ГИА. Квадратичная функция

Квадратичной функцией называется функция вида:
y=a*(x^2)+b*x+c,
где а - коэффициент при старшей степени неизвестной х,
b - коэффициент при неизвестной х,
а с - свободный член.
Графиком квадратичной функции является кривая, называемая параболой. Общий вид параболы представлен на рисунке ниже.

Рис.1 Общий вид параболы.

Есть несколько различных способов построения графика квадратичной функции. Мы рассмотрим основной и самый общий из них.

Алгоритм построения графика квадратичной функции y=a*(x^2)+b*x+c

1. Построить систему координат, отметить единичный отрезок и подписать координатные оси.

2. Определить направление ветвей параболы (вверх или вниз).
Для этого надо посмотреть на знак коэффициента a. Если плюс - то ветви направлены вверх, если минус - то ветви направлены вниз.

3. Определить координату х вершины параболы.
Для этого нужно использовать формулу Хвершины = -b/2*a.

4. Определить координату у вершины параболы.
Для этого подставить в уравнение Увершины = a*(x^2)+b*x+c вместо х, найденное в предыдущем шаге значение Хвершины.

5. Нанести полученную точку на график и провести через неё ось симметрии, параллельно координатной оси Оу.

6. Найти точки пересечения графика с осью Ох.
Для этого требуется решить квадратное уравнение a*(x^2)+b*x+c = 0 одним из известных способов. Если в уравнение не имеет вещественных корней, то график функции не пересекает ось Ох.

7. Найти координаты точки пересечения графика с осью Оу.
Для этого подставляем в уравнение значение х=0 и вычисляем значение у. Отмечаем эту и симметричную ей точку на графике.

8. Находим координаты произвольной точки А(х,у)
Для этого выбираем произвольное значение координаты х, и подставляем его в наше уравнение. Получаем значение у в этой точке. Нанести точку на график. А также отметить на графике точку, симметричную точке А(х,у).

9. Соединить полученные точки на графике плавной линией и продолжить график за крайние точки, до конца координатной оси. Подписать график либо на выноске, либо, если позволяет место, вдоль самого графика.

Пример построения графика

В качестве примера, построим график квадратичной функции заданной уравнением y=x^2+4*x-1
1. Рисуем координатные оси, подписываем их и отмечаем единичный отрезок.
2. Значения коэффициентов а=1, b=4, c= -1. Так как а=1, что больше нуля ветви параболы направлены вверх.
3. Определяем координату Х вершины параболы Хвершины = -b/2*a = -4/2*1 = -2.
4. Определяем координату У вершины параболы
Увершины = a*(x^2)+b*x+c = 1*((-2)^2) + 4*(-2) - 1 = -5.
5. Отмечаем вершину и проводим ось симметрии.
6. Находим точки пересечения графика квадратичной функции с осью Ох. Решаем квадратное уравнение x^2+4*x-1=0.
х1=-2-√3 х2 = -2+√3. Отмечаем полученные значения на графике.
7. Находим точки пересечения графика с осью Оу.
х=0; у=-1
8. Выбираем произвольную точку B. Пусть она имеет координату х=1.
Тогда у=(1)^2 + 4*(1)-1= 4.
9. Соединяем полученные точки и подписываем график.

На уроках математики в школе Вы уже познакомились с простейшими свойствами и графиком функции y = x 2 . Давайте расширим знания по квадратичной функции .

Задание 1.

Построить график функции y = x 2 . Масштаб: 1 = 2 см. Отметьте на оси Oy точку F (0; 1/4). Циркулем или полоской бумаги измерьте расстояние от точки F до какой-нибудь точки M параболы. Затем приколите полоску в точке M и поверните ее вокруг этой точки так, чтобы она стала вертикальной. Конец полоски опустится немного ниже оси абсцисс (рис. 1) . Отметьте на полоске, насколько она выйдет за ось абсцисс. Возьмите теперь другую точку на параболе и повторите измерение еще раз. Насколько теперь опустился край полоски за ось абсцисс?

Результат: какую бы точку на параболе y = x 2 вы не взяли, расстояние от этой точки до точки F(0; 1/4) будет больше расстояния от той же точки до оси абсцисс всегда на одно и то же число – на 1/4.

Можно сказать иначе: расстояние от любой точки параболы до точки (0; 1/4) равно расстоянию от той же точки параболы до прямой y = -1/4. Эта замечательная точка F(0; 1/4) называется фокусом параболы y = x 2 , а прямая y = -1/4 – директрисой этой параболы. Директриса и фокус есть у каждой параболы.

Интересные свойства параболы:

1. Любая точка параболы равноудалена от некоторой точки, называемой фокусом параболы, и некоторой прямой, называемой ее директрисой.

2. Если вращать параболу вокруг оси симметрии (например, параболу y = x 2 вокруг оси Oy), то получится очень интересная поверхность, которая называется параболоидом вращения.

Поверхность жидкости во вращающемся сосуде имеет форму параболоида вращения. Вы можете увидеть эту поверхность, если сильно помешаете ложечкой в неполном стакане чая, а потом вынете ложечку.

3. Если в пустоте бросить камень под некоторым углом к горизонту, то он полетит по параболе (рис. 2).

4. Если пересечь поверхность конуса плоскостью, параллельной какой-либо одной его образующей, то в сечении получится парабола (рис. 3) .

5. В парках развлечений иногда устраивают забавный аттракцион «Параболоид чудес». Каждому, из стоящих внутри вращающегося параболоида, кажется, что он стоит на полу, а остальные люди каким-то чудом держаться на стенках.

6. В зеркальных телескопах также применяют параболические зеркала: свет далекой звезды, идущий параллельным пучком, упав на зеркало телескопа, собирается в фокус.

7. У прожекторов зеркало обычно делается в форме параболоида. Если поместить источник света в фокусе параболоида, то лучи, отразившись от параболического зеркала, образуют параллельный пучок.

Построение графика квадратичной функции

На уроках математики вы изучали получение из графика функции y = x 2 графиков функций вида:

1) y = ax 2 – растяжение графика y = x 2 вдоль оси Oy в |a| раз (при |a| < 0 – это сжатие в 1/|a| раз, рис. 4 ).

2) y = x 2 + n – сдвиг графика на n единиц вдоль оси Oy, причем, если n > 0, то сдвиг вверх, а если n < 0, то вниз, (или же можно переносить ось абсцисс).

3) y = (x + m) 2 – сдвиг графика на m единиц вдоль оси Ox: если m < 0, то вправо, а если m > 0, то влево, (рис. 5) .

4) y = -x 2 – симметричное отображение относительно оси Ox графика y = x 2 .

Подробнее остановимся на построении графика функции y = a(x – m) 2 + n .

Квадратичную функцию вида y = ax 2 + bx + c всегда можно привести к виду

y = a(x – m) 2 + n, где m = -b/(2a), n = -(b 2 – 4ac)/(4a).

Докажем это.

Действительно,

y = ax 2 + bx + c = a(x 2 + (b/a) x + c/a) =

A(x 2 + 2x · (b/a) + b 2 /(4a 2) – b 2 /(4a 2) + c/a) =

A((x + b/2a) 2 – (b 2 – 4ac)/(4a 2)) = a(x + b/2a) 2 – (b 2 – 4ac)/(4a).

Введем новые обозначения.

Пусть m = -b/(2a) , а n = -(b 2 – 4ac)/(4a) ,

тогда получим y = a(x – m) 2 + n или y – n = a(x – m) 2 .

Сделаем еще замены: пусть y – n = Y, x – m = X (*).

Тогда получим функцию Y = aX 2 , графиком которой является парабола.

Вершина параболы находится в начале координат. X = 0; Y = 0.

Подставив координаты вершины в (*), получаем координаты вершины графика y = a(x – m) 2 + n: x = m, y = n.

Таким образом, для того, чтобы построить график квадратичной функции, представленной в виде

y = a(x – m) 2 + n

путем преобразований, можно действовать следующим образом:

a) построить график функции y = x 2 ;

б) путем параллельного переноса вдоль оси Ox на m единиц и вдоль оси Oy на n единиц – вершину параболы из начала координат перевести в точку с координатами (m; n) (рис. 6) .

Запись преобразований:

y = x 2 → y = (x – m) 2 → y = a(x – m) 2 → y = a(x – m) 2 + n.

Пример.

С помощью преобразований построить в декартовой системе координат график функции y = 2(x – 3) 2 2.

Решение.

Цепочка преобразований:

y = x 2 (1) → y = (x – 3) 2 (2) → y = 2(x – 3) 2 (3) → y = 2(x – 3) 2 – 2 (4) .

Построение графика изображено на рис. 7 .

Вы можете практиковаться в построении графиков квадратичной функции самостоятельно. Например, постройте в одной системе координат с помощью преобразований график функции y = 2(x + 3) 2 + 2. Если у вас возникнут вопросы или же вы захотите получить консультацию учителя, то у вас есть возможность провести бесплатное 25-минутное занятие с онлайн репетитором после регистрации . Для дальнейшей работы с преподавателем вы сможете выбрать подходящий вам тарифный план.

Остались вопросы? Не знаете, как построить график квадратичной функции?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Данный урок по алгебре проводится как повторительно-обощающий при подготовке к ГИА в 9 классе. Это урок комплексного применения знаний. На уроке должны быть сформированы основные понятия о квадратичной функции, ее свойства, график. Учащиеся должны знать определение квадратичной функции, уметь выполнять построение графика квадратичной функции, его преобразование и применять данные знания при решении кваратных неравенств

Скачать:


Предварительный просмотр:

МОУ « СОШ №3 г.Ершова Саратовской области»

9 класс.

Тема: «Квадратичная функция, её график и свойства»

Девиз урока: «Трудное сделать легким, легкое привычным, привычное приятным»

Учитель: Е.И.Кормилина

2010 – 2011 учебный год.

Квадратичная функция, её свойства и график.

Тип урока: Урок комплексного применения знаний.

Цели урока:

  1. Выявить степень сформированности у учащихся понятия квадратичной функции, её свойств для решения неравенств, особенностей её графика.
  2. Создать условия для формирования умения анализировать, сравнивать, классифицировать графики квадратичных функций.
  3. Продолжить развитие культуры построения графика квадратичной функции.
  4. Воспитывать чувство товарищества, деликатности и дисциплинированности.

Логика урока:

  1. Актуализация знаний
  2. Повторение
  3. Показ образца применения комплекса знаний
  4. Самостоятельное применение знаний
  5. Контроль, самоконтроль
  6. Коррекция

Структура урока:

  1. Организационный
  2. Актуализация
  3. Применение знаний, умений и навыков

4. Контроль, самоконтроль

5. Коррекция

6. Информация о домашнем задании

7. Подведение итогов

8. Рефлексия


Подписи к слайдам:

Квадратичная функция, ее график и свойства Наш девиз: «Трудное сделать легким, легкое привычным, привычное приятным!»

y x 0 График функции y = a x , 2 при a=1 при a= -1 1 2 3 4 5 6 Х -3 -2 -1 0 1 2 3 y - 9 - 4 - 1 0 - 1 - 4 - 9 -6 -5-4-3-2-1 1 4 9 -9 -4

Преобразование графика квадратичной функции

Построение графиков функций у=х 2 и у=х 2 + m.

0 m Х У m 1 1 у=х 2 + m, m>0

0 Х У m 1 1 m у=х 2 + m, m

Построение графиков функций у=х 2 и у=(х+ l) 2 .

0 l l Х У 1 1 у= (х + l) 2 , l >0

0 l l Х У 1 1 у= (х + l) 2 , l

Постройте в одной координатной плоскости графики функций:

Найти координаты вершины параболы: У=2(х-4)² +5 У=-6(х-1)² У = -х²+12 У= х²+4 У= (х+7)² - 9 У=6 х² (4;5) (1;0) (0;12) (0;4) (-7;-9) (0;0)

График квадратичной функции, его свойства

Квадратичной функцией называется функция, которую можно задать формулой вида y=ax² + bx+c , где х - независимая переменная, a, b и с -некоторые числа (причём а≠0). Например: у = 5х ² +6х+3, у = -7х ² +8х-2, у = 0,8х ² +5, у = ¾ х ² -8х, у = -12х ² квадратичные функции

Графиком квадратичной функции является парабола, ветви которой направлены вверх (если а >0) или вниз (если а 0). у= -7 х ² -х+3 – графиком является парабола, ветви которой направлены вниз (т.к. а=-7, а

Определить координату вершины параболы по формулам: Отметить эту точку на координатной плоскости. Через вершину параболы начертить ось симметрии параболы Найти нули функции и 0тметить их на числовой прямой Найти координаты двух дополнительных точек и симметричных им Провести кривую параболы. Алгоритм решения

Постройте график функции у=2х ² +4х-6, опишите его свойства

Х У 1 1 -2 2 3 -1 1. D(y) = R 2. у=0, если х= 1; -3 3. у > 0, если х 4. у ↓ , если х у , если х 5. у наим = -8 , если х= -1 у наиб – не существует. 6. Е (y): Проверь себя: у

Решение квадратного неравенства с помощью графика квадратичной функции

Определение: Неравенство, левая часть которого есть многочлен второй степени, а правая- нуль, называется неравенством второй степени. Все квадратные неравенства могут быть приведены к одному из следующих видов: 1) ах 2 + bx + c >0; 2) ах 2 + bx + c

Какие из неравенств вы бы назвали неравенствами второй степени: 1) 6х 2 -13х>0; 2) x 2 -3 x -14>0; 3) (5+ x)(x -4)>7; 4) ; 5) 6) 8 x 2 >0; 7) (x -5) 2 -25>0;

Какие из чисел являются решениями неравенства? 1 -3 0 -1 5 -4 -2 0,5 ? ? ? ? ? ? ? ?

Назовите число корней уравнения a x 2 + b x+ c =0 и знак коэффициента а, если график соответствующей квадратичной функции расположен следующим образом: е а б в г д

Назовите промежутки знакопостоянства функции, если её график расположен указанным образом: Ι вариант. Ι І вариант. в б а а в б

Назовите промежутки знакопостоянства функции, если её график расположен указанным образом: Ι вариант f(x)>0 при x Є R f(x) 0 при x Є (-∞ ;1) U (2,5;+∞); f(x)

Назовите промежутки знакопостоянства функции, если её график расположен указанным образом: Ι вариант f(x)>0 при x Є (-∞ ;-3) U (-3;+∞) f(x) 0 при x Є (-∞ ;0,5) U (0,5;+∞) f(x)

Назовите промежутки знакопостоянства функции, если её график расположен указанным образом Ι вариант f(x)>0 при x Є (-∞ ;-4) U (3;+∞); f(x) 0 __________ ; f(x)

Алгоритм решения неравенств второй степени с одной переменной 5х 2 +9х-2 0 (a x 2 + b x+ c 0 (y

Алгоритм решения неравенств второй степени с одной переменной 5х 2 +9х-2 0 (a x 2 + b x+ c 0 (y 0 (y

В таблице 1 найдите верное решение неравенства 1 , в таблице 2 - решение неравенства 2: 1 . 2 . Таблица 1 а в с d а в с d Таблица 2

В таблице 1 найдите верное решение неравенства 1 , в таблице 2- решение неравенства 2: 1 . 2 . Таблица 1 а в с d а в с d Таблица 2

В таблице 1 найдите верное решение неравенства 1 , в таблице 2- решение неравенства 2: 1 . 2 . Таблица 1 а в с d а в с d Таблица 2

Итог урока При решении данных заданий нам удалось систематизировать знания о применении квадратичной функции. Математика- это содержательное, увлекательное и доступное поле деятельности, дающее ученику богатую пищу для ума. Свойства квадратичной функции лежат в основе решения квадратных неравенств. Многие физические зависимости выражаются квадратичной функцией; например, камень, брошенный вверх со скоростью v 0, находится в момент времени t на расстоянии s (t)=- q \2 t 2+ v 0 t от земной поверхности (здесь q - ускорение силы тяжести); количество тепла Q , выделяемое при прохождении тока в проводнике с сопротивлением R , выражается через силу тока I формулой Q = RI 2. Знания свойств квадратичной функции позволяют рассчитать дальность полета тела, брошенного вертикально вверх или под некоторым углом. Этим пользуются в оборонной промышленности.

Незаконченное предложение Задание: закончить одно из трех предложений, которое больше других соответствует вашему состоянию. “ Выполнять задания и решать задачи мне трудно, так как …” “ Выполнять задания и решать задачи мне легко, так как …” “ Выполнять задания и решать задачи для меня занятие приятное и интересное, потому что…”

Домашнее задание Учебник №142; №190


Задания на свойства и графики квадратичной функции вызывают, как показывает практика, серьезные затруднения. Это довольно странно, ибо квадратичную функцию проходят в 8 классе, а потом всю первую четверть 9-го класса "вымучивают" свойства параболы и строят ее графики для различных параметров.

Это связано с тем, что заставляя учащихся строить параболы, практически не уделяют времени на "чтение" графиков, то есть не практикуют осмысление информации, полученной с картинки. Видимо, предполагается, что, построив десятка два графиков, сообразительный школьник сам обнаружит и сформулирует связь коэффициентов в формуле и внешний вид графика. На практике так не получается. Для подобного обобщения необходим серьезный опыт математических мини исследований, которым большинство девятиклассников, конечно, не обладает. А между тем, в ГИА предлагают именно по графику определить знаки коэффициентов.

Не будем требовать от школьников невозможного и просто предложим один из алгоритмов решения подобных задач.

Итак, функция вида y = ax 2 + bx + c называется квадратичной, графиком ее является парабола. Как следует из названия, главным слагаемым является ax 2 . То есть а не должно равняться нулю, остальные коэффициенты (b и с ) нулю равняться могут.

Посмотрим, как влияют на внешний вид параболы знаки ее коэффициентов.

Самая простая зависимость для коэффициента а . Большинство школьников уверенно отвечает: " если а > 0, то ветви параболы направлены вверх, а если а < 0, - то вниз". Совершенно верно. Ниже приведен график квадратичной функции, у которой а > 0.

y = 0,5x 2 - 3x + 1

В данном случае а = 0,5

А теперь для а < 0:

y = - 0,5x2 - 3x + 1

В данном случае а = - 0,5

Влияние коэффициента с тоже достаточно легко проследить. Представим, что мы хотим найти значение функции в точке х = 0. Подставим ноль в формулу:

y = a 0 2 + b 0 + c = c . Получается, что у = с . То есть с - это ордината точки пересечения параболы с осью у. Как правило, эту точку легко найти на графике. И определить выше нуля она лежит или ниже. То есть с > 0 или с < 0.

с > 0:

y = x 2 + 4x + 3

с < 0

y = x 2 + 4x - 3

Соответственно, если с = 0, то парабола обязательно будет проходить через начало координат:

y = x 2 + 4x


Сложнее с параметром b . Точка, по которой мы будем его находить, зависит не только от b но и от а . Это вершина параболы. Ее абсцисса (координата по оси х ) находится по формуле х в = - b/(2а) . Таким образом, b = - 2ах в . То есть, действуем следующим образом: на графике находим вершину параболы, определяем знак ее абсциссы, то есть смотрим правее нуля (х в > 0) или левее (х в < 0) она лежит.

Однако это не все. Надо еще обратить внимание на знак коэффициента а . То есть посмотреть, куда направлены ветви параболы. И только после этого по формуле b = - 2ах в определить знак b .

Рассмотрим пример:

Ветви направлены вверх, значит а > 0, парабола пересекает ось у ниже нуля, значит с < 0, вершина параболы лежит правее нуля. Следовательно, х в > 0. Значит b = - 2ах в = -++ = -. b < 0. Окончательно имеем: а > 0, b < 0, с < 0.