4 " 2 "10 М0ЛЬ/Л-Ответ: [Н+] = 5 10~4 моль/л; [ОН"] = 2 10"п моль/л. Пример 2 Определите рН 0,01 М раствора КОН. Дано: Найти: рН(р-ра) Решение: КОН - сильный электролит, и поэтому [ОН~] будет равна концентрации щелочи, т. е. [ОН"]= 10"2 моль/л. 1(Г14 КГ1 моль/л" рН - -lg = -lglO"12 = 12. Ответ: рН = 12.

Фундаментальной опорой химии, наравне с периодической системой Д. И. Менделеева, строением органических соединений А. М. Бутлерова, другими значимыми открытиями, является и теория электролитической диссоциации. В 1887 году она была разработана Сванте Аррениусом для объяснения специфического поведения электролитов в воде, других полярных жидкостях и расплавах. Он нашёл компромисс между двумя категорически разными, существующими на то время теориями о растворах - физической и химической. Первая утверждала, что растворённое вещество и растворитель никак друг с другом не взаимодействуют, образуя простую механическую смесь. Вторая, что между ними происходит химическая связь. Оказалось, что на самом деле растворам присущи и те, и другие свойства.

В последующих этапах развития науки многие учёные продолжали исследования и разработки в этой области, опираясь на имеющиеся сведения о строении атомов и природе химических связей между ними. В частности И. А. Каблуков занимался вопросом сольватационных процессов, В. А. Кистяковский определил зависимость поднятия столба жидкости в капилляре в условиях температуры кипения от молекулярного веса.

Современная трактовка теории

До появления данного открытия многие свойства и обстоятельства процессов расщепления были не изучены, как и сами растворы. Электролитическая диссоциация - это процесс распада вещества на составляющие его ионы в воде или других полярных жидкостях, взаимодействия частиц соединения с молекулами растворителя, появления подвижности катионов и анионов в узлах кристаллической решетки из-за расплавления. В результате этого образованные субстанции получают новое свойство - электрическую проводимость.

Ионы, находясь в свободном состоянии раствора или расплава, взаимодействуют между собой. Одноимённо заряженные отталкиваются, разноименные - притягиваются. Заряженные частицы сольватированы молекулами растворителя - каждая плотно окружена строго ориентированными диполями соответственно силам притяжения Кулона, в частном случае гидратированы, если среда водная. Катионы всегда имеют большие радиусы, чем анионы из-за специфики расположения вокруг них частиц с локализованными по краям зарядами.

Состав, классификация и названия заряженных частиц в свете электролитической диссоциации

Ионом называют атом или группу атомов, которые являются носителями положительного или отрицательного заряда. Им присуще условное подразделение на простые (К (+) , Са (2+) , Н (+) - состоящие из одного химического элемента), сложные и комплексные (ОН (-) , SO 4 (2-) , НСО 3 (-) - из нескольких). Если катион или анион связан с молекулой растворителя, он называется сольватированным, с диполем молекулы Н 2 О - гидратированным.

Когда происходит электролитическая диссоциация воды, образуется две заряженные частицы Н (+) и ОН (-) . Протон водорода принимает на вакантную орбиталь неподелённую электронную пару кислорода из другой молекулы воды, в результате чего образуется ион гидроксония Н 3 О (+) .

Основные положения открытия Аррениуса

Все представители классов неорганических соединений, кроме оксидов, в растворах ориентированных диполей жидкостей распадаются, говоря химическим языком - диссоциируют на составляющие их ионы в большей или меньшей степени. Наличия электрического тока этот процесс не требует, уравнение электролитической диссоциации является его схематической записью.

Попадая в раствор или расплав, ионы могут подвергаться действию электрического тока и направленно двигаться к катоду (отрицательному электроду) и аноду (положительному). Последние притягивают противоположно заряженные атомные агрегаты. Отсюда частицы и получили свои названия - катионы и анионы.

Параллельно и одновременно с распадом вещества идёт обратный процесс - ассоциация ионов в исходные молекулы, поэтому стопроцентного растворения вещества не происходит. Такое уравнение реакции электролитической диссоциации содержит знак равенства между правой и левой его частями. Электролитическая диссоциация, как любая другая реакция, подчиняется законам, регулирующим химическое равновесие, не является исключением и закон действующих масс. Он гласит, что скорость процесса распада на ионы пропорциональна концентрации электролита.

Классификация веществ при диссоциации

Химическая терминология подразделяет вещества на нерастворимые, малорастворимые и растворимые. Два последних - это слабые и сильные электролиты. Сведения о растворимости тех или иных соединений сведены в таблицу растворимости. Диссоциация сильных электролитов - это необратимый процесс, они нацело распадаются на ионы. Слабые - лишь частично, им присуще явление ассоциации, а следовательно, равновесность происходящих процессов.

Важно отметить, что прямой зависимости между растворимостью и силой электролита нет. У сильных она может быть слабо выражена. Так же как и слабые электролиты могут быть хорошо растворимы в воде.

Примеры соединений, растворы которых проводят электрический ток

К классу «сильные электролиты» относят все хорошо диссоциирующие кислоты, такие как азотная, соляная, бромная, серная, хлорная и другие. В одинаковой степени и щёлочи - гидроокислы щелочных и отдельные представители группы «щелочноземельные металлы». Интенсивна электролитическая диссоциация солей, кроме определённых цианатов и тиоцианатов, а также хлорида ртути (II).

Класс «слабые электролиты» представляют остальные минеральные и почти все органические кислоты: угольная, сульфидная, борная, азотистая, сернистая, кремниевая, уксусная и другие. А также малорастворимые и углеводородные основания и амфотерные гидроксиды (гидроокиси магния, бериллия, железа, цинка в степени окисления (2+)). В свою очередь, молекулы воды являются очень слабыми электролитами, но всё же распадаются на ионы.

Количественное описание диссоциирующих процессов

Степень электролитической диссоциации фактически характеризует масштабы процесса расщепления. Её можно вычислить - число расщепившихся на ионы частиц необходимо разделить на общую численность молекул растворённого вещества в системе. Обозначают эту величину буквой «альфа».

Логично, что для сильных электролитов «α» равна единице, или ста процентам, так как число распавшихся частиц равно общему их количеству. Для слабых - всегда меньше единицы. Полного распада исходных молекул на ионы в водной среде не происходит, и идёт обратный процесс.

Главные факторы, влияющие на полноту распада

На степень электролитической диссоциации влияет ряд неоспоримых факторов. В первую очередь важна природа растворителя и вещества, распадающегося в нём. Например, все сильные электролиты имеют ковалентный сильно полярный или ионный тип связи между составными частицами. Жидкости представлены диполями, в частности вода, в молекулах имеется разделение зарядов, и в результате их специфической ориентации происходит электролитическая диссоциация растворённого вещества.

На значение «альфа» обратно пропорционально влияет концентрация. При её увеличении значение степени диссоциации уменьшается, и наоборот. Сам процесс всецело эндотермический, то есть для его инициации необходимо определённое количество теплоты. Влияние температурного фактора обосновано так: чем он выше, тем больше степень диссоциации.

Второстепенные факторы

Многоосновные кислоты, такие как фосфорная, и основания в составе с несколькими гидроксильными группами, например, Fe(ОН) 3 , распадаются на ионы ступенчато. Определена зависимость - каждая последующая стадия диссоциации характеризуется степенью, которая в тысячи или десятки тысяч раз меньше предыдущей.

Изменить степень распада может и добавление в систему других электролитов, изменяющих концентрацию одного из ионов основного растворённого вещества. Это влечёт за собой смещение равновесия в сторону, которое определяется правилом Ле Шателье-Брауна - реакция протекает в том направлении, в котором наблюдается нейтрализация влияния, оказанного на систему извне.

Классическая константа равновесного процесса

Для характеристики процесса распада слабого электролита, помимо его степени, применяется константа электролитической диссоциации (К д), которая выражается отношением концентраций катионов и анионов к количественному содержанию в системе исходных молекул. По сути, она является обычной постоянной химического равновесия для обратимой реакции расщепления растворённого вещества на ионы.

Например, для процесса распада соединения на составляющие его частицы константа диссоциации (К д) будет определяться частным постоянных концентраций катионов и анионов в составе раствора, возведённых в степени, соответствующие цифрам, стоящим перед ними в химическом уравнении, и общего числа оставшихся не продиссоциировавших формульных единиц растворённого вещества. Прослеживается зависимость - чем выше (К д), тем больше число катионов и анионов в системе.

Связь концентрации слабого распадающегося соединения, степени диссоциации и константы определяется с помощью закона разведения Оствальда уравнением: К д = α 2 с.

Вода как слабо диссоциирующее вещество

Дипольные молекулы в крайне небольшой степени распадаются на заряженные частицы, так как это энергетически невыгодно. Всё же идёт расщепление на катионы водорода и гидроксильные анионы. С учётом гидратационных процессов можно говорить об образовании из двух молекул воды иона гидроксония и ОН (-) .

Постоянная диссоциация определяется отношением произведения протонов водорода и гидроксидных групп, называемого ионным произведением воды, к равновесной концентрации не распавшихся молекул в растворе.

Электролитическая диссоциация воды обуславливает наличие в системе Н (+) , которые характеризуют её кислотность, а присутствие ОН (-) - основность. Если концентрации протона и гидроксильной группы равны, такая среда называется нейтральной. Существует так называемый водородный показатель - это отрицательный логарифм от общего количественного содержания Н (+) в растворе. рН меньше 7 говорит о том, что среда кислая, больше - о её щелочности. Это очень важная величина, по её экспериментальному значению анализируют биологические, биохимические и химические реакции различных водных систем - озёр, прудов, рек и морей. Неоспорима также актуальность водородного показателя для промышленных процессов.

Запись реакций и обозначения

Уравнение электролитической диссоциации с помощью химических знаков описывает процессы распада молекул на соответствующие частицы и называется ионным. Оно в разы проще стандартного молекулярного и имеет более общий вид.

При составлении такого уравнения нужно учитывать, что вещества, осаждающиеся или удаляющиеся из реагирующей смеси в составе паров газа в ходе реакции, всегда необходимо записывать только в молекулярной форме, в отличие от соединений электролитов, сильные представители которых только в расщепившемся на ионы виде входят в состав растворов. Электролитическая диссоциация для них - необратимый процесс, так как ассоциация невозможна в силу образования не расщепляющихся веществ или газов. Для такого типа уравнения действуют те же правила, что и для прочих химических реакций - суммы коэффициентов левых и правых частей обязательно должны быть равны друг другу для соблюдения материального баланса.

Электролитическая диссоциация кислот и оснований может идти в несколько стадий, если вещества многоосновные или многокислотные. Для каждой подреакции записывается своё уравнение.

Роль в химической науке и её развитии

Величайшее значение создание теории Сванте Аррениуса имело для общего процесса становления физической и, в частности, электрохимической науки. На основе открытия такого явления, как электролитическая диссоциация, интенсивное развитие получили электродные процессы, специфика прохождения токов через различные среды, теория наведения катодно-анодных потенциалов. Кроме этого, значительно продвинулась вперёд теория растворов. Небывалые открытия ждали и химическую кинетику, область коррозии металлов и сплавов, а также работы по поиску новых средств защиты от неё.

В современном мире ещё так много нового и неизвестного. С каждым днём учёные продвигаются всё дальше в познании такой великой дисциплины, как химия. Электролитическая диссоциация, а также её создатели и последователи навсегда заняли почётное место в контексте развития мировой науки.

Вещества, растворы (или расплавы) которых проводят электрический ток, называются э л е к т р о л и т а м и. Нередко электролитами называют и сами растворы этих веществ. Эти растворы (расплавы) электролитов являются проводниками второго рода, так как передача электричества осуществляется в них движением и о н о в - заряженных частиц. Частица, заряженная положительно называется катионом (Са +2), частица несущая отрицательный заряд - анионом (ОН ־). Ионы могут быть простые (Са +2 , Н +) и сложные (РО 4 ־ 3 , НСО 3 ־ 2).

Основоположником теории электролитической диссоциации является шведский ученый С. Аррениус. Согласно теории электролитической диссоциацией называется распад молекул на ионы при их растворении в воде, причем это происходит без воздействия электрического тока. Однако эта теория не отвечала на вопросы: какие причины обусловливают появление в растворах ионов и почему положительные ионы, сталкиваясь с отрицательными, не образуют нейтральных частиц.

Свой вклад в развитие этой теории внесли русские ученые: Д.И. Менделеев, И. А. Каблуков – сторонники химической теории растворов, обращавшие внимание на влияние растворителя в процессе диссоциации. Каблуков утверждал, что растворенное вещество взаимодействует с растворителем (процесс с о л ь в а т а ц и и ) образуя продукты переменного состава (с о л ь в а т ы ).

Сольват представляет собой ион, окруженный молекулами растворителя (сольватная оболочка), которых может быть разное количество (именно за счет этого достигается переменный состав). Если растворителем является вода, то процесс взаимодействия молекул растворенного вещества и растворителя называется г и д р а т а ц и е й, а продукт взаимодействия - г и д р а т о м.

Таким образом, причиной электролитической диссоциации является сольватация (гидратация). И именно сольватация (гидратация) ионов препятствует обратному соединению в нейтральные молекулы.

Количественно процесс диссоциации характеризуется величиной степени электролитической диссоциации ( α ), которая представляет собой отношение количества распавшегося на ионы вещества к общему количеству растворенного вещества. Отсюда следует, что для сильных электролитов α = 1 или 100 % (в растворе присутствуют ионы растворенного вещества), для слабых электролитов 0 < α < 1 (в растворе присутствуют наряду с ионами растворенного вещества и его недиссоциированные молекулы), для неэлектролитов α = 0 (ионы в растворе отсутствуют). Помимо природы растворенного вещества и растворителя величина α зависит от концентрации раствора и температуры.

Если растворителем является вода, к сильным электролитам относятся:

1) все соли;

2) следующие кислоты: HCl, HBr, HI, H 2 SO 4 , HNO 3 , HClO 4 ;

3) следующие основания: LiOH, NaOH, KOH, RbOH, CsOH, Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2 .

Процесс электролитической диссоциации является обратимым, следовательно, его можно охарактеризовать величиной константы равновесия, которая, в случае слабого электролита, называется константой диссоциации (К Д ) .

Чем больше эта величина, тем легче электролит распадается на ионы, тем больше его ионов в растворе. Например: HF ═ H + + F־

Эта величина постоянная при данной температуре и зависит от природы электролита, растворителя.

Многоосновные кислоты и многокислотные основания диссоциируют ступенчато. Например, молекулы серной кислоты в первую очередь отщепляют один катион водорода:

H 2 SO 4 ═ Н + + HSO 4 ־ .

Отщепление второго иона по уравнению

HSO 4 ־ ═ Н + + SO 4 ־ 2

идет уже значительно труднее, так как ему приходится преодолевать притяжение со стороны двухзарядного иона SO 4 ־ 2 , который, конечно, притягивает к себе ион водорода сильнее, чем однозарядный ион HSO 4 ־ . Поэтому вторая ступень диссоциации происходит в гораздо меньшей степени, чем первая.

Основания, содержащие более одной гидроксильной группы в молекуле, тоже диссоциируют ступенчато. Например:

Ba(OH) 2 ═ BaOH + + OH - ;

BaOH + = Ba 2+ + OH - .

Средние (нормальные) соли всегда диссоциируют на ионы металлов и кислотных остатков:

CaCl 2 = Ca 2+ + 2Cl - ;

Na 2 SO 4 = 2Na + + SO 4 2- .

Кислые соли, подобно многоосновным кислотам, диссоциируют ступенчато. Например:

NaHCO 3 = Na + + HCO 3 - ;

HCO 3 - = H + + CO 3 2- .

Однако степень диссоциации по второй ступени очень мала, так что раствор кислой соли содержит лишь незначительное число ионов водорода.

Основные соли диссоциируют на ионы основных и кислотных остатков. Например:

Fe(OH)Cl 2 = FeOH 2+ + 2Cl - .

Вторичной диссоциации ионов основных остатков на ионы металла и гидроксила почти не происходит.


Правила составления уравнений электролитической диссоциации веществ

Процесс разрушения или распада электролита на ионы называется электролитической диссоциацией. Составные части распавшихся молекул или кристаллов представляют собой частицы, имеющие заряд. Их называют ионы.

Ионы бывают отрицательные и положительные. Положительные ионы называются катионами, отрицательные — анионами.

Растворы веществ, молекулы или кристаллы которых способны распадаться на ИОНЫ (диссоциировать), могут проводить электрический ток. Именно поэтому их называют электролитами. Часто процесс электролитической диссоциации называют просто: диссоциация.

Процесс растворения вещества отличается от диссоциации тем, что при растворении частицы вещества равномерно распределяются между молекулами растворителя (воды) по всему объему раствора, а в процессе диссоциации частицы вещества (кристаллы или молекулы) распадаются на составные части.

Поэтому при хорошей растворимости вещество не всегда хорошо диссоциирует.

Существуют вещества, молекулы или кристаллы которых хорошо распадаются на ионы. Их называют сильными электролитами.

Сильные электролиты:

Диссоциация сильных электролитов происходит необратимо

Существуют вещества, молекулы или кристаллы которых плохо распадаются на ионы. Их называют слабыми электролитами.

Слабые электролиты:

Диссоциация слабых электролитов происходит обратимо, т. е. ионы, образовавшиеся при распаде молекулы, соединяясь снова, образуют исходную молекулу. Обратимость реакции показывают разнонаправленными стрелками: ↔для слабых электролитов обратная реакция (ассоциация) преобладает над распадом молекул на ионы.

1. Диссоциация сильных электролитов

При диссоциации кислот их молекулы распадаются всегда на положительно заряженные ноны водорода Н и отрицательно заряженные ионы кислотных остатков.

Рассмотрим уравнение диссоциации кислоты сильного электролита. (видео урок)

При диссоциации оснований их молекулы распадаются всегда на положительно заряженные ноны металла и отрицательно заряженныегидроксид-ионы (ОН -).

2. Рассмотрим уравнение диссоциации основания — сильного электролита.(видео урок)

3. При диссоциации солей их молекуль распадаются всегда на по ложительно заряженные ионы металла и отрицательно заряжен ные ноны кислотньтх остатков.

Рассмотрим уравнение диссоциации соли — сильного электролита. (видео урок)

4. Составление уравнения диссоциации соли, в которой кислотный остаток состоит из одного элемента (хлорид (С1), сульфиды (S ), отличается от тех уравнений, в которых молекулы солей имеют в кислотном остатке два элемента. (видео урок)

5. Диссоциация слабых электролитов (видео урок)

диссоциация многоосновных кислот слабых электролитов на ионы происходит постепенно (ступенчато). При этом на каждой стадии диссоциации образуется один ион водорода Н и отрицательно заряженные ионы кислотных остатков. Рассмотрим уравнение диссоциации кислоты— слабого электролита (Н 2 СО 3)

6 Вторая стадия диссоциации HCO 3 - ↔ H + + CO 3 -

Число стадий диссоциации кислоты — слабого электролита равно числу атомов водорода Н в его молекуле.

Диссоциация слабых электролитов многокислотных оснований на ионы происходит постепенно (ступенчато). При этом на каждой стадии диссоциации образуется 1 гидроксид-ион (ОН-).(видео урок)

Такие основания, как правило, содержат несколько групп ОН. Рассмотрим уравнение диссоциации основания — слабого электролита Mg (OH ) 2

Первая стадия диссоциации

Mg (OH ) 2 ↔ MgOH + + OH -

Число стадий диссоциации основания — слабого электролита равно числу групп ОН в его молекуле. (видео урок)

Уравнения диссоциации солей слабых электролитов на ионы записывают в одну стадию. При этом образуются положительно заряженные ИОНЫ металла и отрицательно заряженные ИОНЫ кислотного остатка. Рассмотрим уравнение диссоциации соли — слабого электролита Са 3 (РО 4) 2

Са 3 (РО 4) 2 ↔ 3Са 2+ + 2РО 4 3- (видео урок)

Реакции на опыты (видео урок)

1. Реакции ионного обмена, идущие с выделением газа

Na 2 CO 3 + 2HCl = CO 2 + H 2 O + 2NaCl

2. Реакции ионного обмена, идущие с образованием ярко-окрашенных солей

FeCl 3 + 3KNCS= Fe(NCS) 3 + 3KCl

BaCl 2 + K 2 CrO 4 = BaCrO 4 ↓+ 2KCl

NiSO 4 + 2NaOH = Ni(OH) 2 ↓ + Na 2 SO 4

CuSO 4 + 2NaOH = Cu(OH) 2 ↓ + Na 2 SO 4

3. Реакция нейтрализации

NaOH + HCl = NaCl + H 2 O

4. Изменение диссоциации электролитов при различных температурах