Разные формулировки периодического закона д и менделеева. Периодический закон менделеева, суть и история открытия

Гликозаминогликаны I Гликозаминоглика́ны

углеводная часть углеводсодержащих биополимеров гликозаминопротеогликанов или протеогликанов. Прежнее название гликозаминопротеогликанов « » исключено из химической номенклатуры.

Гликозаминогликаны в составе протеогликанов входят в состав межклеточного вещества соединительной ткани, содержатся в костях, синовиальной жидкости, стекловидном и роговице глаза. Вместе с волокнами коллагена и эластина Г. в составе протеогликанов образуют соединительнотканный (). Один из представителей Г. - , обладающий противосвертывающей активностью, находится в межклеточном веществе ткани печени, легких, сердца, стенках артерий. Г. в составе протеогликанов покрывают поверхность клеток, играют важную роль в ионном обмене, иммунных реакциях, дифференцировке тканей. Генетические нарушения распада Г. приводят к развитию большой группы наследственных болезней обмена - мукополисахаридозов (Мукополисахаридозы).

Молекулы Г. состоят из повторяющихся звеньев, которые построены из остатков уроновых кислот (D-глюкуроновой или L-идуроновой) и сульфатированных и ацетилированных аминосахаров. Кроме указанных основных моносахаридных компонентов, в составе Г. в качестве так называемых минорных сахаров встречаются L-фукоза, Сиаловые кислоты , D-манноза и D-ксилоза. Практически все Г. ковалентно связаны с белком в молекуле гликозаминопротеогликанов (протеогликанов). Г. подразделяют на семь основных типов. Шесть из них: Гиалуроновые кислоты , хондроитин-4-сульфат, хондроитин-6-сульфат, дерматансульфат, гепарин и гепарансульфат структурно сходны, в полисахаридных цепях чередуются дисахаридные звенья, состоящие из остатков сульфатированных аминосахаров (N-ацетилглюкозамина и М-ацетилгалактозамина) и гексуроновых кислот (D-глюкуроновой или L-идуроновой). В гликозаминогликанах седьмого типа - кератансульфате, или кератосульфате, в дисахаридных звеньях вместо уроновых кислот находится D-галактоза.

Число чередующихся дисахаридных звеньев в Г может быть очень большим, и молекулярная масса протеогликанов за счет этого достигает иногда нескольких миллионов. Несмотря на то, что общая структура различных Г. сходна, они имеют определенные отличительные особенности.

Хондроитинсульфаты - хондроитин-4-сульфат (хондроитинсульфат А), хондроитин-6-сульфат (хондроитинсульфат С) и дерматансульфат (хондроитинсульфат В) - являются наиболее распространенными Г. в организме человека.

Хондроитин-4- и хондроитин-6-сульфаты хрящевой ткани и стенок артерий соединены со специфическим белковым «кором». Белковый компонент составляет около 17-22% молекулы хондроитинсульфатпротеина. С гиалуроновыми кислотами способны образовывать различные по величине агрегаты.

Дерматансульфат (хондроитинсульфат В) представляет собой изомер хондроитинсульфатов, в котором место остатков D-глюкуроновой кислоты занимают остатки L-идуроновой кислоты. Кроме типичных для дерматансульфата остатков L-идуроновой кислоты в некоторых хондроитин-сульфатах В обнаружено небольшое количество D-глюкуроновой кислоты. В роговице, асцитной жидкости обнаружены дерматансульфатпротеогликаны с высоким содержанием глюкуроновой кислоты. Дерматансульфат обладает антикоагулянтными свойствами. Углеводные цепи дерматансульфата и других хондроитинсульфатов имеют высокое сродство с липопротеинами низкой плотности.

Дисахаридные звенья кератансульфата отличаются от дисахаридных звеньев других Г. тем, что не содержат уроновых кислот. Остатки галактозы в кератансульфате также могут быть сульфатированы. Кроме того, для этого Г. характерно присутствие в цепях фукозы, маннозы, сиаловой кислоты и М-ацетилгалактозамина.

Гепарин и гепарансульфат, несмотря на то что имеют очень сходную структуру с другими типами Г., отличаются по локализации и функции в животных тканях. Гепарин содержится в коже, легких, печени, слизистой оболочке желудка. Обнаружение в гепарине большого количества L-идуроновой кислоты, а также D-глюкуроновой кислоты позволило представить углеводную структуру этого Г. в виде повторяющихся гептасахаридных фрагментов. Большинство аминогрупп остатков глюкозамина сульфатированы, небольшая их часть ацетилирована, еще меньшее количество этих групп в глюкозамине остается незамещенным.

Гепарансульфат в отличие от гепарина содержится в плазматических мембранах различных клеток и в межклеточном веществе. По своей структуре содержащие гепарансульфат Г так же, как и другие этого класса, представляют гетерогенное макромолекул. Белковая часть () гепарансульфатпротеогликанов может состоять из двух полипептидных цепей, связанных друг с другом дисульфидными связями. Описаны и гибридные молекулы, в которых к белковой части присоединяются цепи как гепарансульфатов, так и дерматансульфатов.

Биосинтез и распад Г. осуществляются при участии высокоспецифичных ферментов - гликозилтрансфераз и гликозидаз (сульфатаз). первого типа в различных отделах эндоплазматического ретикулума и пластинчатого комплекса (комплекса Гольджи) катализируют реакции, в результате которых образуются определенные по структуре углеводные цепи Г. последовательно расщепляют Г. в лизосомах на моносахаридные фрагменты.

Методы определения Г. основаны на колориметрическом определении уроновых кислот (с карбазолом, по Дише), гексозаминов (метод Эльсона - Моргана) или нейтральных сахаров (с антроновым реактивом) в составе Г. после их осаждения с помощью цетилпиридинийхлорида или выделения методами ионообменной хроматографии.

Библиогр.: Бочков Н.П., Захаров А.Ф. и Иванов В.И. , с. 180, М., 1984; Видершайн Г.Я. Биохимические основы гликозидозов, с. 12, М., 1980; Краснопольская К.Д. Достижения биохимической генетики в изучении наследственной патологии соединительной ткани, Вестн. АМН СССР. №6, с. 70, 1982; Серов В.В. и Шехтер А.Б. , с. 74, М., 1981.

II Гликозаминоглика́ны

1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Смотреть что такое "Гликозаминогликаны" в других словарях:

    Хондроитин сульфат Гликозаминогликаны (мукополисахариды, от лат. mucus «слизь») углеводная часть протеогликанов, полисахариды, в состав которых входят аминосахара гексозамины. В организме гликозаминогликаны ковалентно связаны с белковой… … Википедия

    См. Мукополисахариды … Большой медицинский словарь

    Неовитэль — биоактивный комплекс с боярышником Фармакологические группы: Биологически активные добавки к пище (БАДы) ›› БАДы — макро и микроэлементы ›› БАДы — полифенольные соединения ›› БАДы — естественные метаболиты… …

    Неовитэль — биоактивный комплекс с расторопшей Фармакологические группы: Биологически активные добавки к пище (БАДы) ›› БАДы — макро и микроэлементы ›› БАДы — полифенольные соединения ›› БАДы — белки, аминокислоты и их… … Словарь медицинских препаратов

    Неовитэль — биоактивный комплекс с топинамбуром Фармакологические группы: Биологически активные добавки к пище (БАДы) ›› БАДы — углеводы и продукты их переработки ›› БАДы — макро и микроэлементы ›› БАДы — полифенольные… … Словарь медицинских препаратов

    Неовитэль — биоактивный комплекс с черникой Фармакологические группы: Биологически активные добавки к пище (БАДы) ›› БАДы — витаминно минеральные комплексы ›› БАДы — полифенольные соединения ›› БАДы — естественные… … Словарь медицинских препаратов - Хондроитинсульфат Гликозаминогликаны углеводная часть углеводсодержащих биополимеров гликозаминопротеогликанов или протеогликанов. Прежнее название гликозаминопротеогликанов «мукополисахариды» (от лат. mucus слизь и «полисахариды») исключено из … Википедия

    - (Hyaluronic Acid) Химическое соединение … Википедия

ЗАНЯТИЕ 5 10-й класс (первый год обучения)

Периодический закон и система химических элементов д.И.Менделеева План

1. История открытия периодического закона и системы химических элементов Д.И.Менделеева.

2. Периодический закон в формулировке Д.И.Менделеева.

3. Современная формулировка периодического закона.

4. Значение периодического закона и системы химических элементов Д.И.Менделеева.

5. Периодическая система химических элементов – графическое отражение периодического закона. Строение периодической системы: периоды, группы, подгруппы.

6. Зависимость свойств химических элементов от строения их атомов.

1 марта (по новому стилю) 1869 г. считается датой открытия одного из важнейших законов химии – периодического закона. В середине XIX в. было известно 63 химических элемента, и возникла потребность в их классификации. Попытки такой классификации предпринимали многие ученые (У.Одлинг и Дж.А.Р.Ньюлендс, Ж.Б.А.Дюма и А.Э.Шанкуртуа, И.В.Деберейнер и Л.Ю.Мейер), но лишь Д.И.Менделееву удалось увидеть определенную закономерность, расположив элементы в порядке возрастания их атомных масс. Эта закономерность имеет периодический характер, поэтому Менделеев сформулировал открытый им закон следующим образом: свойства элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины атомной массы элемента.

В системе химических элементов, предложенной Менделеевым, был ряд противоречий, которые сам автор периодического закона устранить не смог (аргон–калий, теллур–йод, кобальт–никель). Лишь в начале XX в., после открытия строения атома, был объяснен физический смысл периодического закона и появилась его современная формулировка: свойства элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины заряда ядер их атомов.

Такую формулировку подтверждает и наличие изотопов, химические свойства которых одинаковы, хотя атомные массы различны.

Периодический закон – один из основных законов природы и важнейший закон химии. С открытия этого закона начинается современный этап развития химической науки. Хотя физический смысл периодического закона стал понятен только после создания теории строения атома, сама эта теория развивалась на основе периодического закона и системы химических элементов. Закон помогает ученым создавать новые химические элементы и новые соединения элементов, получать вещества с нужными свойствами. Сам Менделеев предсказал существование 12 элементов, которые в то время еще не были открыты, и определил их положение в периодической системе. Свойства трех из этих элементов он подробно описал, и при жизни ученого эти элементы были открыты («экабор» – галлий, «экаалюминий» – скандий, «экасилиций» – германий). Кроме того, периодический закон имеет большое философское значение, подтверждая наиболее общие законы развития природы.

Графическим отражением периодического закона является периодическая система химических элементов Менделеева. Существует несколько форм периодической системы (короткая, длинная, лестничная (предложена Н.Бором), спиралеобразная). В России наибольшее распространение получила короткая форма. Современная периодическая система содержит 110 открытых на сегодняшний день химических элементов, каждый из которых занимает определенное место, имеет свой порядковый номер и название. В таблице выделяют горизонтальные ряды – периоды (1–3 – малые, состоят из одного ряда; 4–6 – большие, состоят из двух рядов; 7-й период – незавершенный). Кроме периодов выделяют вертикальные ряды – группы, каждая из которых подразделяется на две подгруппы (главную – а и побочную – б). Побочные подгруппы содержат элементы только больших периодов, все они проявляют металлические свойства. Элементы одной подгруппы имеют одинаковое строение внешних электронных оболочек, что обусловливает их схожие химические свойства.

Период – это последовательность элементов (от щелочного металла до инертного газа), атомы которых имеют одинаковое число энергетических уровней, равное номеру периода.

Главная подгруппа – это вертикальный ряд элементов, атомы которых имеют одинаковое число электронов на внешнем энергетическом уровне. Это число равно номеру группы (кроме водорода и гелия).

Все элементы в периодической системе разделяются на 4 электронных семейства (s -, p -, d -, f -элементы) в зависимости от того, какой подуровень в атоме элемента заполняется последним.

Побочная подгруппа – это вертикальный ряд d -элементов, имеющих одинаковое суммарное число электронов на d -подуровне предвнешнего слоя и s -подуровне внешнего слоя. Это число обычно равно номеру группы.

Важнейшими свойствами химических элементов являются металличность и неметалличность.

Металличность – это способность атомов химического элемента отдавать электроны. Количественной характеристикой металличности является энергия ионизации.

Энергия ионизации атома – это количество энергии, которое необходимо для отрыва электрона от атома элемента, т. е. для превращения атома в катион. Чем меньше энергия ионизации, тем легче атом отдает электрон, тем сильнее металлические свойства элемента.

Неметалличность – это способность атомов химического элемента присоединять электроны. Количественной характеристикой неметалличности является сродство к электрону.

Сродство к электрону – это энергия, которая выделяется при присоединении электрона к нейтральному атому, т. е. при превращении атома в анион. Чем больше сродство к электрону, тем легче атом присоединяет электрон, тем сильнее неметаллические свойства элемента.

Универсальной характеристикой металличности и неметалличности является электроотрицательность (ЭО) элемента.

ЭО элемента характеризует способность его атомов притягивать к себе электроны, которые участвуют в образовании химических связей с другими атомами в молекуле.

Чем больше металличность, тем меньше ЭО.

Чем больше неметалличность, тем больше ЭО.

При определении значений относительной ЭО по шкале Полинга за единицу принята ЭО атома лития (ЭО(Li) = 1); самым электроотрицательным элементом является фтор (ЭО(F) = 4).

В малых периодах от щелочного металла к инертному газу:

Заряд ядер атомов увеличивается;

Число энергетических уровней не изменяется;

Число электронов на внешнем уровне увеличивается от 1 до 8;

Радиус атомов уменьшается;

Прочность связи электронов внешнего слоя с ядром увеличивается;

Энергия ионизации увеличивается;

Сродство к электрону увеличивается;

ЭО увеличивается;

Металличность элементов уменьшается;

Неметалличность элементов увеличивается.

Все d -элементы данного периода похожи по своим свойствам – все они являются металлами, имеют мало различающиеся радиусы атомов и значения ЭО, поскольку содержат одинаковое число электронов на внешнем уровне (например, в 4-м периоде – кроме Cr и Cu).

В главных подгруппах сверху вниз:

Число энергетических уровней в атоме увеличивается;

Число электронов на внешнем уровне одинаково;

Радиус атомов увеличивается;

Прочность связи электронов внешнего уровня с ядром уменьшается;

Энергия ионизации уменьшается;

Сродство к электрону уменьшается;

ЭО уменьшается;

Металличность элементов увеличивается;

Неметалличность элементов уменьшается.

В 1871 году был сформулирован периодический закон Менделеева. К этому времени науке было известно 63 элемента, и Дмитрий Иванович Менделеев упорядочил их на основе относительной атомной массы. Современная периодическая таблица значительно расширилась.

История

В 1869 году, работая над учебником химии, Дмитрий Менделеев столкнулся с проблемой систематизации материала, накопленного за много лет разными учёными - его предшественниками и современниками. Ещё до работы Менделеева предпринимались попытки систематизировать элементы, что послужило предпосылками разработки периодической системы.

Рис. 1. Менделеев Д. И..

Поиски классификации элементов кратко описаны в таблице.

Менделеев упорядочил элементы по относительной атомной массе, расположив их в порядке возрастания. Всего получилось девятнадцать горизонтальных и шесть вертикальных рядов. Это была первая редакция периодической таблицы элементов. С этого начинается история открытия периодического закона.

Учёному понадобилось почти три года, чтобы создать новую, более совершенную таблицу. Шесть столбцов элементов превратились в горизонтальные периоды, каждый из которых начинался щелочным металлом, а заканчивался неметаллом (инертные газы ещё не были известны). Горизонтальные ряды образовали восемь вертикальных групп.

В отличие от своих коллег Менделеев использовал два критерия распределения элементов:

  • атомную массу;
  • химические свойства.

Оказалось, что между двумя этими критериями прослеживается закономерность. После определённого количества элементов с возрастающей атомной массой, свойства начинают повторяться.

Рис. 2. Таблица, составленная Менделеевым.

Изначально теория не выражалась математически и не могла полностью подтвердиться экспериментально. Физический смысл закона стал понятен только после создания модели атома. Смысл заключается в повторении структуры электронных оболочек при последовательном увеличении зарядов ядер, что отражается на химических и физических свойствах элементов.

Закон

Установив периодичность изменений свойств с увеличением атомной массы, Менделеев в 1871 году сформулировал периодический закон, ставший основополагающим в химической науке.

Дмитрий Иванович определил, что свойства простых веществ находятся в периодической зависимости от относительных атомных масс.

Наука XIX века не обладала современными знаниями об элементах, поэтому современная формулировка закона несколько отличается от менделеевской. Однако суть остаётся прежней.

С дальнейшим развитием науки было изучено строение атома, что повлияло на формулировку периодического закона. Согласно современному периодическому закону свойства химических элементов зависят от зарядов атомных ядер.

Таблица

Со времён Менделеева созданная им таблица значительно преобразилась и стала отражать практически все функции и характеристики элементов. Умение пользоваться таблицей необходимо для дальнейшего изучения химии. Современная таблица представлена в трёх формах:

  • короткая - периоды занимают по две строчки, а водород часто относят к 7 группе;
  • длинная - изотопы и радиоактивные элементы вынесены за пределы таблицы;
  • сверхдлинная - каждый период занимает отдельную строку.

Рис. 3. Длинная современная таблица.

Короткая таблица - наиболее устаревший вариант, который был отменён в 1989 году, но по-прежнему используется во многих учебниках. Длинная и сверхдлинная формы признаны международным сообществом и используются по всему миру. Несмотря на установленные формы, учёные продолжают совершенствовать периодическую систему, предлагая новейшие варианты.

Что мы узнали?

Периодический закон и периодическая система Менделеева были сформулированы в 1871 года. Менделеев выявил закономерности свойств элементов и упорядочил их на основе относительной атомной массы. С возрастанием массы менялись, а затем повторялись свойства элементов. Впоследствии таблица была дополнена, а закон скорректирован в соответствии с современными знаниями.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 122.

Свойства химических элементов и их соединений находятся в периодической зависимости от величины заряда ядер их атомов, выражающейся в периодической повторяемости структуры внешней валентной электронной оболочки.
И вот спустя более 130 лет после открытия периодического закона мы можем вернуться к словам Дмитрия Ивановича, взятым в качестве девиза нашего урока: «Периодическому закону будущее не грозит разрушением, а только надстройка и развитие обещаются». Сколько химических элементов открыто на данный момент? И это далеко не предел.

Графическим изображением периодического закона является периодическая система химических элементов. Это краткий конспект всей химии элементов и их соединений.

Изменения свойств в периодической системе с ростом величины атомных весов в периоде (слева направо):

1. Металлические свойства уменьшаются

2. Неметаллические свойства возрастают

3. Свойства высших оксидов и гидроксидов изменяются от основных через амфотерные к кислотным.

4. Валентность элементов в формулах высших оксидов возрастает от I доVII, а в формулах летучих водородных соединений уменьшается от IV до I.

Основные принципы построения периодической системы.

Основные принципы построения периодической системы. Признак сравнения Д.И.Менделеев Современное состояние
1. Как устанавливается последовательность элементов по номерам? (Что положено в основу п.с?) 2. Принцип объединения элементов в группы. 3. Принцип объединения элементов в периоды. Элементы расставлены в порядке увеличения их относительных атомных масс. При этом есть исключения. Качественный признак. Сходство свойств простых веществ и однотипных сложных. Совокупность элементов по мере роста относительной атомной массы от одного щелочного металла до другого. Элементы расставлены по мере роста заряда ядер их атомов. Исключений нет. Количественный признак. Сходство строения внешней оболочки. Периодическая повторяемость структуры внешней оболочки обусловливает сходство химических свойств. Каждый новый период начинается с появления нового электронного слоя с одним электроном. А это всегда щелочной металл.

Графическим изображением периодического закона является периодическая таблица. Она содержит 7 периодов и 8 групп.

1. Порядковый номер химического элемента - номер, данный элементу при его нумерации. Показывает общее число электронов в атоме и число протонов в ядре, определяет заряд ядра атома данного химического элемента.

2. Период – химические элементы, расположенные в строчку (периодов всего 7). Период определяет количество энергетических уровней в атоме.



Малые периоды (1 – 3) включают только s- и p- элементы (элементы главных подгрупп) и состоят из одной строчки; большие (4 – 7) включают не толькоs- и p- элементы (элементы главных подгрупп), но и d- и f- элементы (элементы побочных подгрупп) и состоят из двух строчек.

3. Группы – химические элементы, расположенные в столбик (групп всего 8). Группа определяет количество электронов внешнего уровня для элементов главных подгрупп, а так же число валентных электронов в атоме химического элемента.

Главная подгруппа (А) – включает элементы больших и малых периодов (только s- и p- элементы).

Побочная подгруппа (В) – включает элементы только больших периодов (только d- или f- элементы).

Периодический закон Дмитрия Ивановича Менделеева - один из фундаментальных законов природы, который увязывает зависимость свойств химических элементов и простых веществ с их атомными массами. В настоящее время закон уточнен, и зависимость свойств объясняется зарядом ядра атома.

Закон был открыт русским ученым в 1869-м году. Менделеев представил его научному сообществу в докладе съезду Русского химического общества (доклад был сделан другим ученым, так как Менделеев был вынужден срочно выехать по заданию Вольного экономического общества Петербурга). В этом же году вышел учебник «Основы химии», написанный Дмитрием Ивановичем для студентов. В нем ученый описал свойства популярных соединений, а также постарался дать логическую систематизацию химических элементов. Также в нем впервые была представлена таблица с периодически расположенными элементами, как графическая интерпретация периодического закона. Всее последующие годы Менделеев совершенствовал свою таблицу, например, добавил столбец инертных газов, которые были открыты спустя 25 лет.

Научное сообщество далеко не сразу приняло идеи великого русского химика, даже в России. Но после того, как были открыты три новых элемента (галлий в 1875-м, скандий в 1879-м и германий в 1886-м годах), предсказанные и описанные Менделеевым в своем знаменитом докладе, периодический закон был признан.

  • Является всеобщим законом природы.
  • В таблицу, графически представляющую закон, включаются не только все известные элементы, но и те, которые открывают до сих пор.
  • Все новые открытия не повлияли на актуальность закона и таблицы. Таблица совершенствуется и изменяется, но ее суть осталась неизменной.
  • Позволил уточнить атомные веса и другие характеристики некоторых элементов, предсказать существование новых элементов.
  • Химики получили надежную подсказку, как и где искать новые элементы. Кроме этого, закон позволяет с высокой долей вероятности заранее определять свойства еще неоткрытых элементов.
  • Сыграл огромную роль в развитии неорганической химии в 19-м веке.

История открытия

Есть красивая легенда о том, что свою таблицу Менделеев увидел во сне, а утром проснулся и записал ее. На самом деле, это просто миф. Сам ученый много раз говорил, что созданию и совершенствованию периодической таблицы элементов он посвятил 20 лет своей жизни.

Все началось с того, что Дмитрий Иванович решил написать для студентов учебник по неорганической химии, в котором собирался систематизировать все известные на этот момент знания. И естественно, он опирался на достижения и открытия своих предшественников. Впервые внимание на взаимосвязь атомных весов и свойств элементов обратил немецкий химик Дёберейнер, который попытался разбить известные ему элементы на триады с похожими свойствами и весами, подчиняющимися определенному правилу. В каждой тройке средний элемент имел вес, близкий к среднему арифметическому двух крайних элементов. Ученый смог таким образом образовать пять групп, например, Li–Na–K; Cl–Br–I. Но это были далеко не все известные элементы. К тому же, тройка элементов явно не исчерпывала список элементов с похожими свойствами. Попытки найти общую закономерность позже предпринимали немцы Гмелин и фон Петтенкофер, французы Ж. Дюма и де Шанкуртуа, англичане Ньюлендс и Одлинг. Дальше всех продвинулся немецкий ученый Мейер, который в 1864-м году составил таблицу, очень похожую на таблицу Менделеева, но она содержала лишь 28 элементов, в то время как было известно уже 63.

В отличие от своих предшественников Менделееву удалось составить таблицу, в которую вошли все известные элементы, расположенные по определенной системе. При этом, некоторые клетки он оставил незаполненными, примерно вычислив атомные веса некоторых элементов и описав их свойства. Кроме этого, русскому ученому хватило смелости и дальновидности заявить, что открытый им закон является всеобщим законом природы и назвал его «периодическим законом». Сказав «а», он пошел дальше и исправил атомные веса элементов, которые не вписывались в таблицу. При более тщательной проверке, оказалось, что его исправления верны, а открытие описанных им гипотетических элементов стало окончательным подтверждением истинности нового закона: практика доказала справедливость теории.