Когда была создана первая суммирующая машина паскаля. Великие ученые

Первым изобретателем, механических счетных машин, стал гениальный француз Блез Паскаль. Сын сборщика налогов, Паскаль задумал построить вычислительное устройство, наблюдая бесконечные утомительные расчеты своего отца. В 1642 г., когда Паскалю было всего 19 лет, он начал работать над созданием суммирующей машины. Паскаль умер в возрасте 39 лет, но, несмотря на столь короткую жизнь, навечно вошел в историю как выдающийся математик, физик, писатель и философ. В его честь назван один из самых распространенных современных языков программирования.

Суммирующая машина Паскаля, «паскалина», представляла собой механическое устройство - ящик с многочисленными шестеренками. Всего приблизительно за десятилетие он построил более 50 различных вариантов машины. При работе на «паскалине» складываемые числа вводились путем соответствуюшего поворота наборных колесиков. Каждое колесико с нанесенными на него делениями от 0 до 9 соответствовало одному десятичному разряду числа - единицам, десяткам, сотням и т. д. Избыток над 9 колесико «переносило», совершая полный оборот и продвигая соседнее слева «старшее» колесико на 1 вперед. Другие операции выполнялись при помощи довольно неудобной процедуры повторных сложений.

1642г. Суммирующая машина Паскаля производила арифметические действия приСуммирующая машина Паскаля вращении связаных колесиков с цифровыми делениями.

Хотя машина вызвала всеобщий восторг, она не принесла Паскалю богатства. Тем не менее изобретенный им принцип связанных колес явился основой, на которой строил ось большинство вычислительных устройств на протяжении следующих трех столетий.

Основной недостаток «паскалины» состоял в неудобстве выполнения на ней всех операций, кроме простого сложения. Первая машина, позволявшая легко производить вычитание, умножение и деление, была изобретена позже в том же XVII в. в Германии. Заслуга этого изобретения принадлежит гениальному человеку, творческое воображение которого казалось неисчерпаемым. Готфрид Вильгельм Лейбниц родился в 1646 г. в Лейпциге. Он принадлежал к роду, известному своими учеными и политическими деятелями. Его отец, профессор этики, умер, когда ребенку было всего 6 лет, но к этому времени Лейбницем уже овладела жажда знаний. Дни напролет он проводил в отцовской библиотеке, читая книги и занимаясь историей, латинским и греческим языками и другими предметами.

Поступив в Лейпцигский университет в возрасте 15 лет, он по своей эрудиции, пожалуй, не уступал многим профессорам. И все же теперь перед ним открылся совершенно новый мир. В университете он впервые познакомился с работами Кеплера, Галилея и других ученых, стремительно расширявших границы научного познания. Темпы научного прогресса поразили воображение молодого Лейбница, и он решил включить в свою учебную про грамму математику.



В возрасте 20 лет Лейбницу предложили должность профессора в Нюрнбергском университете. Он отклонил это предложение, предпочтя жизни ученого дипломатическую карьеру. Однако, пока он разъезжал в карете из одной европейской столицы в другую, его беспокойный ум терзали всевозможные вопросы из самых различных областей науки и философии - от этики до гидравлики и астрономии. В 1672 г., находясь в Париже, Лейбниц познакомился с голландским математиком и астрономом Христиан ом Гюйгенсом. Видя, как много вычислений приходится делать астроному, Лейбниц решил изобрести механическое устройство, которое облегчило бы расчеты. «Поскольку это недостойно таких замечательных людей, - писал Лейбниц, - подобно рабам, терять время на вычислительную работу, которую можно было бы доверить кому угодно при использовании машины».

В 1673 г. он изготовил механический калькулятор. Сложение производил ось на нем по существу так же, как и на «паскалине», однако Лейбниц включил в конструкцию движущуюся часть (прообраз подвижной каретки будущих настольных калькуляторов) и ручку, с помощью которой можно было крутить ступенчатое колесо или - в последующих вариантах машины - цилиндры, расположенные внутри аппарата. Этот механизм с движущимся элементом позволял ускорить повторяющиеся операции сложения, необходимые для перемножения или деления чисел. Само повторение тоже было автоматическим.

1673 г. Калькулятор Лейбница ускорил выполнение операций умножения и деления.

Лейбниц продемонстрировал свою машину в Французской академии наук и Лондонском королевском обществе. Один экземпляр машины Лейбница попал к Петру Великому, который подарил ее китайскому императору, желая поразить того европейскими техническими достижениями. Но Лейбниц прославился прежде всего не этой машиной, а созданием дифференциального и интегрального исчисления (которое независимо разрабатывал в Англии Исаак Ньютон). Он заложил также основы двоичной системы счисления, которая позднее нашла применение в автоматических вычислительных устройствах.



Арифмометр Лейбница

Арифмометр (от греч. αριθμός - «число», «счёт» и греч. μέτρον - «мера», «измеритель») - настольная (или портативная) механическая вычислительная машина, предназначенная для точного умножения и деления, а также для сложения и вычитания.

Настольная или портативная: Чаще всего арифмометры были настольные или «наколенные» (как современные ноутбуки), изредка встречались карманные модели (Curta). Этим они отличались от больших напольных вычислительных машин, таких как табуляторы (Т-5М) или механические компьютеры (Z-1, Разностная машина Чарльза Бэббиджа).

Механическая: Числа вводятся в арифмометр, преобразуются и передаются пользователю (выводятся в окнах счётчиков или печатаются на ленте) с использованием только механических устройств. При этом арифмометр может использовать исключительно механический привод (то есть для работы на них надо постоянно крутить ручку. Этот примитивный вариант используется, например, в «Феликсе») или производить часть операций с использованием электромотора (Наиболее совершенные арифмометры - вычислительные автоматы, например «Facit CA1-13», почти при любой операции используют электромотор).

Точное вычисление: Арифмометры являются цифровыми (а не аналоговыми, как например логарифмическая линейка) устройствами. Поэтому результат вычисления не зависит от погрешности считывания и является абсолютно точным.

Умножение и деление: Арифмометры предназначены в первую очередь для умножения и деления. Поэтому почти у всех арифмометров есть устройство, отображающее количество сложений и вычитаний - счётчик оборотов (так как умножение и деление чаще всего реализовано как последовательное сложение и вычитание; подробнее - см. ниже).

Сложение и вычитание: Арифмометры могут выполнять сложение и вычитание. Но на примитивных рычажных моделях (например, на «Феликсе») эти операции выполняются очень медленно - быстрее, чем умножение и деление, но заметно медленнее, чем на простейших суммирующих машинах или даже вручную.

Не программируемый: При работе на арифмометре порядок действий всегда задаётся вручную - непосредственно перед каждой операцией следует нажать соответствующую клавишу или повернуть соответствующий рычаг. Это особенность арифмометра не включается в определение, так как программируемых аналогов арифмометров практически не существовало.

Идеи Чарльза Бэббиджа

Ра́зностная маши́на Чарльза Бэббиджа - механический аппарат, изобретённый английским математиком Чарльзом Бэббиджем, предназначенный для автоматизации вычислений путём аппроксимации функций многочленами и вычисления конечных разностей. Возможность приближённого представления в многочленах логарифмов и тригонометрических функций позволяет рассматривать эту машину как довольно универсальный вычислительный прибор.

Первая идея разностной машины была выдвинута немецким инженером Иоганном Мюллером в книге, изданной в 1788 году.

Однако, Чарльз Бэббидж почерпнул идею для своего проекта не у Мюллера, а из работ Гаспара де Прони, занимавшего должность руководителя бюро переписи при французском правительстве с 1790 по 1800 год.

Прони, которому было поручено выверить и улучшить логарифмические тригонометрические таблицы для подготовки к введению метрической системы, предложил распределить работу по трём уровням. На верхнем уровне группа крупных математиков занималась выводом математических выражений, пригодных для численных расчётов. Вторая группа вычисляла значения функций для аргументов, отстоящих друг от друга на пять или десять интервалов. Подсчитанные значения входили в таблицу в качестве опорных. После этого формулы отправляли третьей, наиболее многочисленной группе, члены которой проводили рутинные расчёты и именовались «вычислителями». От них требовалось только аккуратно складывать и вычитать в последовательности, определённой формулами, полученными от второй группы.

Работы де Прони (так и не законченные ввиду революционного времени), с которыми Бэббидж познакомился, находясь во Франции, навели Бэббиджа на мысль о возможности создания машины, способной заменить третью группу - вычислителей. В 1822 году Бэббидж опубликовал статью с описанием такой машины, а вскоре приступил к её практическому созданию. Как математику, Бэббиджу был известен метод аппроксимации функций многочленами и вычислением конечных разностей. С целью автоматизации этого процесса он начал проектировать машину, которая так и называлась - разностная. Эта машина должна была уметь вычислять значения многочленов до шестой степени с точностью до 18-го знака.

В том же 1822 году Бэббиджем была построена модель разностной машины, состоящая из валиков и шестерней, вращаемых вручную при помощи специального рычага. Заручившись поддержкой Королевского общества, посчитавшего его работу «в высшей степени достойной общественной поддержки», Бэббидж обратился к правительству Великобритании с просьбой о финансировании полномасштабной разработки. В 1823 году правительство Великобритании предоставило ему субсидию в размере 1500 фунтов стерлингов (общая сумма правительственных субсидий, полученных Бэббиджем на реализацию проекта, составила в конечном счёте 17 000 фунтов стерлингов).

Разрабатывая машину, Бэббидж и не представлял всех трудностей, связанных с её реализацией, и не только не уложился в обещанные три года, но и спустя девять лет вынужден был приостановить свою работу. Однако часть машины все же начала функционировать и производила вычисления даже с большей точностью, чем ожидалось.

Копия разностной машины в лондонском Музее науки

Конструкция разностной машины основывалась на использовании десятичной системы счисления. Механизм приводился в действие специальными рукоятками. Когда финансирование создания разностной машины прекратилось, Бэббидж занялся проектированием гораздо более общей аналитической машины, но затем всё-таки вернулся к первоначальной разработке. Улучшенный проект, над которым он работал между 1847 и 1849 годами, носил название «Разностная машина № 2» (англ. Difference Engine No.

Логарифмы

Термин «логарифм» возник из сочетания греческих слов logos - отношение, соотношение и arithmos - число.

Основные свойства логарифма позволяют заменить умножение, деление, возведение в степень и извлечение корня более простыми действиями сложения, вычитания, умножения и деления.

Логарифмом обозначается обычно loga N. Логарифм с основанием е = 2,718... называется натуральным и обозначается ln N. Логарифм с основанием 10 называется десятичным и обозначается lg N. Равенство у = loga x определяет логарифмическую функцию.

«Логарифм данного числа N при основании а, показатель степени у, в которую нужно возвести число а, чтобы получить N; таким образом,

Изобретателем логарифмов был Непер (Нейпир) (Napier) Джон (1550-1617), шотландский математик.

Потомок старинного воинственного шотландского рода. Изучал логику, теологию, право, физику, математику, этику. Увлекался алхимией и астрологией. Изобрел несколько полезных сельскохозяйственных орудий. В 1590-х годах пришел к идее логарифмических вычислений и составил первые таблицы логарифмов, однако свой знаменитый труд «Описание удивительных таблиц логарифмов» опубликовал лишь в 1614. В конце 1620-х годов была изобретена логарифмическая линейка, счетный инструмент, использующий таблицы Непера для упрощения вычислений. С помощью логарифмической линейки операции над числами заменяются операциями над логарифмами этих чисел.

В 1617, незадолго до своей смерти, Непер изобрел математический набор для облегчения арифметических вычислений. Набор состоял из брусков с нанесенными на них цифрами от 0 до 9 и кратными им числами. Для умножения какого-либо числа бруски располагали рядом так, чтобы цифры на торцах составляли это число. Ответ можно было увидеть на боковых сторонах брусков. Помимо умножения, палочки Неперапозволяли выполнять деление и извлечение квадратного корня.

В 1640 г. попытку создать механическую вычислительную машину предпринял Блез Паскаль (1623-1662).

Существует мнение, что «на идею счетной машины Блеза Паскаля натолкнуло, по всей вероятности, учение Декарта, который утверждал, что мозгу животных, в том числе и человека, присущ автоматизм, поэтому ряд умственных процессов ничем по существу своему не отличается от механических». Косвенным подтверждением этого мнения служит то, что Паскаль поставил перед собой цель создать такую машину. В 18 лет он начинает работать над созданием машины, с помощью которой даже незнакомый с правилами арифметики мог производить различные действия.

Первая работающая модель машины была готова уже в 1642 году. Паскаля она не удовлетворила, и он сразу же начал конструировать новую модель. «Я не экономил,- писал он впоследствии, обращаясь к «другу-читателю»,- ни времени, ни труда, ни средств, чтобы довести ее до состояния быть тебе полезной... Я имел терпение сделать до 50 различных моделей: одни деревянные, другие из слоновой кости, из эбенового дерева, из меди...»



Паскаль экспериментировал не только с материалом, но и с формой деталей машины: модели были сделаны - «одни из прямых стержней или пластинок, другие из кривых, иные с помощью цепей; одни с концентрическими зубчатыми колесами, другие с эксцентриками; одни - движущиеся по прямой линии, другие- круговым образом; одни в форме конусов, другие - в форме цилиндров...»

Наконец в 1645 году арифметическая машина, как назвал ее Паскаль, или Паскалево колесо, как называли ее те, кто был знаком с изобретением молодого ученого, была готова.

Она представляла собой легкий латунный ящичек размером 350X25X75 мм (Рисунок 11.7). На верхней крышке - 8 круглых отверстий, вокруг каждого нанесена круговая шкала.

Рисунок 11.7 - Машина Паскаля со снятой крышкой

Шкала крайнего правого отверстия разделена на 12 равных частей, шкала соседнего с ним отверстия - на 20 частей, шкалы остальных 6 отверстий имеют десятичное деление. Такая градуировка соответствует делению ливра-основной денежной единицы того времени - на более мелкие: 1 су = 1/20 ливра и 1 денье - 1/12 су.

В отверстиях видны зубчатые колеса, находящиеся ниже плоскости верхней крышки. Число зубьев каждого колеса равно числу делений шкалы соответствующего отверстия (например, у крайнего правого колеса 12 зубьев). Каждое колесо может вращаться независимо от другого на собственной оси. Поворот колеса осуществляется от руки с помощью ведущего штифта, который вставляется между двумя смежными зубьями. Штифт поворачивает колесо до тех пор, пока не наталкивается на неподвижный упор, закрепленный в нижней части крышки и выступающий внутрь отверстия левее цифры 1 круговой шкалы. Если, например, вставить штифт между зубьями, расположенными против цифр 3 и 4, и повернуть колесо до упора, то оно повернется на 3/10 полного поворота.

Поворот колеса передается посредством внутреннего механизма машины цилиндрическому барабану, ось которого расположена горизонтально. На боковой поверхности барабана нанесены два ряда цифр; цифры нижнего ряда расположены в порядке возрастания- 0, ..., 9, цифры верхнего ряда - в порядке убывания-9, 8, ..., 1,0. Они видны в прямоугольных окнах крышки. Планка, которая помещается на крышке машины, может передвигаться вверх или вниз вдоль окон, открывая либо верхний, либо нижний ряд чисел в зависимости от того, какое математическое действие нужно произвести.

В отличие от известных счетных инструментов типа абака в арифметической машине вместо предметного представления чисел использовалось их представление в виде углового положения оси (вала) или колеса, которое несет эта ось. Для выполнения арифметических операций Паскаль заменил поступательное перемещение камешков, жетонов и т. д. в абаковидных инструментах на вращательное движение оси (колеса), так что в его машине сложению чисел соответствует сложение пропорциональных им углов.

Колесо, с помощью которого осуществляется ввод чисел (так называемое установочное колесо), в принципе не обязательно должно быть зубчатым - этим колесом может быть, например, плоский диск, по периферии которого через 36° просверлены отверстия, в которые вставляется ведущий штифт.

Нам осталось познакомиться с тем, как Паскаль решил самый, пожалуй, трудный вопрос,- о механизме переноса десятков. Наличие такого механизма, позволяющего вычислителю не тратить внимания на запоминание переноса из младшего разряда в старший,- это наиболее разительное отличие машины Паскаля от известных счетных инструментов.

На Рисунок 11.8 изображены элементы машины, относящиеся к одному разряду: установочное колесо N, цифровой барабан I, счетчик, состоящий из 4 корончатых колес В, одного зубчатого колеса К и механизма передачи десятков. Заметим, что колеса В1 В4 и К не имеют принципиального значения для работы машины и используются лишь для передачи движения установочного колеса N цифровому барабану I. Зато колеса В2 и В3 - неотъемлемые элементы счетчика и в соответствии со «счетно-машинной» терминологией именуются счетными колесами. На

показаны счетные колеса двух соседних разрядов, жестко насаженные на оси А 1 и A 2 , и механизм передачи десятков, который Паскаль назвал «перевязь» (sautoir). Этот механизм имеет следующее устройство.

Рисунок 11.8 - Элементы машины Паскаля, относящиеся к одному разряду числа

Рисунок 11.9 - Механизм передачи десятков в машине Паскаля

На счетном колесе В 1 младшего разряда имеются стержни d, которые при вращении оси A 1 входят в зацепление с зубьями вилки М, расположенной на конце двухколенного рычага D 1 . Этот рычаг свободно вращается на оси А 2 старшего разряда, вилка же несет на себе подпружиненную собачку. Когда при вращении оси А 1 колесо В 1 достигнет позиции, соответствующей цифре б, стержни С1 войдут в зацепление с зубьями вилки, а в тот момент, когда оно перейдет от 9 к 0, вилка выскользнет из зацепления и под действием собственного веса упадет вниз, увлекая за собой собачку. Собачка и протолкнет счетное колесо В 2 старшего разряда на один шаг вперед (то есть повернет его вместе с осью A 2 на 36°). Рычаг Н, оканчивающийся зубом в виде топорика, играет роль защелки, препятствующей вращению колеса В 1 в обратную сторону при поднимании вилки.

Механизм переноса действует только при одном направлении вращения счетных колес и не допускает выполнения операции вычитания вращением колес в обратную сторону. Поэтому Паскаль заменил эту операцию операцией сложения с десятичным дополнением.

Пусть, например, необходимо из 532 вычесть 87. Метод дополнения приводит к действиям:

532 - 87 = 532 - (100-13) = (532 + 13) - 100 = 445.

Нужно только не забыть вычесть 100. Но на машине, имеющей определенное число разрядов, об этом можно не заботиться. Действительно, пусть на 6-разрядной машине выполняется вычитание: 532 - 87. Тогда 000532 + 999913 = 1000445. Но самая левая единица потеряется сама собой, так как переносу из 6-го разряда некуда, деться. В машине Паскаля десятичные дополнения написаны в верхнем ряду цифрового барабана. Для выполнения операции вычитания достаточно передвинуть планку, закрывающую прямоугольные окна, в нижнее положение, сохранив при этом направление вращения установочных колес.

С изобретения Паскаля начинается отсчет времени развития вычислительной техники. В XVII-XVIII вв. один изобретатель за другим предлагают новые варианты конструкций суммирующих устройств и арифмометров, пока, наконец, в XIX в. неуклонно растущий объем вычислительных работ не создал устойчивого спроса на механические счетные устройства и не позволил наладить их серийный выпуск.

Такое явление, как давление присутствует в нашей жизни почти везде, и нельзя ни упомянуть о известном французском ученом, Блезе Паскале, который придумал единицу измерения давления – 1 Па. В этой статье мы хотим рассказать про выдающегося физика, математика, философа и писателя, который родился 19 июня 1623 года во французском городе Овернь (в те времена Клермон-Ферране), а умер в 1662 году – 19 августа.

Блез Паскаль (1623-1662 г.ж.)

Открытия Паскаля до сегодняшнего дня служат человечеству в сфере гидравлики и вычислительной техники. Также Паскаль проявил себя в формировании литературного французского языка.

Блез Паскаль появился на свет в семье потомственного дворянина и с самого рождения имел слабое здоровье, на что врачи удивлялись, как он вообще выжил. Из-за слабого здоровья отец иногда запрещал ему заниматься геометрией, так как имел опасение за состояние здоровья, которое может ухудшиться вследствие умственного перенапряжения. Но такие ограничения не заставили Блеза отказаться от науки и уже в раннем возрасте он доказал первые теоремы Евклида. Но когда отцу стало известно, что его сын сумел доказать 32 теорему, то не смог запретить ему изучать математику.

Арифмометр Паскаля.

В 18 лет Паскаль наблюдал, как его отец составляет отчет по налогам целой области (Нормандия). Это было скучнейшее и монотонное занятие, которое отнимало массу времени и сил, так как расчеты производились в столбик. Блез решил помочь отцу и около двух лет работал над созданием вычислительной машины. Уже в 1642 году на свет появился первый калькулятор.

Арифмометр Паскаля был создан по принципу античного таксометра – устройства, которое предназначалось для расчета расстояния, только немного видоизменённого. Вместо 2 колес использовалось уже 6, что позволило выполнять расчеты с шестизначными числами.

Арифмометр Паскаля.

В данной вычислительной машине колеса могли вращаться только в одном направлении. Производить суммирующие операции на такой машине было легко. Например, нам необходимо высчитать сумму 10+15=? Для этого необходимо вращать колесо пока не выставится значение первого слагаемого 10, потом крутим это же колесо до значения 15. При этом указатель сразу же показывает 25. То есть подсчет происходит в полуавтоматическом режиме.

Вычитание на такой машине невозможно произвести, так как колеса не вращаются в обратном направлении. Делить и умножать арифмометр Паскаля не умел. Но даже в таком виде и с такими функциональными возможностями эта машина была полезной и ей с радостью пользовался Паскаль-старший. Машина производила быстрые и безошибочные математические действия по суммированию. Паскаль-старший даже вложил деньги в производство паскалин. Но это принесло только разочарование, так как большинство бухгалтеров и счетоводов не хотели принимать такое полезное изобретение. Они считали, что при введении таких машин в действие им придётся искать другую работу. В 18 столетии арифмометры Паскаля широко использовались моряками, артиллеристами и ученными для арифметических сложений. Это изобретение саботировалось со стороны финансистов более 200 лет.

Изучение атмосферного давления.

В свое время Паскаль видоизменил опыт Эванджелиста Торричелли и сделал вывод, что над жидкостью в трубке должна образоваться пустота. Он купил дорогостоящие стеклянные трубки и проводил опыты без использования ртути. Вместо неё он применил воду и вино. В ходе экспериментов выяснилось, что вино имеет свойство подыматься выше, чем вода. Декорт в свое время доказывал, что над жидкостью должны располагаться ее пары. Если вино испаряется быстрее воды, то накопившиеся пары вина должны препятствовать поднятию жидкости в трубке. Но на практике предположения Декарта были опровергнуты. Паскаль предположил, что атмосферное давление воздействует одинаково на тяжелые и легкие жидкости. Данное давление способно затолкнуть в трубку больше вина, так как оно легче.

Опыты Эванджелиста Торричелли

Паскаль, который долгое время экспериментировал с водой и вином, установил, что высота подъема жидкостей меняется в зависимости от погодных условий. В 1647 году было сделано открытие, которое свидетельствуют о том, что атмосферное давление и показания барометра зависят от погоды.
Чтобы окончательно доказать то, что высота подъёма столбика жидкости в трубке Торричелли зависит от изменения атмосферного давления, Паскаль просит своего родственника подняться с трубкой на гору Пюи-де-Дом. Высота этой горы составляет 1465 метров над уровнем моря и имеет на вершине меньшее давление, чем у ее подножья.

Так Паскаль сформулировал свой закон: на одном расстоянии от центра Земли – на горе, равнине или водоеме атмосферное давление имеет одинаковое значение.

Теория вероятности.

С 1650 года Паскаль с трудом передвигается, так как был поражен частичным параличом. Врачи считали, что его болезнь связана с нервами и ему необходимо встряхнуться. Паскаль стал посещать игорные дома и одно из заведений имело название «Папе-Рояль», которым владел герцог Орлеанский.

В этом казино судьба свела Паскаля с шевалье де Мере, который обладал необычными математическими способностями. Он поведал Паскалю, что при бросании кости в подряд 4 раза, выпадение 6 составляет более 50%. Мере делая небольшие ставки в игре выигрывал, используя свою систему. Такая система работала, только при бросании одной кости. При переходе на другой стол, где производился бросок пары костей, система Мере не приносила прибыль, а наоборот только убытки.

Такой подход натолкнул Паскаля на мысль, в которой он захотел рассчитать вероятность с математической точностью. Это был настоящий вызов судьбе. Паскаль решил решить данную задачу при помощи математического треугольника, который был известен даже в древности (например, Омар Хайям упоминал о нем), который потом получил название – треугольник Паскаля. Эта пирамида, состоящая из чисел, каждое из которых равно суме пары чисел расположенных над ним.

Блез Паскаль оставил заметный след в истории человечества. Ученый работал в самых разных областях знаний. Он по праву считается дним из создателей математического анализа, проектной геометрии, теории вероятностей, гидростатики (физикам и не только им известен закон Паскаля, согласно которому изменения давления в покоящейся жидкости передается в остальные точки без изменений), создателем механического счетного устройства – “паскалева колеса”.

Блез Паскаль появился на свет летом 1623 года во французском городке Клермон-Ферран в семье председателя налогового управления Этьена Паскаля. Жизнь не баловала Блеза. Еще в детстве, когда он был совсем маленьким, мальчик заболел непонятной нервной болезнью. Со слов окружающих можно предположить, что он был укушен бешеной собакой: мальчик панически боялся воды, бился в судорогах, наконец, затих совершенно бесчувственный и казался мертвым. Если так, непонятно, как он выжил. А он не только выжил, но и довольно скоро оправился от недуга.

В 1631 году у Паскаля умирает мама и после этого его семья переезжает в Париж. Блез рос одарённым ребёнком. С малых лет мальчик увлекался точными науками, особую роль в этом сыграло воспитание: поскольку отец Блеза сам неплохо разбирался в математике, дружил с Мареном Мерсенном и Жераром Дезаргом, однажды открыл и исследовал неизвестную ранее алгебраическую кривую, с тех пор получившую название “улитка Паскаля”.

Именно отец подарил юному Блезу “Начала” Евклида. Мальчик прочел всю книгу, ни разу не попросив объяснения. После этого отец стал давать ему другие сочинения по математике. Блезу также разрешили принимать участие в собраниях математического кружка – “четвергов Мерсенна”, где он ближе познакомился с видными математиками того времени. Там же впервые он сделал доклад о теореме, носящей имя Паскаля. Она и сегодня является составной частью всех курсов геометрии.

Уже в шестнадцатилетнем возрасте Паскаль сформулировал теорему о шестиугольнике, вписанном в коническое сечение (теорема Паскаля). Известно, что позже он получил из своей теоремы около 400 следствий.

Через несколько лет Блэз Паскаль создал механическое вычислительное устройство – суммирующую машину, которая позволяла складывать числа в десятичной системе счисления. Сын сборщика налогов, Паскаль задумал построить вычислительное устройство, наблюдая бесконечные утомительные расчеты своего отца. В 1642 году, когда Паскалю было 19 лет, он начал работать над созданием суммирующей машины. Веря, что это изобретение принесет удачу, отец с сыном вложили в создание своего устройства большие деньги. Но против счетного устройства Паскаля выступили клерки - они опасались потерять из-за него работу, а также работодатели, считавшие, что лучше нанять дешевых счетоводов, чем покупать дорогую машину.

В этой машине цифры шестизначного числа задавались путем соответствующих поворотов дисков (колесиков) с цифровыми делениями, а результат операции можно было прочитать в шести окошках – по одному на каждую цифру. Диски были механически связаны, при сложении учитывался перенос единицы в следующий разряд. Диск единиц был связан с диском десятков, диск десятков – с диском сотен и т.д. Если при повороте диск проходил через ноль, то следующий диск поворачивался на единицу вперед. Другие операции выполнялись при помощи довольно неудобной процедуры повторных сложений, и в этом заключался основной недостаток машины. Однако изобретенный Паскалем принцип связанных колес явился основой, на которой строилось большинство вычислительных устройств на протяжении следующих трех столетий.

Паскаль продолжал работать над усовершенствованием машины, в частности пытался сконструировать устройство для извлечения квадратного корня. Работа продолжалась вплоть до 1652 года. Еще через несколько месяцев он отправит свою машину юной шведской королеве Христине, славившейся умом, эксцентричностью и ученостью, а затем навсегда отойдет от занятий вычислительной техникой.


"Арифмометр" Блеза Паскаля

Одну из первых удачных моделей своей машины Паскаль преподнес канцлеру Сегье. Покровительство Пьера Сегье помогло ученому получить 22 мая 1649 года королевскую привилегию, которая устанавливала его приоритет в изобретении и закрепляла за ним право производить и продавать машины. С 1646 по 1649 год Паскаль изготовил некоторое количество машин, и часть их продал.

Сохранилось семь арифметических машин, четыре из которых находятся в Парижском музее искусств и ремесел, одна - в музее города Клермона, две - в частных коллекциях. Одна из машин Парижского музея удостоверена собственноручной записью Паскаля и датой изготовления (1652): «Еstо ргоbаti instrumenti sуmbоium hос: Вlаsius Раsсаi агуеnus, invеntог, 20 mау 1652».

Машина Паскаля получила широкое применение: во Франции она оставалась в употреблении до 1799 г., а в Англии даже до 1971 года.

Впоследствии были созданы счетные (вычислительные), машины, несравненно более дорогие и более сложные, нежели машина Блеза Паскаля; машины, пользу которых для человечества трудно переоценивать... Однако их начало следует искать в скромном паскалевском колесе.

В 24 года Блеза Паскаля парализовало. Он с трудом передвигался на костылях, но продолжал работать. Ах, как мешали ему эти костыли! Ведь теперь он задумал до конца решить загадку атмосферного давления и наконец-то поставить точку в многолетних трудах Галилея, Торричелли и Рея. Сначала он соглашался с древней схоластической аксиомой: “Да, очевидно, природа действительно не терпит пустоты”. Но, докопавшись до сути, ученый понял, что “отвращение природы к пустоте” - пустой набор слов. Если это правда, “отвращение” на вершине горы и у ее подножия должно быть одинаковым, если оно будет разным - тогда дело в давлении атмосферы. Но как поставить такой эксперимент, если ноги отказались служить ему?!

В ноябре 1647 года Паскаль пишет мужу своей сестры подробное письмо, в котором просит его поставить задуманный им опыт на горе Пюи-де-Дом (высота 1467 метров). Лишь в сентябре следующего года сгорающий от любопытства Блез получил точный ответ: давление на вершине горы меньше, чем у ее подножия. В Париже он сам повторяет этот опыт в башне на улице Риволи. Результаты своих исследований Паскаль изложил в книге “Новые опыты, касающиеся пустоты” и отныне вошёл в историю физики, установив основной закон гидростатики и подтвердил предположение Торричелли о существовании атмосферного давления.

Казалось бы, дух этого необыкновенного человека победил его слабую плоть, но вдруг в 25-летнем Блезе Паскале наступает резкий перелом. Он оставляет все занятия математикой и физикой, читает только богословские книги, становится угрюмым и замкнутым.

Чем же можно объяснить причины столь резкой перемены? Возможно, тут сыграла свою роль и расшатанная нервная система, и частые жестокие головные боли, и модное учение янсенистов, убеждавших его, что отказ от науки будет жертвой богу, который послал ему физические страдания. Повлияла на него и смерть отца в 1651 году, и пострижение любимой младшей сестры Жаклин в монахини.

В 1655 году Паскаль поселяется рядом с сестрой в монастыре, где пишет “Письма к провинциалу” - блестящий образец французской литературы, содержащий яростную критику иезуитов и пропаганду истинных моральных ценностей.

С 1658 года здоровье Блеза Паскаля быстро ухудшается. Христиан Гюйгенс, посетивший Паскаля в 1660 году, увидел перед собой глубокого старика, хотя тому было всего 37 лет. Врачи запретили ему любые умственные нагрузки, но больной умудрялся записывать всё, что приходило ему в голову, буквально на любом подручном материале.

Блез Паскаль умер 19 августа 1662 года, исповедовавшись перед смертью у священника. Последними словами его были: “Да не покинет меня Бог никогда!” Великий ученый захоронен в парижской церкви Сент-Этьен-дю-Мон (St-Etienne-du-Mont).

Вскрытие тела не помогло установить точную причину смерти Блеза Паскаля, однако очевидные поражения органов брюшной полости указывали на туберкулез легких и рак желудка. Головные боли, всю жизнь мучавшие Паскаля, были вызваны органическими поражениями некоторых участков головного мозга.

После смерти Блеза друзья-янсенисты нашли целые пачки таких записок, перевязанных бечёвкой, которые были ими расшифрованы и изданы книгой под названием “Мысли”. Главная тема этих записок – взаимоотношения Бога и человека, а также апологетика христианства в янсенистском понимании. “Мысли” вошли в классику французской литературы, а Паскаль стал единственным в новой истории великим литератором и великим математиком одновременно.

В честь Блеза Паскаля названы кратер на Луне, единица измерения давления системы СИ, язык программирования Pascal.


Первая действующая модель счетной суммирующей машины была создана в 1642 г. знаменитым французским ученым Блезом Паскалем . Для выполнения арифметических операций Паскаль заменил поступательное перемещение костяшек в абаковидных инструментах на вращательное движение оси (колеса), так что в его машине сложению чисел соответствовало сложение пропорциональных им углов.

Принцип действия счетчиков в машине Паскаля прост. В основе его лежит идея обыкновенной зубчатой пары - двух зубчатых колес, сцепленных между собой. Для каждого разряда имеется колесо (шестеренка) с десятью зубцами. При этом каждый из десяти зубцов представляет одну из цифр от 0 до 9. Такое колесо получило название "десятичное счетное колесо".

С прибавлением в данном разряде каждой единицы счетное колесо поворачивается на один зубец, т. е. на одну десятую оборота. Требуемую цифру можно установить, поворачивая колесо до тех пор, пока зубец, представляющий эту цифру, не встанет против указателя или окошка. Например, три колеса показывают число 285. Мы можем прибавить к этому числу 111, повернув каждое колесо вправо на один зубец. Тогда против окошек встанут соответственно цифры 3, 9, 6, образуя сумму чисел 285 и 111, т. е. 396. Задача теперь в том, как осуществить перенос десятков. Это одна из основных проблем, которую пришлось решать Паскалю. Наличие такого механизма позволило бы вычислителю не тратить внимание на запоминание переноса из младшего разряда в старший.

Машина, в которой сложение выполняется механически, должна сама определять, когда нужно производить перенос. Допустим, что мы ввели в разряд девять единиц. Счетное колесо повернется на 9/10 оборота. Если теперь прибавить еще одну единицу, колесо "накопит" уже десять единиц. Их надо передать в следующий разряд. Это и есть передача десятков. В машине Паскаля ее осуществляет удлиненный зуб. Он сцепляется с колесом десятков и поворачивает его на 1/10 оборота. В окошке счетчика десятков появится единица - один десяток, а в окошке счетчика единиц снова покажется нуль.

Механизм переноса действует только в одном направлении вращения колес и не допускает выполнения операции вычитания вращением колес в обратную сторону. Поэтому Паскаль заменил операцию вычитания операцией сложения с десятичным дополнением. Пусть, например, необходимо из числа 285 вычесть 11. Метод дополнения приводит к действиям: 285-11=285-(100-89)=285+89-100=274. Нужно только не забывать вычесть 100. Но на машине, имеющей определенное число разрядов, об этом можно не заботиться. Вот как будет выполняться эта операция в шестиразрядной машине: 000285+999989=1000274; при этом единица слева выпадает, так как переносу из шестого разряда некуда деться.

Машина Паскаля была практически первым суммирующим механизмом, построенным на совершенно новом принципе, при котором считают колеса. Она производила на современников огромное впечатление, о ней слагались легенды, ей посвящались поэмы. Все чаще с именем Паскаля появлялась характеристика "французский Архимед". До нашего времени дошло только 8 машин Паскаля, из которых одна является 10-разрядной.

Труды Паскаля оказали заметное влияние на весь дальнейший ход развития вычислительной техники. Они послужили основой для создания большого количества всевозможных систем суммирующих машин.