С чего начинать астрономические наблюдения? Астрономические наблюдения - это что такое.

Материал из Юнциклопедии


Солнце, Луна, планеты, кометы, звезды, туманности, галактики, отдельные небесные тела и системы таких тел изучаются в астрономии. Разнообразны задачи, стоящие перед астрономами, а в связи с этим разнообразны и методы астрономических наблюдений, доставляющих основной материал для решения этих задач.

Уже в глубокой древности начались наблюдения с целью определения положений светил на небесной сфере. Сейчас этим занимается астрометрия. Измеренные в результате таких наблюдений небесные координаты звезд разных типов, звездных скоплений, галактик сводятся в каталоги, по ним составляются звездные карты (см. Звездные каталоги, карты и атласы). Повторяя в течение более или менее длительного периода времени наблюдения одних и тех же небесных тел, вычисляют собственные движения звезд, тригонометрические параллаксы и др. Эти данные также публикуются в каталогах.

Составленные таким образом звездные каталоги используются как в практических целях - при астрономических наблюдениях движущихся небесных тел (планет, комет, искусственных космических объектов), при работах службы времени, службы движения полюсов, в геодезии, навигации и др., так и при разного рода научно-исследовательских работах. К числу последних относятся, в частности, исследования структуры Галактики, происходящих в ней движений, чем занимается звездная астрономия.

Систематические астрометрические наблюдения планет, комет, астероидов, искусственных космических объектов доставляют материал для изучения законов их движения, составления эфемерид, для решения других задач небесной механики, астродинамики, геодезии, гравиметрии.

К астрометрическим наблюдениям можно отнести также и вошедшие в практику в последние десятилетия дальномерные наблюдения небесных светил. С помощью лазерных дальномеров с высокой точностью определяются расстояния до искусственных спутников Земли (см. Лазерный спутниковый дальномер), до Луны.

Методы радиолокационной астрономии дают возможность определять расстояния и даже изучать профили Луны, Венеры, Меркурия и т. п.

Другим типом астрономических наблюдений является непосредственное изучение вида таких небесных тел, как Солнце, Луна, ближайшие планеты, галактические туманности, галактики и др. Наблюдения этого типа стали развиваться после изобретения телескопа. Вначале наблюдения велись визуально: небесные светила рассматривались глазом и увиденное зарисовывалось. Позже стала использоваться фотография. Фотографические методы имеют неоспоримое преимущество перед визуальными: фотографии можно детально измерять в спокойной лабораторной обстановке; в случае необходимости их можно повторить, да и вообще фотография является объективным документом, в то время как в визуальные наблюдения наблюдатель вносит много субъективного. Кроме того, фотографическая пластинка, в отличие от глаза, накапливает приходящие от источника фотоны и потому позволяет получать снимки слабых объектов.

На рубеже XIX и XX вв. зародились и стали быстро развиваться астрофизические методы наблюдений, в основе которых лежит анализ электромагнитного излучения Небесного светила, собранного телескопом. Для такого анализа используются различные светоприемники и другие приспособления.

С помощью астрофотометров разного типа регистрируют изменения блеска небесных светил и таким путем обнаруживают переменные звезды, определяя их тип, двойные звезды, в сочетании с результатами других наблюдений делают определенные заключения о процессах, происходящих в звездах, туманностях и т. д.

Широкую информацию о небесных светилах дают спектральные наблюдения. По распределению энергии в непрерывном спектре (см. Электромагнитное излучение небесных тел), по виду, ширине и другим характеристикам спектральных линий и полос судят о температуре, химическом составе звезд и других небесных светил, о движениях вещества в них, об их вращении, о наличии магнитных полей, наконец, о стадии их эволюционного развития и о многом другом. Измерения смещения спектральных линий вследствие эффекта Доплера позволяют определять лучевые скорости небесных тел, которые используются при разнообразных астрономических исследованиях.

При астрофизических наблюдениях широко используются электронно-оптические преобразователи, фотоэлектронные умножители, электронные камеры, телевизионная техника (см. Телевизионный телескоп), позволяющие значительно увеличить проницающую силу телескопов, расширить диапазон воспринимаемого телескопом электромагнитного излучения небесных тел.

Астрономические наблюдения в радиодиапазоне электромагнитного излучения ведутся с помощью радиотелескопов. Специальная аппаратура используется для регистрации инфракрасного и ультрафиолетового излучения, для нужд рентгеновской астрономии и гамма-астрономии. Качественно новые результаты получают с помощью астрономических наблюдений, выполняемых с борта космических аппаратов (так называемая внеатмосферная астрономия).

Большинство описанных астрономических наблюдений выполняется на астрономических обсерваториях специально подготовленными научными и техническими работниками. Но отдельные виды наблюдений доступны и любителям астрономии.

Юные астрономы могут проводить наблюдения для расширения кругозора, для приобретения опыта научно-исследовательских работ. Но многие виды правильно организованных наблюдений, выполняемых в точном соответствии с инструкциями, могут иметь и существенное научное значение.

Шкальным астрономическим кружкам доступны следующие астрономические наблюдения:

1. Исследования солнечной активности с помощью школьного телескопа-рефрактора (помните, что смотреть на Солнце без темного фильтра ни в коем случае нельзя!).

2. Наблюдения Юпитера и его спутников с зарисовкой деталей в полосах Юпитера, Красного пятна.

3. Поиски комет с помощью светосильных оптических инструментов с достаточно большим полем зрения.

4. Наблюдения серебристых облаков, изучения частоты их появления, формы и т. п.

5. Регистрация метеоров, счет их количества, определение радиантов.

6. Исследования переменных звезд - визуально и на фотографиях звездного неба.

7. Наблюдения солнечных и лунных затмений.

8. Наблюдения искусственных спутников Земли.

Инструкции для организации наблюдений можно найти среди книг, перечисленных в списке рекомендованной литературы. Ряд практических советов приведен в разделе.

Астрономические наблюдения всегда вызывают интерес у окружающих, особенно если им удаётся самим посмотреть в телескоп.
Хотелось бы немного рассказать новичкам о том, что же можно разглядеть на небе - во избежание разочарования от того, что на деле видно в окуляре. В действительно качественные приборы вы увидите гораздо больше, чем тут написано, но цена их высока, да и их вес с габаритами - довольно большие... Первый телескоп для астрономических наблюдений - как правило не самый большой и дорогой.

  • Куда наводит телескоп новичок в первый раз? Правильно - на Луну:-) Вид кратеров, гор и лунных "морей" всегда вызывает неподдельный интерес, желание рассмотреть получше, поставить окуляр с фокусом покороче, прикупить линзу Барлоу... Многие в итоге на Луне и останавливаются - благодарный объект, особенно в условиях города, когда о галактиках остаётся только мечтать. Что там видно - лунные кратеры, горы, размер которых зависит от крутизны телескопа, но не мельче примерно 1 км. при идеальной атмосфере. Так что, лунный трактор или следы американцев вы не рассмотрите. Есть любители, занимающиеся регистрацией вспышек света на поверхности Луны, природа которых пока неизвестна. Любопытно, что некоторые из этих световых пятен быстро перемещаются на фоне поверхности Луны.
  • Затем идут планеты. Юпитер со своими спутниками и поясами и Сатурн со знаменитыми кольцами. Они оставляют поистине незабываемое впечатление даже у людей, далёких от астрономии. Эти две планеты отчётливо видны как "диски", а не "точки", причём с подробностями, видными даже в небольшие телескопы. Кольцо Сатурна и вытянутые в струнку спутники Юпитера придают ощущение объёма и придают картинке "космический вид".

    Астрономические наблюдения за Марсом - это на любителя, самое большее - полярные шапки удастся рассмотреть. Смены времён года и пятна пыльных бурь видны только в дорогие телескопы и при хорошей атмосфере.

    Наблюдение остальных планет приносит разочарование: самое большее, что видно в обычные недорогие телескопы - мутноватые маленькие диски (чаще просто слабые звёздочки). Зато всегда можно сказать: "Да, своими глазами видел - есть такая планета, астрономы не врут."

    Ни легендарного "лица Сфинкса" на Марсе, ни по-настоящему завораживающего восхода спутников планет вы не увидите даже в самый лучший телескоп. Впрочем, во время Великих противостояний, не навести на них трубу - просто преступление... Да и просто время от времени посмотреть... Конечно, если вы купите дорогой апохроматический рефрактор с большой апертурой или хороший светофильтр, то качество заметно повысится, но это уже не совсем для новичков.

  • Звёздные галактики, шаровые скопления и наверное сюда же надо отнести некоторые яркие планетарные туманности, например . Это действительно красиво. Но, опять же - при наличии телескопа с большой апертурой и действительно тёмного неба. На светлом городском небе даже , различается с трудом. Так что, если хотите порадовать себя и друзей - планируйте поездку за город.
    в созвездии Геркулеса - один из излюбленных объектов наблюдений и неофициальный измеритель качества телескопа на предмет "разрешает он звёзды до центра или нет".
  • Газовые туманности. Откровенно говоря, наблюдать их - неблагодарное занятие при любительской технике нижнего, да и среднего уровня. Светимость у этих облаков газа - низкая. Поэтому требования к черноте неба - повышенные. Цвета и у галактик-то увидеть - за праздник, а у туманностей... Исключение - яркая диффузная . Впрочем, со специальными фильтрами, которые не пропускают определённые длины волн от городских фонарей, некоторые туманности видны неплохо. А, если дорвётесь до настоящего телескопа в настоящей обсерватории, с большим полем зрения, то удовольствие запомните надолго:).
  • Кометы, да ещё хвостатые... Тут объяснять нечего. Они и так красивы, а в телескоп тем более.
  • Искусственные спутники Земли. Неожиданно интересные объекты наблюдений! Своеобразный вид спорта - у кого снимок МКС качественнее получился:-) Тут нужно учитывать столько параметров, что это и впрямь похоже на спортивную охоту. И умение хорошо и быстро ориентироваться на небосводе, и вычисление координат (тут программы помогают), и учёт погодных условий, и, наконец, у кого спортивный снаряд круче (телескоп, фотоаппарат...) На самом деле, это действительно увлекательно, если вы азартны и с авантюрными наклонностями. Вид галактик и планет по большому счёту известен и предсказуем, а тут постоянно "что-то новое запустили".

    Неважно - показываете ли вы близким людям что-то интересное в небе, или сами смотрите - всегда нелишне заранее знать, что, собственно говоря, искать в небе именно сегодня. И главное - где именно. Кроме того, если вдруг вы планируете свой отпуск с астрономическим уклоном, то нужно многое учесть:

  • Фазы Луны, которая в полнолуние даёт настолько сильную засветку, что кроме неё на небе ничего толком не рассмотришь. Я бы не стал планировать отпуск на это время...
  • Дни наибольших сближений с пролетающими кометами и астероидами;
  • То же самое касается и планет - нужно учитывать их высоту над горизонтом, и не пропустить дни наибольшего сближения с нашей планетой.
  • Время года для астрономических наблюдений. Летом ночи очень светлые, многие объекты просто теряются при такой засветке. Хорошее время - зима. Зимой темнеет рано - не надо отпрашиваться у домочадцев. То же самое - начало весны, когда уже не так холодно, но ещё нет сильной засветки.
    Однако, всё зависит от вашего климата. В Подмосковье, например, погода не балует - облачность повышенная, да и холодно. Мне больше нравится с конца августа до середины октября - небо уже довольно тёмное, ещё не так холодно... Осень считается дождливой, но в последние годы в первую её половину с осадками и облачностью часто везёт - видимо климат меняется. Ближе к зиме облачность резко повышается, в ноябре-декабре посмотреть в Подмосковье редко удаётся. Ещё по этой теме:
    Что видно в телескоп в зависимости от его размера

    Назад  или расскажите друзьям:

  • Среди методов астрономии, иначе методов астрономических исследований, можно выделить три основных группы:

    • наблюдения,
    • измерения,
    • космический эксперимент.

    Сделаем небольшой обзор этих методов.

    Астрономические наблюдения

    Замечание 1

    Астрономические наблюдения - это основной способ исследования небесных тел и событий. Именно с их помощью регистрируется то, что происходит в ближнем и дальнем космосе. Астрономические наблюдения - главный источник знания, полученного экспериментальным путём

    Астрономические наблюдения и обработка их данных, как правило, проводятся в специализированных научно-исследовательские учреждениях (астрономических обсерваториях).

    Первая российская обсерватория была построена в Пулково, под Санкт-Петербургом. Составление звезд каталогов звезд, имеющих высочайшую точность, заслуга Пулковской обсерватории. Можно сказать, что во второй половине 19 века, негласно, ей было присвоено звание «астрономической столицы мира», а в 1884 году Пулково претендовало на нулевой меридиан (победил Гринвич).

    Современные обсерватории оснащены наблюдательными инструментами (телескопами), светоприёмной и анализирующей аппаратурой, различными вспомогательными приборами, высокопроизводительными ЭВМ и т.д.

    Остановимся на особенностях астрономических наблюдений:

    • Особенность №1. Наблюдения весьма инертны, поэтому, как правило, для них требуется достаточно длительные сроки. Активное влияние на космические объекты, за редкими исключениями которые даёт пилотируемая и непилотируемая космонавтика, затруднено. В основном, многие явления, взять хотя бы трансформирование угла наклона оси Земли к орбитальной плоскости, могут быть зафиксированы лишь благодаря наблюдениям на протяжении нескольких тысяч лет. Следовательно, астрономическое наследие Вавилона и Китая тысячелетней давности, несмотря на некоторые несоответствия современным требованиям, до сих пор актуально.
    • Особенность №2. Процесс наблюдения, как правило, происходит с земной поверхности, в тоже время Земля осуществляет сложное движение, поэтому земной наблюдатель видит только определённый участок звёздного неба.
    • Особенность №3. Угловые измерения, выполняемые на основе наблюдений, являются основой для расчетов, определяющих линейные размеры объектов и расстояния до них. А так как угловые размеры звёзд и планет, измеряемые с помощью оптики, не зависят от расстояния до них, расчеты могут быть довольно неточными.

    Замечание 2

    Основной инструмент астрономических наблюдений - оптический телескоп.

    Оптической телескоп обладает принципом действия, определяемым его типом. Но независимо от вида, главная его цель и задача заключается в сборе максимального количества света, испускаемого светящимися объектами (звёздами, планетами, кометами и др.), для создания их изображений.

    Виды оптических телескопов:

    • рефракторы (линзовые),
    • рефлекторы (зеркальные),
    • а также зеркально-линзовые.

    В рефракторном (линзовом) телескопе, изображение достигается результатом преломления света в линзе объектива. Недостаток рефракторов - ошибка в результате размытости изображения.

    Особенность рефлекторов - использование в астрофизике. В них главное не то, как свет преломляется, а как отражается. Они совершеннее линзовых, и более точны.

    Зеркально-линзовые телескопы сочетают в себе функции рефракторов и рефлекторов.

    Рисунок 1. Малый оптический телескоп. Автор24 - интернет-биржа студенческих работ

    Астрономические измерения

    Так как измерения в астрономических исследованиях осуществляются с помощью различных приборов и инструментов, проведём их короткий обзор.

    Замечание 3

    Основные из астрономических измерительных приборов - это координатно-измерительные машины.

    Данные машины измеряют одну или две прямоугольные координаты с фотографического изображения или диаграммы спектра. Координатно-измерительные машины оснащены столом, на который помещаются фото и микроскопом с измерительными функциями, применяемым для наводки на светящееся тело или его спектр. Современные приборы могут иметь точность отсчёта до 1 мкм.

    В процессе измерения могут возникнуть ошибки:

    • самого инструмента,
    • оператора (человеческий фактор),
    • произвольные.

    Ошибки инструмента возникают от его несовершенства, следовательно, должна быть, предварительно осуществлена, его проверка на точность. В частности, проверке подлежат: шкалы, микрометрические винты, направляющие на предметном столе и измерительном микроскопе, отсчётные микрометры.

    Ошибки, связанные с человеческим фактором и случайностью, купируются кратностью измерений.

    В астрономических измерениях происходит широкое внедрение автоматических и полуавтоматических измерительных приборов.

    Автоматические приборы работают на порядок быстрее обычных, и имеют в два раза меньшую среднюю квадратическую ошибку.

    Космический эксперимент

    Определение 1

    Космический эксперимент - это множество связанных между собой взаимодействий и наблюдений, дающих возможность получения необходимой информации об исследуемом небесном теле или явлении, осуществляемых в космическом полете (пилотируемом или непилотируемом) с целью подтверждения теорий, гипотез, а также совершенствования различных технологий, могущих принести вклад в развитие научных знаний.

    Основные тенденции экспериментов в космосе:

    1. Изучение протекания физико-химические процессов и поведения материалов в космическом пространстве.
    2. Изучение свойств и поведения небесных тел.
    3. Влияние космоса на человека.
    4. Подтверждение теорий космической биологии и биотехнологии.
    5. Пути освоения космического пространства.

    Здесь уместно привести примеры экспериментов, проводимых на МКС российскими космонавтами.

    Эксперимент по выращиванию растений (Veg-01).

    Задача эксперимента – изучить поведение растений в орбитальных условиях.

    Эксперимент "Плазменный кристалл" - изучение плазменно-пылевых кристаллов и жидких веществ при микро гравитационных параметрах.

    Было проведено четыре его этапа:

    1. Исследовалась плазменно-пылевая структура в газоразрядной плазме при высокочастотном емкостном разряде.
    2. Исследовалась плазменно-пылевая структура в плазме при тлеющем разряде с постоянным током.
    3. Исследовалось как воздействует ультрафиолетовый спектр космического излучения на макрочастицы, которые могут быть заряжены фотоэмиссией.
    4. Исследовались плазменно-пылевые структуры в открытом космосе при действии солнечного ультрафиолета и ионизирующего излучения.

    Рисунок 2. Эксперимент "Плазменный кристалл". Автор24 - интернет-биржа студенческих работ

    А всего российскими космонавтами на МКС было проведено более 100 космических экспериментов.

    Солнце, Луна, планеты, кометы, звезды, туманности, галактики, отдельные небесные тела и системы таких тел изучаются в астрономии. Разнообразны задачи, стоящие перед астрономами, а в связи с этим разнообразны и методы астрономических наблюдений, доставляющих основной материал для решения этих задач.

    Уже в глубокой древности начались наблюдения с целью определения положений светил на небесной сфере. Сейчас этим занимается астрометрия. Измеренные в результате таких наблюдений небесные координаты звезд разных типов, звездных скоплений, галактик сводятся в каталоги, по ним составляются звездные карты (см. Звездные каталоги, карты и атласы). Повторяя в течение более или менее длительного периода времени наблюдения одних и тех же небесных тел, вычисляют собственные движения звезд, тригонометрические параллаксы и др. Эти данные также публикуются в каталогах.

    Составленные таким образом звездные каталоги используются как в практических целях - при астрономических наблюдениях движущихся небесных тел (планет, комет, искусственных космических объектов), при работах службы времени, службы движения полюсов, в геодезии, навигации и др., так и при разного рода научно-исследовательских работах. К числу последних относятся, в частности, исследования структуры Галактики, происходящих в ней движений, чем занимается звездная астрономия.

    Систематические астрометрические наблюдения планет, комет, астероидов, искусственных космических объектов доставляют материал для изучения законов их движения, составления эфемерид, для решения других задач небесной механики, астродинамики, геодезии, гравиметрии.

    К астрометрическим наблюдениям можно отнести также и вошедшие в практику в последние десятилетия дальномерные наблюдения небесных светил. С помощью лазерных дальномеров с высокой точностью определяются расстояния до искусственных спутников Земли (см. Лазерный спутниковый дальномер), до Луны.

    Методы радиолокационной астрономии дают возможность определять расстояния и даже изучать профили Луны, Венеры, Меркурия и т. п.

    Другим типом астрономических наблюдений является непосредственное изучение вида таких небесных тел, как Солнце, Луна, ближайшие планеты, галактические туманности, галактики и др. Наблюдения этого типа стали развиваться после изобретения телескопа. Вначале наблюдения велись визуально: небесные светила рассматривались глазом и увиденное зарисовывалось. Позже стала использоваться фотография. Фотографические методы имеют неоспоримое преимущество перед визуальными: фотографии можно детально измерять в спокойной лабораторной обстановке; в случае необходимости их можно повторить, да и вообще фотография является объективным документом, в то время как в визуальные наблюдения наблюдатель вносит много субъективного. Кроме того, фотографическая пластинка, в отличие от глаза, накапливает приходящие от источника фотоны и потому позволяет получать снимки слабых объектов.

    На рубеже XIX и XX вв. зародились и стали быстро развиваться астрофизические методы наблюдений, в основе которых лежит анализ электромагнитного излучения Небесного светила, собранного телескопом. Для такого анализа используются различные светоприемни-ки и другие приспособления.

    С помощью астрофотометров разного типа регистрируют изменения блеска небесных светил и таким путем обнаруживают переменные звезды, определяя их тип, двойные звезды, в сочетании с результатами других наблюдений делают определенные заключения о процессах, происходящих в звездах, туманностях и т. д.

    Широкую информацию о небесных светилах дают спектральные наблюдения. По распределению энергии в непрерывном спектре (см. Электромагнитное излучение небесных тел), по виду, ширине и другим характеристикам спектральных линий и полос судят о температуре, химическом составе звезд и других небесных светил, о движениях вещества в них, об их вращении, о наличии магнитных полей, наконец, о стадии их эволюционного развития и о многом другом.

    Рисунок (см. оригинал)

    Измерения смещения спектральных линий вследствие эффекта Доплера позволяют определять лучевые скорости небесных тел, которые используются при разнообразных астрономических исследованиях.

    При астрофизических наблюдениях широко используются электронно-оптические преобразователи, фотоэлектронные умножители, электронные камеры, телевизионная техника (см. Телевизионный телескоп), позволяющие значительно увеличить проницающую силу телескопов, расширить диапазон воспринимаемого телескопом электромагнитного излучения небесных тел.

    Астрономические наблюдения в радиодиапазоне электромагнитного излучения ведутся с помощью радиотелескопов. Специальная аппаратура используется для регистрации инфракрасного и ультрафиолетового излучения, для нужд рентгеновской астрономии и гамма-астрономии. Качественно новые результаты получают с помощью астрономических наблюдений, выполняемых с борта космических аппаратов (так называемая внеатмосферная астрономия).

    Большинство описанных астрономических наблюдений выполняется на астрономических обсерваториях специально подготовленными научными и техническими работниками. Но отдельные виды наблюдений доступны и любителям астрономии.

    Юные астрономы могут проводить наблюдения для расширения кругозора, для приобретения опыта научно-исследовательских работ. Но многие виды правильно организованных наблюдений, выполняемых в точном соответствии с инструкциями, могут иметь и существенное научное значение.

    Шкальным астрономическим кружкам доступны следующие астрономические наблюдения:

    1. Исследования солнечной активности с помощью школьного телескопа-рефрактора (помните* что смотреть на Солнце без темного фильтра ни в коем случае нельзя!).

    2. Наблюдения Юпитера и его спутников с зарисовкой деталей в полосах Юпитера, Красного пятна.

    3. Поиски комет с помощью светосильных оптических инструментов с достаточно большим полем зрения.

    4. Наблюдения серебристых облаков, изучения частоты их появления, формы и т. п.

    5. Регистрация метеоров, счет их количества, определение радиантов.

    6. Исследования переменных звезд - визуально и на фотографиях звездного неба.

    7. Наблюдения солнечных и лунных затмений.

    8. Наблюдения искусственных спутников Земли.

    Инструкции для организации наблюдений можно найти среди книг, перечисленных в списке рекомендованной литературы. Ряд практических советов приведен в словаре.

    Основной способ исследования небесных объектов и явлений. Наблюдения могут вестись невооруженным глазом или с помощью оптических инструментов: телескопов, снабженных теми или иными приемниками радиации (спектрографами, фотометрами и т.п.), астрографов, специальных инструментов (в частности, биноклей). Цели наблюдений весьма разнообразны. Точные измерения положении звезд, планет и других небесных тел дают материал для определения расстояний до них (см. Параллакс), собственных движений звезд, изучения законов движения планет, комет. Результаты измерений видимого ’блеска светил (визуально или с помощью астрофотометров) позволяют оценивать расстояния до звезд, звездных скоплений, галактик, изучать процессы, происходящие в переменных звездах, и т.д. Исследования спектров небесных светил с помощью спектральных приборов позволяют измерять температуру светил, лучевые скорости, дают неоценимый материал для глубокого изучения физики звезд и других объектов.

    Но результаты астрономических наблюдений имеют научную значимость только в том случае, когда безусловно выполняются положения инструкций, которые определяют порядок действия наблюдателя, требования к инструментам, месту наблюдения, к форме регистрации данных наблюдения.

    К методам наблюдений, доступным юным астрономам, относятся визуальные без инструментов, визуальные телескопические, фотографические и фотоэлектрические наблюдением небесных объектов и явлений. В зависимости от инструментальной базы, положения 1унктов наблюдения (город, поселок, село), 1строклиматических условий и интересов любителя для наблюдений может быть выбрана любая (или несколько) из предлагаемых тем.

    Наблюдения солнечной активности. При наблюдении солнечной активности ежедневно зарисовываются солнечные пятна и определяются их координаты с помощью заранее заготовленной угломерной сетки. Проводить наблюдения лучше всего с помощью большого школьного телескопа-рефрактора или самодельного телескопа на параллактическом штативе (см. Телескоп самодельный). Нужно всегда помнить, что смотреть на Солнце без темного (защитного) фильтра ни в коем случае нельзя. Удобно вести наблюдения Солнца, проецируя его изображение на специально приспособленный к телескопу экран. На бумажном шаблоне обводят контуры групп пятен и отдельных пятен, отмечают поры. Затем вычисляются их координаты, подсчитывается число пятен в группах и на момент наблюдений выводится индекс солнечной активности — числа Вольфа. Наблюдатель изучает и все изменения, происходящие внутри группы пятен, стремясь как можно точнее передать их форму, размеры, взаимное расположение деталей. Наблюдать Солнце можно и фотографически с применением в телескопе дополнительной оптики, увеличивающей эквивалентное фокусное расстояние прибора и позволяющей поэтому фотографировать более крупно отдельные образования на его поверхности. Пластинки и пленки для фотографирования Солнца должны иметь самую малую чувствительность.

    Наблюдения Юпитера и его спутников. При наблюдении планет, в частности Юпитера, используют телескоп с диаметром объектива или зеркала не менее 150 мм. Наблюдатель тщательно зарисовывает детали в полосах Юпитера и сами полосы и определяет их координаты. Проведя наблюдения в течение ряда ночей, можно изучить картину изменений в облачном покрове планеты. Интересным для наблюдения на диске Юпитера является Красное пятно, физическая природа которого пока не совсем изучена. Наблюдатель зарисовывает положение Красного пятна на диске планеты, определяет его координаты, приводит описания цвета, яркости пятна, регистрирует замеченные особенности в окружающем его облачном слое.

    Для наблюдении спутников Юпитера используется школьный телескоп-рефрактор. Наблюдатель определяет точное положение спутников относительно края диска планеты с помощью окулярного микрометра. Кроме того, представляет интерес наблюдение явлений в системе спутников и регистрация моментов этих явлений. К ним относятся затмение спутников, заход за диск планеты и выход из-за диска, прохождение спутника между Солнцем и планетой, между Землей и планетой.

    Поиски комет и их наблюдения. Поиски комет производятся с помощью светосильных оптических инструментов с большим полем зрения (3-5°). Для этой цели могут быть использованы полевые бинокли, астрономическая трубка АТ-1, бинокуляры ТЗК, БМТ-110, а также кометоискатели.

    Наблюдатель систематически осматривает западную часть неба после захода Солнца, северную и зенитную области неба ночью и восточную перед восходом Солнца. Наблюдатель должен очень хорошо знать расположение на небе стационарных туманных объектов — газовых туманностей, галактик, звездных скоплений, которые по внешнему виду напоминают слабую по яркости комету. В этом случае ему окажут помощь атласы звездного неба, в частности «Учебный звездный атлас» А. Д. Марленского и «Звездный атлас» А. А. Михайлова. О появлении новой кометы тотчас же дается телеграмма в адрес Астрономического института им, П. К., Штернберга в Москве. Нужно сообщать время обнаружения кометы, ее приближенные координаты, фамилию и имя наблюдателя, его почтовый адрес.

    Наблюдатель должен зарисовать положение кометы среди звезд, изучить видимую структуру головы и хвоста кометы (если они имеют место), определить ее блеск. Фотографирование области неба, где находится комета, позволяет более точно, чем при зарисовке, определить ее координаты, а следовательно, рассчитать более точно орбиту кометы. Телескоп при фотографировании кометы должен быть снабжен часовым механизмом, ведущим его за звездами, перемещающимися вследствие видимого вращения неба.

    Наблюдения серебристых облаков. Серебристые облака — интереснейшее, но еще малоизученное явление природы. В СССР наблюдаются они в летнее время севернее 50° широты. Их можно увидеть на фоне сумеречного сегмента, когда угол погружении Солнца под горизонт составляет от 6 до 12°. В это время солнечные лучи освещают только верхние слои атмосферы, где на высоте 70-90 км и образуются серебристые облака. В отличие от обычных облаков, которые в сумерках кажутся темными, серебристые облака светятся. Они наблюдаются в северной стороне неба, невысоко над горизонтом.

    Наблюдатель каждую ночь осматривает через 15-минутные интервалы сумеречный сегмент и в случае появления серебристых облаков оценивает их яркость, регистрирует изменения формы, при помощи теодолита или другого угломерного инструмента замеряет протяженность поля облаков по высоте и азимуту. Кроме того, целесообразно фотографировать серебристые облака. Если светосила объектива 1:2 и чувствительность пленки 130-180 единиц по ГОСТу, то хорошие снимки можно получить при экспозиции 1—2 с. На снимке должны быть видны основная часть поля облаков и силуэты строений или деревьев.

    Целью патрулирования сумеречного сегмента и наблюдений серебристых облаков является выяснение частоты появления облаков, преобладающих форм, динамики поля серебристых облаков, а также отдельных образований внутри поля облаков.

    Наблюдения метеоров. Задачами визуальных наблюдений является счет метеоров и определение метеорных радиантов. В первом случае наблюдатели располагаются под круглой рамкой, ограничивающей поле зрения до 60°, и регистрируют только те метеоры, которые появляются внутри рамки. В журнале наблюдений записывается порядковый номер метеора, момент пролета с точностью до одной секунды, звездная величина, угловая скорость, направление метеора и его положение относительно рамки. Эти наблюдения позволяют изучить плотность метеорных потоков и распределение метеоров по блеску.

    При определении метеорных радиантов наблюдатель тщательно наносит на копию карты звездного неба каждый замеченный метеор и отмечает порядковый номер метеора, момент пролета, звездную величину, длину метеора в градусах, угловую скорость и цвет. Слабые по блеску метеоры наблюдаются при помощи полевых биноклей, трубок АТ-1, бинокуляра ТЗК. Наблюдения по этой программе позволяют изучать распределение малых радиантов на небесной сфере, определять положение и смещение изученных малых радиантов, приводят к открытию новых радиантов.

    Наблюдения переменных звезд. Основные инструменты для наблюдения переменных звезд: полевые бинокли, астрономические трубки АТ-1, бинокуляры ТЗК, БМТ-110, кометоискатели, обеспечивающие большое поле зрения. Наблюдения переменных звезд позволяют изучать законы изменения их блеска, уточнять периоды и амплитуды изменения блеска, определять их тип и т.п.

    Первоначально наблюдаются переменные звезды — цефеиды, имеющие правильные колебания блеска с достаточно большой амплитудой, и только после этого следует переходить к наблюдениям полу прав ильных и неправильных переменных звезд, звезд с малой амплитудой блеска, а также исследовать звезды, заподозренные в переменности, и патрулировать вспыхивающие звезды.

    При помощи фотоаппаратов можно фотографировать звездное небо с целью наблюдений долгопериодических переменных звезд и поисков новых переменных звезд.

    Наблюдения солнечных затмений

    В программу любительских наблюдений полного солнечного затмения могут войти: визуальная регистрация моментов соприкосновения края диска Луны с краем диска Солнца (четыре контакта); зарисовки вида солнечной короны — ее формы, структуры, размеров, цвета; телескопические наблюдения явлений при покрытии краем лунного диска солнечных пятен и факелов; метеорологические наблюдения — регистрация хода температуры, давления, влажности воздуха, изменения направления и силы ветра; наблюдения поведения животных и птиц; фотографирование частных фаз затмения через телескоп с фокусным расстоянием 60 см и более; фотографирование солнечной короны при помощи фотоаппарата с объективом, имеющим фокусное расстояние 20-30 см; фотографирование так называемых четок Бейли, которые появляются перед вспыхиванием солнечной короны; регистрация изменения яркости неба по мере увеличения фазы затмения при помощи самодельного фотометра.

    Наблюдения лунных затмений

    Так же как и солнечные, лунные затмения происходят сравнительно редко, и в то же время каждое затмение характеризуется своими особенностями. Наблюдения лунных затмений позволяют уточнять орбиту Луны, дают сведения о верхних слоях земной атмосферы. Программа наблюдений лунного затмения может состоять из следующих элементов: определение яркости затененных частей лунного диска по видимости деталей лунной поверхности при наблюдении в 6-кратный признанный бинокль или телескоп с малым увеличением; визуальные оценки яркости Луны и ее цвета как невооруженным глазом, так и в бинокль (телескоп); наблюдения в телескоп с диаметром объектива не менее 10 см при 90-кратном увеличении на протяжении всего затмения кратеров Геродот, Аристарх, Гримальди, Атлас и Риччиоли, в области которых могут иметь место цветовые и световые явления; регистрация при помощи телескопа моментов покрытия земной тенью некоторых образований на лунной поверхности (список этих объектов приводится в книге «Астрономический календарь. Постоянная часть»); определение при помощи фотометра блеска поверхности Луны при различных фазах затмения.

    Наблюдения искусственных спутников Земли

    При наблюдении искусственных спутников Земли отмечают путь движения спутника на звездной карте и время его прохождения около заметных ярких звезд. Время должно регистрироваться с точностью до 0,2 с по секундомеру. Яркие спутники можно фотографировать.