Органическая химия понятным языком. Органическая химия для "чайников": история, понятия

Мало кто задумывался о том, какова роль органической химии в жизни современного человека. А ведь она огромна, сложно ее переоценить. С самого утра, когда человек просыпается и идет умываться, и до самого вечера, когда он ложится спать, его ежеминутно сопровождают продукты органической химии. Зубная щетка, одежда, бумага, косметика, предметы мебели и интерьера и многое другое - все это дает нам она. Но когда-то все было совсем не так, и об органической химии знали совсем мало.

Рассмотрим, как складывалась поэтапно история развития органической химии.

1. Период развития до XIV века, называемый стихийным.

2. XV - XVII века - начало развития или, ятрохимия, алхимия.

3. Век XVIII - XIX - господствие теории витализма.

4. XIX - XX века - интенсивное развитие, научный этап.

Начало, или Стихийный этап становления химии органических соединений

Данный период подразумевает само зарождение понятия химии, истоки. А истоки уходят еще в Древний Рим и Египет, в которых очень способные жители научились добывать для окраски предметов и одежды из природного сырья - листьев и стеблей растений. Это были индиго, дающий насыщенный синий цвет, и ализорин, окрашивающий буквально все в сочные и привлекательные оттенки оранжевого и красного. Необычайно проворные жители разных народностей того же времени также научились получать уксус, изготавливать спиртные напитки из сахаро- и крахмалосодержащих веществ растительного происхождения.

Известно, что очень распространенными продуктами в применении в этот исторический период были животные жиры, смолы и растительные масла, которые использовались врачевателями и поварами. А также в обиход плотно входили различные яды, как основное оружие внутриусобных отношений. Все эти вещества являются продуктами органической химии.

Но, к сожалению, как такового понятия "химия" не существовало, и изучения конкретных веществ с целью выяснения свойств и состава не происходило. Поэтому данный период и называется стихийным. Все открытия носили случайный, нецеленаправленный характер бытового значения. Так продолжалось вплоть до следующего столетия.

Период ятрохимии - многообещающее начало развития

Действительно, именно в XVI - XVII веках начали зарождаться непосредственные представления о химии как науке. Благодаря работам ученых того времени были получены некоторые органические вещества, изобретены простейшие устройства для перегонки и возгонки веществ, использовалась специальная химическая посуда для измельчения веществ, разделения продуктов природы на ингредиенты.

Основным направлением работы того времени стала медицина. Стремление получить необходимые лекарства привело к тому, что из растений выделялись эфирные масла и другие сырьевые компоненты. Так, Карлом Шееле были получены некоторые органические кислоты из растительного сырья:

  • яблочная;
  • лимонная;
  • галловая;
  • молочная;
  • щавелевая.

На исследование растений и выделение этих кислот ученому потребовалось 16 лет (с 1769 г. по 1785 г.). Это стало началом развития, были заложены основы органической химии, которая непосредственно как раздел химии была определена и названа позднее (начало XVIII века).

В этот же период средневековья Г. Ф. Руэль выделил кристаллы мочевой кислоты из мочевины. Другими химиками была получена янтарная кислота из янтаря, винная кислота. В обиход входит метод сухой перегонки растительного и животного сырья, благодаря которому получают уксусную кислоту, диэтиловый эфир, древесный спирт.

Так было положено начало интенсивному развитию органической химической промышленности в будущем.

Vis vitalis, или "Жизненная сила"

XVIII - XIX века для органической химии весьма двояки: с одной стороны, происходит целый ряд открытий, которые имеют грандиозное значение. С другой, долгое время рост и накопление нужных знаний и правильных представлений тормозится господствующей теорией витализма.

Данную теорию ввел в обиход и обозначил главной Йенс Якобс Берцелиус, который при этом сам же дал и определение органической химии (точный год неизвестен, либо 1807, либо 1808 г.). По положениям данной теории, органические вещества способны образовываться только в живых организмах (растениях и животных, в том числе человека), так как только в живых существах есть специальная "жизненная сила", позволяющая этим веществам вырабатываться. В то время как из неорганических веществ получить органические совершенно невозможно, так как они являются продуктами неживой природы, негорючими, без vis vitalis.

Этим же ученым была предложена первая классификация всех известных на тот момент соединений на неорганические (неживые, все вещества, подобные воде и соли) и органические (живые, те, что вроде оливкового масла и сахара). Также Берцелиус первым обозначил конкретно, что такое органическая химия. Определение звучало так: это раздел химии, изучающий вещества, выделенные из живых организмов.

В этот период учеными легко осуществлялись превращения органических веществ в неорганические, например, при сгорании. Однако о возможности обратных превращений ничего известно пока не было.

Судьбе было угодно распорядиться так, что именно ученик Йенса Берцелиуса Фридрих Велер способствовал началу краха теории своего учителя.

Немецкий ученый работал над соединениями цианидов и в одном из проводимых опытов сумел получить кристаллы, похожие на мочевую кислоту. В результате более тщательного исследования он убедился, что действительно сумел получить органическое вещество из неорганического без всякой vis vitalis. Сколь бы ни был скептично настроен Берцелиус, он вынужден был признать этот неоспоримый факт. Так был нанесен первый удар по виталистическим взглядам. История развития органической химии начала набирать обороты.

Ряд открытий, сокрушивших витализм

Успех Велера воодушевил химиков XVIII века, поэтому начались повсеместные испытания и эксперименты с целью получения органических веществ в искусственных условиях. Таких синтезов, имеющих решающее и наибольшее значение, было совершено несколько.

  1. 1845 г. - Адольф Кольбе, который был учеником Велера, сумел из простых неорганических веществ С, Н 2 , О 2 многоэтапным полным синтезом получить уксусную кислоту, которая является веществом органическим.
  2. 1812 г. Константином Кирхгофом осуществлен синтез глюкозы из крахмала и кислоты.
  3. 1820 г. Анри Браконно денатурировал белок кислотой и затем обработал смесь азотной кислотой и получил первую из 20 синтезированных позднее аминокислот - глицин.
  4. 1809 г. Мишель Шеврель изучал состав жиров, пытаясь расщепить их на составные компоненты. В итоге он получил жирные кислоты и глицерин. 1854 г. Жан Бертло продолжил работы Шевреля и нагрел глицерин со Результат - жир, точно повторяющий структуру природных соединений. В дальнейшем он сумел получить и другие жиры и масла, которые были несколько отличны по строению молекул от природных аналогов. То есть доказал возможность получения новых органических соединений, имеющих большое значение, в лабораторных условиях.
  5. Ж. Бертло синтезировал метан из сероводорода (Н 2 S) и сероуглерода (CS 2).
  6. 1842 г. Зинин сумел синтезировать анилин, краситель из нитробензола. В дальнейшем ему удалось получить целый ряд анилиновых красителей.
  7. А. Байер создает собственную лабораторию, в которой занимается активным и успешным синтезом органических красителей, сходных с природными: ализариновые, индигоидные, антрохиноновые, ксантеновые.
  8. 1846 г. синтез нитроглицерина ученым Собреро. Им же разработана теория типов, говорящая о том, что вещества подобны некоторым из неорганических и их можно получить заменой атомов водорода в структуре.
  9. 1861 г. А. М. Бутлеров синтезировал сахаристое вещество из формалина. Им же были сформулированы положения теории химического строения органических соединений, актуальные по сей день.

Все эти открытия определили предмет органической химии - углерод и его соединения. Дальнейшие открытия были направлены на изучение механизмов химических реакций в органике, на установление электронной природы взаимодействий и на рассмотрение структуры соединений.

Вторая половина XIX и XX век - время глобальных химических открытий

История развития органической химии с течением времени претерпевала все большие изменения. Работа множества ученых над механизмами внутренних процессов в молекулах, в реакциях и системах дала свои плодотворные результаты. Так, в 1857 г. Фридрих Кекуле разрабатывает теорию валентности. Также ему принадлежит величайшая заслуга - открытие строения молекулы бензола. В это же время А. М. Бутлеров формулирует положения теории строения соединений, в которых указывает на четырехвалентность углерода и на явление существования изомерии и изомеров.

В. В. Марковников и А. М. Зайцев углубляются в изучение механизмов реакций в органике и формулируют ряд правил, которые эти механизмы объясняют и подтверждают. В 1873 - 1875 гг. И. Вислиценус, Вант-Гофф и Ле Бель изучают пространственное расположение атомов в молекулах, открывают существование стерео-изомеров и становятся родоначальниками целой науки - стереохимии. Множество разных людей принимали участие в создании той области органики, которую мы имеем сегодня. Поэтому ученые органической химии заслуживают внимания.

Конец XIX и XX века - это времена глобальных открытий в фармацевтике, лакокрасочной промышленности, квантовой химии. Рассмотрим открытия, обеспечившие максимальное значение органической химии.

  1. 1881 г. М. Конрад и М. Гудцейт синтезировали анестетики, веронал и салициловую кислоту.
  2. 1883 г. Л. Кнорр получил антипирин.
  3. 1884 г. Ф. Штолль получил пирамидон.
  4. 1869 г. братья Хайатт получили первое искусственное волокно.
  5. 1884 г. Д. Истмен синтезировал целлулоидную фотопленку.
  6. 1890 г. получено медноаммиачное волокно Л. Депасси.
  7. 1891 г. Ч. Кросс с коллегами получил вискозу.
  8. 1897 г. Ф. Мишер и Бухнер основали теорию (было открыто бесклеточное брожение и энзимы как биокатализаторы).
  9. 1897 г. Ф. Мишер открыл нуклеиновые кислоты.
  10. Начало XX века - новая химия элементоорганических соединений.
  11. 1917 г. Льюис открыл электронную природу химической связи в молекулах.
  12. 1931 г. Хюккель - основатель квантовых механизмов в химии.
  13. 1931-1933 гг. Лаймус Полинг обосновывает теорию резонанса, а позже его сотрудники раскрывают сущность направлений в химических реакциях.
  14. 1936 г. синтезирован нейлон.
  15. 1930-1940 гг. А. Е. Арбузов дает начало развитию фосфоорганических соединений, которые являются основой для производства пластмасс, лекарств и инсектицидов.
  16. 1960 г. академик Несмеянов с учениками создает в лабораторных условиях первую синтетическую пищу.
  17. 1963 г. Дю Винью получает инсулин, что является огромным шагом вперед в медицине.
  18. 1968 г. индиец Х. Г. Корана сумел получить простой ген, что помогло в расшифровке генетического кода.

Таким образом, значение органической химии в жизни людей просто колоссально. Пластмассы, полимеры, волокна, лакокрасочная продукция, каучуки, резины, ПВХ-материалы, полипропилены и полиэтилены и многие другие современные вещества, без которых сегодня просто не представляется возможной жизнь, прошли сложный путь к своему открытию. Сотни ученых внесли свой многолетний кропотливый труд, чтобы сложилась общая история развития органической химии.

Современная система органических соединений

Проделав огромный и сложный путь в развитии, органическая химия и сегодня не стоит на месте. Известно более 10 млн. соединений, и это число с каждым годом растет. Поэтому существует определенная систематизированная структура расположения веществ, которые нам дает органическая химия. Классификация органических соединений представлена в таблице.

Класс соединений Особенности строения Общая формула
Углеводороды (состоят только из атомов углерода и водорода)
  • насыщенные (только сигма св.);
  • ненасыщенные (сигма и пи св.);
  • ациклические;
  • циклические.

Алканы C n H 2n+2;

Алкены, циклоалканы C n H 2n;

Алкины, алкадиены C n H 2n-2;

Арены C 6 H 2n-6.

Вещества, содержащие различные гетероатомы в главной группе
  • галогены;
  • группа ОН (спирты и фенолы);
  • группировка R-O-R
Карбонильные соединения
  • альдегиды;
  • кетоны;
  • хиноны.
R-C(H)=O
Соединения, содержащие карбоксильную группировку
  • карбоновые кислоты;
  • сложные эфиры.
Соединения, содержащие серу, азот или фосфор в составе молекулы Могут быть циклическими и ациклическими -
Элементоорганические соединения Углерод связан непосредственно с другим элементом, а не водородом С-Э
Металлоорганические соединения Углерод связан с металлом С-Ме
Гетероциклические соединения В основе структуры цикл с входящими в состав гетероатомами -
Природные вещества Большие полимерные молекулы, входящие в состав природных соединений белки, нуклеиновые кислоты, аминокислоты, алкалоиды и т. д.
Полимеры Вещества с большой молекулярной массой, основу которых составляют мономерные звенья n (-R-R-R-)

Изучение всего многообразия веществ и реакций, в которые они вступают, и составляет предмет органической химии на сегодняшний день.

Типы химических связей в органических веществах

Для любых соединений характерны электронностатические взаимодействия внутри молекул, которые в органике выражаются в наличии ковалентных полярных и ковалентных неполярных связей. В металлорганических соединениях возможно образование слабого ионного взаимодействия.

Возникают между С-С взаимодействием во всех органических молекулах. Ковалентное полярное взаимодействие характерно для разных атомов-неметаллов в молекуле. Например, С-Hal, C-H, C-O, C-N, C-P, C-S. Это все связи в органической химии, которые существуют для образования соединений.

Разновидности формул веществ в органике

Самые распространенные формулы, выражающие количественный состав соединения, называются эмпирическими. Такие формулы существуют для каждого неорганического вещества. Но когда дело коснулось составления формул в органике, перед учеными встало множество проблем. Во-первых, масса многих из них исчисляется сотнями, а то и тысячами. Сложно определить эмпирическую формулу для такого громадного вещества. Поэтому со временем появился такой раздел органической химии, как органический анализ. Основоположниками его считаются ученые Либих, Велер, Гей-Люссак и Берцелиус. Именно они, совместно с трудами А. М. Бутлерова, определили существование изомеров - веществ, имеющих одинаковый качественный и количественный состав, но различающихся строением молекулы и свойствами. Именно поэтому строение органических соединений выражается на сегодняшний день не эмпирической, а структурной полной или структурной сокращенной формулой.

Эти структуры - характерная и отличительная особенность, которую имеет органическая химия. Формулы записываются при помощи черточек, обозначающих химические связи. например, сокращенная структурная формула бутана будет иметь вид CH 3 - СН 2 - СН 2 - СН 3 . Полная структурная формула показывает все имеющиеся в молекуле химические связи.

Также существует способ записывания молекулярных формул органических соединений. Он выглядит так же, как эмпирические у неорганических. Для бутана, например, она будет такой: С 4 Н 10 . То есть молекулярная формула дает представление только о качественном и количественном составе соединения. Структурные же характеризуют связи в молекуле, поэтому по ним можно предсказать будущие свойства и химическое поведение вещества. Это те особенности, которые имеет органическая химия. Формулы записываются в любом виде, каждый из них считается верным.

Типы реакций в органической химии

Существует определенная классификация органической химии по типу происходящих реакций. Причем таких классификаций несколько, по различным признакам. Рассмотрим основные из них.

Механизмы химических реакций по способам разрыва и образования связей:

  • гомолитические или радикальные;
  • гетеролитические или ионные.

Реакции по типам превращений:

  • цепные радикальные;
  • нуклеофильного алифатического замещения;
  • нуклеофильного ароматического замещения;
  • реакции элиминирования;
  • электрофильного присоединения;
  • конденсации;
  • циклизации;
  • электрофильного замещения;
  • реакции перегруппировок.

По способу запуска реакции (инициирования) и по кинетическому порядку также иногда реакции классифицируются. Это основные особенности реакций, которыми обладает органическая химия. Теория, описывающая подробности протекания каждой химической реакции, была открыта еще в середине XX века и подтверждается и дополняется до сих пор с каждым новым открытием и синтезом.

Следует заметить, что вообще реакции в органике протекают при более жестких условиях, чем в неорганической химии. Это связано с большей стабилизацией молекул органических соединений за счет образования внутри и межмолекулярных прочных связей. Поэтому практически ни одна реакция не обходится без повышения температуры, давления или применения катализатора.

Современное определение органической химии

В целом, развитие органической химии шло по интенсивному пути на протяжении нескольких столетий. Накоплено огромное количество сведений о веществах, их структурах и реакциях, в которые они могут вступать. Синтезированы миллионы полезных и просто необходимых сырьевых компонентов, используемых в самых различных областях науки, техники и промышленности. Понятие органической химии сегодня воспринимается как нечто грандиозное и большое, многочисленное и сложное, разнообразное и значительное.

В свое время первым определением этого великого раздела химии было то, что дал Берцелиус: это химия, изучающая вещества, выделенные из организмов. С того момента прошло много времени, совершено множество открытий и осознано и раскрыто большое количество механизмов внутрихимических процессов. Вследствие этого сегодня есть иное понятие, что такое органическая химия. Определение ей дается такое: это химия углерода и всех его соединений, а также методов их синтеза.

«ОСНОВЫ ОРГАНИЧЕСКОЙ ХИМИИ»

Вопросы лекции:

1. Теория строения органических соединений, их классификация и номенклатура. Типы изомерии.

2. Связь химических свойств со структурой молекул, классификация реагентов и реакций в органической химии.

3. Полимеры, олигомеры. Строение, свойства. синтез

ВОПРОС 1.

Трудно представить прогресс в какой бы то ни было области хозяйства без химии – в частности, без органической химии. Все сферы хозяйства связаны с современной химической наукой и технологией.

Органическая химия изучает вещества, содержащие в своем составе углерод, за исключением окиси углерода, углекислого газа и солей угольной кислоты (эти соединения по свойствам ближе к неорганическим соединениям).

Как наука органическая химия до середины XVIII века не существовала. К тому времени различали три вида химии: химию животных, растительную и минеральную. Химия животных изучала вещества, входящие в состав животных организмов; растительная – вещества, входящие в состав растений; минеральная – вещества, входящие в состав неживой природы. Этот принцип, однако, не позволял отделить органические вещества от неорганических. Например, янтарная кислота относилась к группе минеральных веществ, так как ее получали перегонкой ископаемого янтаря, поташ входил в группу растительных веществ, а фосфат кальция – в группу животных веществ, так как их получали прокаливанием соответственно растительных (древесина) и животных (кости) материалов.

В первой половине XIX века было предложено выделить соединения углерода в самостоятельную химическую дисциплину – органическую химию.

Среди ученых в то время господствовало виталистическое мировоззрение, согласно которому органические соединения образуются только в живом организме под влиянием особой, сверхъестественной "жизненной силы". Это означало, что получить органические вещества путем синтеза из неорганических невозможно, что между органическими и неорганическими соединениями лежит непреодолимая пропасть. Витализм настолько укрепился в умах ученых, что долгое время не предпринималось никаких попыток синтеза органических веществ. Однако витализм был опровергнут практикой, химическим экспериментом.

В 1828 г. немецкий химик Вёлер, работая с циановокислым аммонием, случайно получил мочевину

В 1854 г. француз Бертло синтезировал вещества, относящиеся к жирам, а в 1861 г. русский ученый Бутлеров синтезировал вещества, относящиеся к классу сахаров. Это были тяжелые удары по виталистической теории, окончательно разбивающие убеждение о невозможности синтеза органических соединений.

Эти и другие достижения химиков требовали теоретического объяснения и обобщения возможных путей синтеза органических соединений и связи их свойств со строением.

Исторически первой теорией органической химии стала теория радикалов (Ж.Дюма, Ю.Либих, И.Берцелиус). По мнению авторов, многие превращения органических соединений протекают так, что некоторые группы атомов (радикалы), не изменяясь, переходят из одного органического соединения в другое. Однако, вскоре было установлено, что в органических радикалах атомы водорода могут замещаться даже на такие отличные от водорода по химической природе атомы, как атомы хлора, и при этом тип химического соединения сохраняется.

Теорию радикалов сменила более совершенная и охватывающая больший экспериментальный материал теория типов (О.Лоран, Ш.Жерар, Ж.Дюма). Теория типов классифицировала органические вещества по типам превращений. К типу водорода относили углеводороды, к типу хлороводорода – галогенопроизводные, к типу воды – спирты, эфиры, кислоты и их ангидриды, к типу аммиака – амины. Однако накапливающийся огромный экспериментальный материал уже не укладывался в известные типы и, кроме того, теория типов не могла предсказать существование и пути синтеза новых органических соединений. Развитие науки требовало создания новой, более прогрессивной теории, для рождения которой уже существовали некоторые предпосылки: установлена четырехвалентность углерода (А.Кекуле и А.Кольбе, 1857 год), показана способность атома углерода образовывать цепочки атомов (А.Кекуле и А.Купер, 1857 год).

Решающая роль в создании теории строения органических соединений принадлежит великому русскому ученому Александру Михайловичу Бутлерову. 19 сентября 1861 года на 36-м съезде немецких естествоиспытателей А.М.Бутлеров обнародовал ее в докладе "О химическом строении вещества".

Основные положения теории химического строения А.М.Бутлерова можно свести к следующему.

1. Все атомы в молекуле органического соединения связаны друг с другом в определенной последовательности в соответствии с их валентностью. Изменение последовательности расположения атомов приводит к образованию нового вещества с новыми свойствами. Например, составу вещества С2Н6О отвечают два разных соединения: диметиловый эфир (СН3–О–СН3) и этиловый спирт (С2Н5ОН).

2. Свойства веществ зависят от их химического строения. Химическое строение – это определенный порядок в чередовании атомов в молекуле, во взаимодействии и взаимном влиянии атомов друг на друга – как соседних, так и через другие атомы. В результате каждое вещество имеет свои особые физические и химические свойства. Например, диметиловый эфир – это газ без запаха, нерастворимый в воде, t0пл. = -1380C, t0кип. = 23,60C; этиловый спирт – жидкость с запахом, растворимая в воде, t0пл. = -114,50C, t0кип. = 78,30C.

Данное положение теории строения органических веществ объяснило явление изомерии, широко распространенное в органической химии. Приведенная пара соединений – диметиловый эфир и этиловый спирт – один из примеров, иллюстрирующих явление изомерии.

3. Изучение свойств веществ позволяет определить их химическое строение, а химическое строение веществ определяет их физические и химические свойства.

4. Атомы углерода способны соединятся между собой, образовывая углеродные цепи различного вида. Они могут быть как открытыми, так и замкнутыми (циклическими), как прямыми, так и разветвленными. В зависимости от числа связей, затрачиваемых атомами углерода на соединение друг с другом, цепи могут быть насыщенными (с одинарными связями) или ненасыщенными (с двойными и тройными связями).

5. Каждое органическое соединение имеет одну определенную формулу строения или структурную формулу, которую строят, основываясь на положении о четырехвалентном углероде и способности его атомов образовывать цепи и циклы. Строение молекулы как реального объекта можно изучить экспериментально химическими и физическими методами.

А.М.Бутлеров не ограничился теоретическими объяснениями своей теории строения органических соединений. Он провел ряд экспериментов, подтвердив предсказания теории получением изобутана, трет. бутилового спирта и т.д. Это дало возможность А.М.Бутлерову заявить в 1864 году, что имеющиеся факты позволяют ручаться за возможность синтетического получения любого органического вещества.

В дальнейшем развитии и обосновании теории строения органических соединений большую роль сыграли последователи Бутлерова - В.В.Марковников, Е.Е.Вагнер, Н.Д.Зелинский, А.Н.Несмеянов и др.

Современный период развития органической химии в области теории характеризуется все возрастающим проникновением методов квантовой механики в органическую химию. С их помощью решаются вопросы о причинах тех или иных проявлений взаимного влияния атомов в молекулах. В области развития органического синтеза современный период характеризуется значительными успехами в получении многочисленных органических соединений, в число которых входят природные вещества - антибиотики, разнообразные лекарственные соединения, многочисленные высокомолекулярные соединения. Органическая химия глубоко проникла в сферу физиологии. Так, с химической точки зрения изучена гормональная функция организма, механизм передачи нервных импульсов. Ученые вплотную подошли к разрешению вопроса о строении и синтезе белка.

Органическая химия как самостоятельная наука продолжает существовать и интенсивно развиваться. Это объясняется следующими причинами:

1. Многообразием органических соединений, обусловленным тем, что углерод в отличие от других элементов способен соединяться друг с другом, давая длинные цепочки (изомеры). В настоящее время известно около 6 млн. органических соединений, в то время как неорганических - только около 700 тысяч.

2. Сложностью молекул органических веществ, содержащих до 10 тысяч атомов (например, природные биополимеры - белки, углеводы).

3. Специфичностью свойств органических соединений по сравнению с неорганическими (неустойчивостью при сравнительно невысоких температурах, низкой – до 300°С – температурой плавления, горючестью).

4. Медленно идущими реакциями между органическими веществами по сравнению с реакциями, характерными для неорганических веществ, образованием побочных продуктов, спецификой выделения получающихся веществ и технологическим оборудованием.

5. Огромным практическим значением органических соединений. Они - наша пища и одежда, топливо, разнообразные лекарственные препараты, многочисленные полимерные материалы и т.д.

Классификация органических соединений

Огромное количество органических соединений классифицируют с учетом строения углеродной цепи (углеродного скелета) и наличия в молекуле функциональных групп.

На схеме представлена классификация органических соединений в зависимости от строения углеродной цепи.

Простейшими представителями ациклических соединений являются алифатические углеводороды - соединения, содержащие только атомы углерода и водорода. Алифатические углеводороды могут быть насыщенными (алканы) и ненасыщенными (алкены, алкадиены, алкины).

Простейшим представителем алициклических углеводородов служит циклопропан, содержащий цикл из трех углеродных атомов.

Ароматический ряд объединяет ароматические углеводороды - бензол, нафталин, антрацен и т.д., а также их производные.

Гетероциклические соединения могут содержать в цикле, кроме атомов углерода, один или несколько атомов других элементов - гетероатомов (кислород, азот, серу и др.).

В каждом представленном ряду органические соединения делятся на классы в зависимости от состава и строения. Наиболее простым классом органических соединений являются углеводороды. При замене атомов водорода в углеводородах на другие атомы или группы атомов (функциональные группы) образуются другие классы органических соединений данного ряда.

Функциональная группа - атом или группа атомов, устанавливающие принадлежность соединения к классам органических соединений и определяющие главнейшие направления его химических превращений.

Соединения с одной функциональной группой называются монофункциональными (метанол СН3–ОН), с несколькими одинаковыми функциональными группами - полифункциональными (глицерин

кими разными функциональными группами - гетерофункциональными (молочная кислота

Соединения каждого класса составляют гомологические ряды. Гомологический ряд – это бесконечный ряд органических соединений, имеющих сходное строение и, следовательно, сходные химические свойства и отличающихся друг от друга на любое число СН2– групп (гомологическая разность).

Число известных классов органических соединений не ограничивается перечисленными, оно велико и с развитием науки все время увеличивается.

Все классы органических соединений взаимосвязаны. Переход от одних классов соединений к другим осуществляется в основном за счет превращений функциональных групп без изменения углеродного скелета.

Классификация реакций органических соединений по характеру химических превращений.

Органические соединения способны к разнообразным химическим превращениям, которые могут проходить как без изменения углеродного скелета, так и с таковым. Большинство реакций проходит без изменения углеродного скелета.

I. Реакции без изменения углеродного скелета

К реакциям без изменения углеродного скелета относятся следующие:

1) замещения: RH + Br2 RBr + HBr,

2) присоединения: CH2=CH2 + Br2 CH2Br – CH2Br,

3) отщепления (элиминирования): CH3–CH2–Cl CH2=CH2 + HCl,C2H5ONa

4) изомеризации: CH3CH2C?СH

Реакции замещения характерны для всех классов органических соединений. Замещаться могут атомы водорода или атомы любого другого элемента, кроме углерода.

Реакции присоединения характерны для соединений с кратными связями, которые могут быть между атомами углерода, углерода и кислорода, углерода и азота и т. д., а также для соединений, содержащих атомы со свободными электронными парами или вакантными орбиталями.

К реакциям элиминирования способны соединения, содержащие электроотрицательные группировки. Легко отщепляются такие вещества, как вода, галогеноводороды, аммиак.

К реакциям изомеризации без изменения углеродного скелета особенно склонны непредельные соединения и их производные.

Реакции с изменением углеродного скелета

К этому типу превращений органических соединений относятся следующие реакции:

1) удлинения цепи,

2) укорачивания цепи,

3) изомеризации цепи,

4) циклизации,

5) раскрытия цикла,

6) сжатия и расширения цикла.

Химические реакции проходят с образованием различных промежуточных продуктов. Путь, по которому осуществляется переход от исходных веществ к конечным продуктам, называется механизмом реакции. В зависимости от механизма реакции они делятся на радикальные и ионные. Ковалентные связи между атомами А и В могут разрываться таким образом, что электронная пара или делится между атомами А и В, или передается одному из атомов. В первом случае частицы А и В, получив по одному электрону, становятся свободными радикалами. Происходит гомолитическое расщепление:

Во втором случае электронная пара переходит к одной из частиц и образуются два разноименных иона. Поскольку образующиеся ионы имеют различные электронные структуры, этот тип разрыва связи называется гетеролитическим расщеплением:

Положительный ион в реакциях будет стремиться присоединить к себе электрон, т. е. будет вести себя как электрофильная частица. Отрицательный ион – так называемая, нуклеофильная частица будет атаковать центры с избыточными положительными зарядами.

Изучение условий и методов проведения, а также механизмов реакций органических соединений составляет основное содержание данного курса органической химии.

Если вы поступили в университет, но к этому времени так и не разобрались в этой нелегкой науке, мы готовы раскрыть вам несколько секретов и помочь изучить органическую химию с нуля (для "чайников"). Вам же остается только читать и внимать.

Основы органической химии

Органическая химия выделена в отдельный подвид благодаря тому, что объектом ее изучения является все, в составе чего есть углерод.

Органическая химия – раздел химии, который занимается изучением соединения углерода, структуру таких соединений, их свойства и методы соединения.

Как оказалось, углерод чаще всего образует соединения со следующими элементами - H, N, O, S, P. Кстати, эти элементы называются органогенами .

Органические соединения, количество которых сегодня достигает 20 млн, очень важны для полноценного существования всех живых организмов. Впрочем, никто и не сомневался, иначе человек просто закинул бы изучение этого непознанного в долгий ящик.

Цели, методы и теоретические представления органической химии представлены следующим:

  • Разделение ископаемого, животного или растительного сырья на отдельные вещества;
  • Очистка и синтез разных соединений;
  • Выявление структуры веществ;
  • Определение механики протекания химических реакций;
  • Нахождение зависимости между структурой и свойствами органических веществ.

Немного из истории органической химии

Вы можете не верить, но еще в далекой древности жители Рима и Египта понимали кое-что в химии.

Как мы знаем, они пользовались натуральными красителями. А нередко им приходилось использовать не готовый естественный краситель, а добывать его, вычленяя из цельного растения (например, содержащиеся в растениях ализарин и индиго).

Можем вспомнить и культуру употребления алкоголя. Секреты производства спиртных напитков известны в каждом народе. Причем многие древние народы знали рецепты приготовления «горячей воды» из крахмал- и сахарсодержащих продуктов.

Так продолжалось долгие, долгие годы, и только в 16-17 веках начались какие-то изменения, небольшие открытия.

В 18 веке некто Шееле научился выделять яблочную, винную, щавелевую, молочную, галловую и лимонную кислоту.

Тогда всем стало ясно, что продукты, которые удалось выделить из растительного или животного сырья, имели много общих черт. В то же время они сильно отличались от неорганических соединений. Поэтому служителям науки нужно было срочно выделить их в отдельный класс, так и появился термин «органическая химия».

Несмотря на то, что сама органическая химия как наука появилась лишь в 1828 году (именно тогда господину Вёлеру удалось выделить мочевину путем упаривания цианата аммония), в 1807 году Берцелиус ввел первый термин в номенклатуру в органической химии для чайников:

Раздел химии, который изучает вещества, полученные из организмов.

Следующий важный шаг в развитии органический химии – теория валентности, предложенная в 1857 году Кекуле и Купером, и теория химического строения господина Бутлерова от 1861 года. Уже тогда ученые стали обнаруживать, что углерод – четырехвалентен и способен образовывать цепи.

В общем, с эти самых пор наука регулярно испытывала потрясения и волнения благодаря новым теориям, открытиям цепочкам и соединениям, что позволяло так же активно развиваться органической химии.

Сама наука появилась благодаря тому, что научно-технический прогресс не в состоянии был стоять на месте. Он продолжал и продолжал шагать, требуя новых решений. И когда каменноугольной смолы в сфере промышленности перестало хватать, людям просто пришлось создать новый органический синтез, который со временем перерос в открытие невероятно важного вещества, которое и по сей день дороже золота – нефть. Кстати, именно благодаря органической химии на свет появилась ее «дочка» - поднаука, которая получила название «нефтехимия».

Но это уже совсем другая история, которую вы можете изучить сами. Далее мы предлагаем вам посмотреть научно-популярное видео про органическую химию для чайников:

Ну а если вам некогда и срочно нужна помощь профессионалов , вы всегда знаете, где их найти.

1.1 Теория строения органических веществ :

Теория Бутлерова явилась научным фундаментом органической химии и способствовала быстрому ее развитию. Опираясь на положения теории, А.М. Бутлеров дал объяснение явлению изомерии , предсказал существование различных изомеров и впервые получил некоторые из них. Так он впервые экспериментально доказал отличие бутана (C 4 H 10) от изобутана (C 4 H 10), несмотря на общую молекулярную формулу. Основные положения теории А. М. Бутлерова заключаются в следующем:

1. В молекулах соединений существует определенный порядок связи атомов, который и носит название строения.

2. Химические свойства соединения определяются составом и строением его молекул.

Для пояснения этих положений можно привести тот факт, что изменение последовательности расположения атомов приводит к образованию нового вещества с новыми свойствами. Например, составу вещества С 2 Н 6 О отвечают два разных соединения: диметиловый эфир (СН 3 –О–СН 3) и этиловый спирт (С 2 Н 5 ОН).

3. Различное строение при одном и том же составе и молекулярной массе вещества обуславливает явление изомерии.

4. Химический характер атомов, входящих в молекулу, меняется в зависимости от того, с какими атомами они связаны в данной молекуле.

1.2 Виды изомерии.

· Изомерия – явление существования соединений, которые имеют одинаковый состав (одинаковую молекулярную формулу), но разное строение. Такие соединения называются изомерами . В связи с многообразием органических веществ видов изомерии существует несколько. Вот некоторые из них:

· Изомерия углеродного скелета (структурная изомерия).

В молекуле углеродная цепь может быть линейной, или разветвленной.

Пример: н – бутан (линейная)

изобутан; 2 метил пропан (разветвленная)

Углеродные атомы, составляющие цепочку в молекулах углеводородов, и их производных могут быть первичными, вторичными, третичными и четвертичными.

Первичные атомы (I) углерода соединены с одним соседним атомом углерода, вторичные атомы (II) – соответственно с двумя, третичные атомы (III) – с тремя атомами углерода и четвертичные – с четырьмя. В молекуле 2 – метилбутана показаны рассматриваемые атомы углерода.

· Изомерия положения кратной связи.

бутен-1,

· Изомерия гомологических рядов (межвидовая).

Молекулы, относящиеся к разным классам углеводородов, например, алкадиены и алкины имеют одинаковую молекулярную формулу, но различаются по структуре, а, следовательно, и свойствам.

Бутадиен 1, 3

бутин-1.

· Геометрическая изомерия (пространственная).

Характерна для соединений, имеющих одну или несколько двойных связей. Если рассматривать двойную связь как плоскость, то заместители, располагающиеся у атомов углерода по двойной связи, имеют разное положение по отношению к плоскости двойной связи.


цис – бутен-2 транс – бутен-2

Так, в молекуле бутена-2 группы СН 3 могут находиться либо по одну сторону от плоскости двойной связи в цис –изомере, либо по разные стороны в транс –изомере.

1.3 Классификация органических веществ

Самыми простыми по составу органическими молекулами являются углеводороды, они получили свое название потому, что состоят только из углерода и водорода. Углеводороды являются родоначальниками всех других классов органических соединений.

Классифицируют органические вещества по наличию и порядку соединения атомов в их молекулах. В зависимости от порядка соединения атомов углерода в этой цепи вещества делятся на ациклические, не содержащие замкнутых цепей атомов углерода в молекулах, и карбоциклические, содержащие такие цепи (циклы) в молекулах (см. схему).

В этом пособии детально будут рассмотрены предельные, непредельные и ароматические углеводороды, т. к. залог понимания всей органической химии лежит в усвоении простых вещей: основных классов органических веществ, закономерностей реакций, протекающих в них. В общем виде свойства рассматриваемых классов веществ, предложены в таблице 1.

Таблица 1

Сводная таблица по классам органических соединений (углеводородов) и их химическим свойствам.

ОРГАНИЧЕСКАЯ ХИМИЯ

Основные понятия органической химии

Органическая химия это область химии, изучающая соединения углерода . Углерод выделяется среди всех элементов тем, что его атомы могут связываться друг с другом в длинные цепи или циклы. Именно это свойство позволяет углероду образовывать миллионы соединений, изучением которых занимается органическая химия.

Теория химического строения А. М. Бутлерова.

Современная теория строения молекул объясняет и огромное число органических соединений, и зависимость свойств этих соединений от их химического строения. Она же полностью подтверждает основные принципы теории химического строения, разработанные выдающимся русским ученым А. М. Бутлеровым.

Основные положения этой теории (иногда ее называют структурной):

1) атомы в молекулах соединены между собой в определенном порядке химическими связями согласно их валентности;

2) свойства вещества определяются не только качественным составом, но и строением, и взаимным влиянием атомов.

3) по свойствам вещества можно определить его строение, а по строению – свойства.

Важным следствием теории строения был вывод о том, что каждое органическое соединение должно иметь одну химическую формулу, отражающую ее строение. Такой вывод теоретически обосновывал хорошо известное уже тогда явление изомерии ,- существование веществ с одинаковым молекулярным составом, но обладающих различными свойствами.

Изомеры вещества, одинаковые по составу, но разные по строению

Структурные формулы . Существование изомеров потребовало использования не только простых молекулярных формул, но и структурных формул, отражающих порядок связи атомов в молекуле каждого изомера. В структурных формулах ковалентная связь обозначается черточкой. Каждая черточка означает общую электронную пару, связывающую атомы в молекуле.

Структурная формула - условное изображение строения вещества с учетом химических связей .

Классификация органических соединений .

Для классификации органических соединений по типам и построения их названий в молекуле органического соединения принято выделять углеродный скелет и функциональные группы.

Углеродный скелет представляет собой последовательность химически связанных между собой атомов углерода.

Типы углеродных скелетов . Углеродные скелеты разделяют на ациклические (не содержащие циклов), циклические и гетероциклические.

В гетероциклическом скелете в углеродный цикл включается одни или несколько атомов, отличных от углерода. В самих углеродных скелетах нужно классифицировать отдельные атомы углерода по числу химически связанных с ними атомов углерода. Если данный атом углерода связан с одним атомом углерода, то его называют первичным, с двумя - вторичным, тремя - третичным и четырьмя - четвертичным.

Поскольку атомы углерода могут образовывать между собой не только одинарные, но и кратные (двойные и тройные) связи, то соединения, содержащие только одинарные связи С––С, называют насыщенными , соединения с кратными связями называют ненасыщенными .

Углеводороды соединения, в которых атомы углерода связаны только с атомами водорода .

Углеводороды признаны в органической химии родоначальными. Разнообразные соединения рассматриваются как производные углеводородов, полученные введением в них функциональных групп.

Функциональные группы . В большинстве органических соединений, кроме атомов углерода и водорода, содержатся атомы других элементов (не входящие в скелет). Эти атомы или их группировки, во многом определяющие химические и физические свойства органических соединений, называют функциональными группами.

Функциональная группа оказывается окончательным признаком, по которому соединения относятся к тому или иному классу.

Важнейшие функциональные группы

Функциональные группы

Класс соединения

обозначение

название

F, -Cl, - Br, - I

галогенопроизводные углеводородов

гидроксил

спирты, фенолы

карбонил

альдегиды, кетоны

карбоксил

карбоновые кислоты

аминогруппа

нитрогруппа

нитросоединения

Гомологический ряд . Для описания органических соединений полезным является понятие гомологического ряда. Гомологический ряд образуют соединения, отличающиеся друг от друга на группу -СН 2 - и обладающие сходными химическими свойствами. Группы СН 2 называются гомологической разностью .

Примером гомологического ряда может служить ряд предельных углеводородов (алканов). Простейший его представитель - метан СН 4 . Гомологами метана являются: этан С 2 Н 6 , пропан С 3 Н 8 , бутан С 4 Н 10 , пентан С 5 Н 12 , гексан С 6 Н 14 , гептан С 7 Н 16 и т. д. Формула любого последующего гомолога может быть получена прибавлением к формуле предыдущего углеводорода гомологической разности.

Состав молекул всех членов гомологического ряда может быть выражен одной общей формулой. Для рассмотренного гомологического ряда предельных углеводородов такой формулой будет С n Н 2n+2 , где n - число атомов углерода.

Номенклатура органических соединений . В настоящее время признана систематическая номенклатура ИЮПАК (IUРАС - Международный союз теоретической и прикладной химии).

По правилам ИЮПАК название органического соединения строится из названия главной цепи, образующего корень слова, и названий функций, используемых в качестве приставок или суффиксов.

Для правильного построения названия необходимо провести выбор главной цепи и нумерацию атомов углерода в ней.

Нумерацию атомов углерода в главной цепи начинают с того конца цепи, ближе к которому расположена старшая группа. Если таких возможностей оказывается несколько, то нумерацию проводят таким образом, чтобы либо кратная связь, либо другой заместитель, имеющийся в молекуле, получили наименьший номер.

В карбоциклических соединениях нумерацию начинают от того атома углерода, при котором находится старшая характеристическая группа. Если при этом невозможно выбрать однозначную нумерацию, то цикл нумеруют так, чтобы заместители имели наименьшие номера.

В группе циклических углеводородов особо выделяются ароматические углеводороды, для которых характерно наличие в молекуле бензольного кольца. Некоторые широко известные представители ароматических углеводородов и их производных имеют тривиальные названия, использование которых разрешено правилами ИЮПАК: бензол, толуол, фенол, бензойная кислота.

Радикал С 6 Н 5 -, образованный из бензола, называется фенил, а не бензил. Бензилом называют радикал С 6 Н 5 СН 2 -, образованный из толуола.

Составление названия органического соединения . Основу названия соединения составляет корень слова, обозначающий предельный углеводород с тем же числом атомов, что и главная цепь (мет-, эт-, проп-, бут-, пент: гекс- и т. д.). Затем следует суффикс, характеризующий степень насыщенности, -ан , если в молекуле нет кратных связей, -ен при наличии двойных связей и -ин для тройных связей, (например пентан, пентен, пентин). Если кратных связей в молекуле несколько, то в суффиксе указывается число таких связей: -ди ен, -три ен, а после суффикса обязательно арабскими цифрами указывается положение кратной связи (например, бутен-1, бутен-2, бутадиен-1,3):

Далее в суффикс выносится название самой старшей характеристической группы в молекуле с указанием ее положения цифрой. Прочие заместители обозначаются с помощью приставок. При этом они перечисляются не в порядке старшинства, а по алфавиту. Положение заместителя указывается цифрой перед приставкой, например: 3 -метил; 2 -хлор и т. п. Если в молекуле имеется несколько одинаковых заместителей, то перед названием соответствующей группы словом указывается их количество (например, ди метил-, трихлор- и т. д.). Все цифры в названиях молекул отделяются от слов дефисом, а друг от друга запятыми. Углеводородные радикалы имеют свои названия.

Предельные углеводородные радикалы:

Непредельные углеводородные радикалы:

Ароматические углеводородные радикалы:

В качестве примера назовем следующее соединение:

1) Выбор цепи однозначен, следовательно, корень слова - пент; далее следует суффикс−ен , указывающий на наличие кратной связи;

2) порядок нумерации обеспечивает старшей группе (-ОН) наименьший номер;

3) полное название соединения заканчивается суффиксом, обозначающим старшую группу (в данном случае суффикс -ол указывает на наличие гидроксильной группы); положение двойной связи и гидроксильной группы указывается цифрами.

Следовательно, приведенное соединение называется пентен-4-ол-2.

Тривиальная номенклатура представляет собой совокупность несистематических исторически сложившихся названий органических соединений (пример: ацетон, уксусная кислота, формальдегид ит.д.).

Изомерия.

Выше было показано, что способность атомов углерода к образованию четырех ковалентных связей, в том числе и с другими атомами углерода, открывает возможность существования нескольких соединений одного элементного состава - изомеров. Все изомеры делят на два больших класса - структурные изомеры и пространственные изомеры.

Структурными называют изомеры с разным порядком соединения атомов.

Пространственные изомеры имеют одинаковые заместители у каждого атома углерода и отличаются лишь их взаимным расположением в пространстве .

Структурные изомеры . В соответствии с приведенной выше классификацией органических соединений по типам среди структурных изомеров выделяют три группы:

1 ) соединения, отличающиеся углеродными скелетами:

2) соединения, отличающиеся положением заместителя или кратной связи в молекуле:

3) соединения, содержащие различные функциональные группы и относящиеся к различным классам органических соединений:

Пространственные изомеры (стереоизомеры). Стереоизомеры можно разделить на два типа: геометрические изомеры и оптические изомеры.

Геометрическая изомерия характерна для соединений, содержащих двойную связь или цикл. В таких молекулах часто возможно провести условную плоскость таким образом, что заместители у различных атомов углерода могут оказаться по одну сторону (цис-) или по разные стороны (транс-) от этой плоскости. Если изменение ориентации этих заместителей относительно плоскости возможно только за счет разрыва одной из химических связей, то говорят о наличии геометрических изомеров. Геометрические изомеры отличаются своими физическими и химическими свойствами.

Взаимное влияние атомов в молекуле .

Все составляющие молекулу атомы находятся во взаимосвязи и испытывают взаимное влияние. Это влияние передается в основном через систему ковалентных связей с помощью так называемых электронных эффектов.

Электронными эффектами называют смещение электронной плотности в молекуле под влиянием заместителей.

Атомы, связанные полярной связью, несут частичные заряды, обозначаемые греческой буквой “дельта” (δ). Атом, “оттягивающий” электронную плотность δ -связи в свою сторону, приобретает отрицательный заряд δ − . При рассмотрении пары атомов, связанных ковалентной связью, более электроотрицательный атом называют электроноакцептором. Его партнер по δ -связи соответственно будет иметь равный по величине дефицит электронной плотности, т. е. частичный положительный заряд δ +, и будет называтьсяэлектронодонором.

Смещение электронной плотности по цепи σ -связей называется индуктивным эффектом и обозначается I.

Индуктивный эффект передается по цепи с затуханием. Направление смещения электронной плотности всех σ -связей обозначается прямыми стрелками.

В зависимости от того, удаляется ли электронная плотность от рассматриваемого атома углерода или приближается к нему, индуктивный эффект называют отрицательным (-I) илиположительным (+I). Знак и величина индуктивного эффекта определяются различиями в электроотрицательности между рассматриваемым атомом углерода и группой, его вызывающей.

Электроноакцепторные заместители, т.е. атом или группа атомов, смещающие электронную плотность σ -связи от атома углерода, проявляют отрицательный индуктивный эффект (−I-эффект).

Электронодонорные заместители, т. е. атом или группа атомов, смещающие электронную плотность к атому углерода, проявляют положительный индуктивный эффект(+I-эффект).

I-эффект проявляют алифатические углеводородные радикалы, т. е. алкильные радикалы (метил, этил и т. д.).

Большинство функциональных групп проявляют -I-эффект: галогены, аминогруппа, гидроксильная, карбонильная, карбоксильная группы.

Индуктивный эффект проявляется и в случае, когда связанные атомы углерода различны по состоянию гибридизации. Так, в молекуле пропена метильная группа проявляет +I-эффект, поскольку атом углерода в ней находится в sp3-гибридном состоянии, а sp2-гибридизованный атом (при двойной связи) выступает в роли электроноакцептора, так как имеет более высокую электроотрицательность:

При передаче индуктивного эффекта метильной группы на двойную связь в первую очередь ее влияние испытывает подвижная π -связь.

Влияние заместителя на распределение электронной плотности, передаваемое по π -связям, называют мезомерным эффектом (М). Мезомерный эффект также может быть отрицательным и положительным. В структурных формулах его изображают изогнутой стрелкой, начинающейся у центра электронной плотности и завершающейся в том месте, куда смещается электронная плотность.

Наличие электронных эффектов ведет к перераспределению электронной плотности в молекуле и появлению частичных зарядов на отдельных атомах. Это определяет реакционную способность молекулы.

Классификация органических реакций

− Классификация по типу разрыва химических связей в реагирующих частицах. Из их числа можно выделить две большие группы реакций - радикальные и ионные.

Радикальные реакции - это процессы, идущие с гомолитическим разрывом ковалентной связи. При гомолитическом разрыве пара электронов, образующая связь, делится таким образом, что каждая из образующихся частиц получает по одному электрону. В результате гомолитического разрыва образуются свободные радикалы:

Нейтральный атом или частица с неспаренным электроном называется свободным радикалом.

Ионные реакции - это процессы, идущие с гетеролитическим разрывом ковалентных связей, когда оба электрона связи остаются с одной из ранее связанных частиц :

В результате гетеролитического разрыва связи получаются заряженные частицы: нуклеофильная и электрофильная.

Нуклеофильная частица (нуклеофил) - это частица, имеющая пару электронов на внешнем электронном уровне. За счет пары электронов нуклеофил способен образовывать новую ковалентную связь.

Электрофильная частица (электрофил) - это частица, имеющая незаполненный внешний электронный уровень. Электрофил представляет незаполненные, вакантные орбитали для образования ковалентной связи за счет электронов той частицы, с которой он взаимодействует .

−Классификация по составу и строению исходных веществ и продуктов реакции. В органической химии все структурные изменения рассматриваются относительно атома (или атомов) углерода, участвующего в реакции. Наиболее часто встречаются следующие типы превращений:

присоединение

замещение

отщепление (элиминирование)

полимеризация

В соответствии с вышеизложенным хлорирование метана под действием света классифицируют как радикальное замещение, присоединение галогенов к алкенам - как электрофильное присоединение, а гидролиз алкилгалогенидов - как нуклеофильное замещение.