Механизм реакции нуклеофильного присоединения. Реакции нуклеофильного присоединения (АN) к карбонильным соединениям

Для альдегидов и кетонов наиболее характерны реакции нуклеофильного присоединения A N .

Общее описание механизма нуклеофильного присоединения A N

Легкость нуклеофильной атаки по атому углерода карбонильной группы альдегида или кетона зависит от величины частичного

положительного заряда на атоме углерода, его пространственной доступности и кислотно-основных свойств среды.

С учетом электронных эффектов групп, связанных с карбонильным атомом углерода, величина частичного положительного заряда δ+ на нем в альдегидах и кетонах убывает в следующем ряду:

Пространственная доступность карбонильного атома углерода уменьшается при замене водорода более объемистыми органиче- скими радикалами, поэтому альдегиды более реакционноспособны, чем кетоны.

Общая схема реакций нуклеофильного присоединения A N к карбонильной группе включает нуклеофильную атаку по карбонильному атому углерода, за которой следует присоединение электрофила к атому кислорода.

В кислой среде активность карбонильной группы, как правило, увеличивается, поскольку вследствие протонирования атома кислорода на атоме углерода возникает положительный заряд. Кислотный катализ используют обычно тогда, когда атакующий нуклеофил обладает низкой активностью.

По приведенному выше механизму осуществляется ряд важных реакций альдегидов и кетонов.

Многие свойственные альдегидам и кетонам реакции протекают в условиях организма, эти реакции представлены в последующих разделах учебника. В настоящей главе будут рассмотрены наиболее важные реакции альдегидов и кетонов, которые в обзорном виде приведены на схеме 5.2.

Присоединение спиртов. Спирты при взаимодействии с альдегидами легко образуют полуацетали. Полуацетали обычно не выделяют из-за их неустойчивости. При избытке спирта в кислой среде полуацетали превращаются в ацетали.

Применение кислотного катализатора при превращении полуацеталя в ацеталь становится понятным из приведенного ниже механизма реакции. Центральное место в нем занимает образование карбо- катиона (I), стабилизированного за счет участия неподеленной пары электронов соседнего атома кислорода (+M-эффект группы С 2 Н 5 О).

Реакции образования полуацеталей и ацеталей обратимы, поэтому ацетали и полуацетали легко гидролизуются избытком воды в кислой среде. В щелочной среде полуацетали устойчивы, так как алкоксидион является более трудно уходящей группой, чем гидроксид-ион.

Образование ацеталей часто используется как временная защита альдегидной группы.

Присоединение воды. Присоединение воды к карбонильной группе - гидратация - обратимая реакция. Степень гидратации альдегида или кетона в водном растворе зависит от строения субстрата.

Продукт гидратации, как правило, в свободном виде выделить с помощью перегонки не удается, так как он разлагается на исходные компоненты. Формальдегид в водном растворе гидратирован более чем на 99,9%, ацетальдегид - приблизительно наполовину, ацетон практически не гидратирован.

Формальдегид (муравьиный альдегид) обладает способностью свертывать белки. Его 40% водный раствор, называемый формалином, применяется в медицине как дезинфицирующее средство и консервант анатомических препаратов.

Трихлороуксусный альдегид (хлораль) гидратирован полностью. Электроноакцепторная трихлорометильная группа настолько стабилизирует хлоральгидрат, что это кристаллическое вещество отщепляет воду только при перегонке в присутствии дегидратирующих веществ - серной кислоты и др.

В основе фармакологического эффекта хлоральгидрата СС1зСН(ОН)2 лежит специфическое действие на организм альдегидной группы, обусловливающее дезинфицирующие свойства. Атомы галогена усиливают ее действие, а гидратация карбонильной группы снижает токсичность вещества в целом.

Присоединение аминов и их производных. Амины и другие азотсодержащие соединения общей формулы NH2X (X = R, NHR) реагируют с альдегидами и кетонами в две стадии. Сначала образуются продукты нуклеофильного присоединения, которые затем вследствие неустойчивости отщепляют воду. В связи с этим данный процесс в целом классифицируют как реакцию присоединения-отщепления.

В случае первичных аминов получаются замещенные имины (их называют также основаниями Шиффа).

Имины - промежуточные продукты многих ферментативных процессов. Получение иминов проходит через стадию образования аминоспиртов, которые бывают относительно устойчивы, например при взаимодействии формальдегида с α-аминокислотами (см. 12.1.4).

Имины являются промежуточными продуктами получения аминов из альдегидов и кетонов путем восстановительного аминирования. Этот общий способ заключается в восстановлении смеси карбонильного соединения с аммиаком (или амином). Процесс протекает по схеме присоединения-отщепления с образованием имина, который затем восстанавливается в амин.

При взаимодействии альдегидов и кетонов с производными гидразина получаются гидразоны. Эту реакцию можно использовать для выделения альдегидов и кетонов из смесей и их хроматографической идентификации.

Основания Шиффа и другие подобные соединения легко гидролизуются водными растворами минеральных кислот с образованием исходных продуктов.

В большинстве случаев для реакций альдегидов и кетонов с азотистыми основаниями необходим кислотный катализ, ускоряющий дегидратацию продукта присоединения. Однако если слишком повысить кислотность среды, то реакция замедлится в результате превращения азотистого основания в нереакционноспособную сопряженную кислоту XNH3+.

Реакции полимеризации. Эти реакции свойственны в основном альдегидам. При нагревании с минеральными кислотами полимеры альдегидов распадаются на исходные продукты.

Образование полимеров можно рассматривать как результат нуклеофильной атаки атомом кислорода одной молекулы альдегида карбонильного атома углерода другой молекулы. Так, при стоянии формалина выпадает в виде белого осадка полимер формальдегида - параформ.

Нуклеофильное присоединение к алкинам инициируется под воздействием отрицательно заряженной частицы - нуклеофила . В общем случае, катализатором таких реакций являются основания. Общая схема первой стадии реакции нуклеофильного присоединения:

Типовые реакции нуклеофильного присоединения

· Характерным примером реакции нуклеофильного присоединения является Реакция Фаворского - присоединение спиртов в присутствии щелочей с образованием алкенильных эфиров:

· Первичные амины под действием оснований присоединяются к алкинам с образованием иминов :

По аналогии ацетилен реагирует с аммиаком, образуя этилиденимин :

При высокой температуре в присутствии катализатора имин дегидрируется и превращается в ацетонитрил:

· В среде очень сильных оснований (например: КОН+ДМСО) ацетилен реагирует с сероводородом, образуя дивинилсульфид :

Реакции радикального присоединения

В присутствии перекисей или других условиях, способствующих образованию свободных радикалов, присоединение к алкинам идет по радикальному механизму - против правила Марковникова(эффект Хараша):

По свободнорадикальному механизму* может протекать реакция алкинов с тиолами:

* - В присутствии оснований реакция идет по нуклеофильному механизму.

Аналогично происходит присоединение карбенов:

Реакции этинилирования

Реакциями этинилирования называют реакции увеличения углеродного скелета алкинов с сохранением тройной связи. Они могут протекать как по электрофильному, так и нуклеофильному механизму в зависимости от среды и условий реакции, характера субстрата, а также типа используемого катализатора.

Получение ацетиленовых спиртов

В присутствии сильных оснований алкины с концевой тройной связью способны присоединять карбонильные соединения с образованием спиртов (Реакция Фаворского):

Важнейшей реакцией из этой группы является присоединения формальдегида к ацетилену с образованием пропаргилового спирта и далее бутин-2-диола-1,4 * :

Получение ацетиленовых эфиров и кислот

Ацетиленовые кислоты или их эфиры можно получить по реакции Цужи :

Катализаторы: PdCl 2 , CuCl.

Реакции гидрирования

Гетерогенное гидрирование

Гидрирование алкинов водородом на гетерогенных катализаторах, как правило, приводит к образованию цис -присоединения . Катализаторами гидрирования служат Ni, Pd, Pt, а также оксиды или комплексы Ir, Ru, Rh и некоторых других металлов.



На первой стадии образуется алкен, который практически сразу же гидрируется до алкана:

Для остановки реакции на стадии получения алкена используют катализаторы Линдлара (Pd/PbO/CaCO 3) или борид никеля.

При гидрировании ацетилена на никель-кобальтовом катализаторе можно получить изобутилен:

Гомогенное гидрирование

Гомогенное гидрирование проводят в амидом натрия в жидком аммиаке или алюмогидридом лития в тетрагидрофуране. В ходе реакции образуются транс -алкены.

Гидроборирование

Алкины легко присоединяют диборан против правила Марковникова, образуя цис -алкенилбораны:

или окислить H 2 O 2 до альдегида или кетона .

Реакции нуклеофильного присоединения - реакции присоединения, в которых атаку на начальной стадии осуществляет нуклеофил - частица, заряженная отрицательно или имеющая свободную электронную пару.

На конечной стадии образующийся карбанион подвергается электрофильной атаке .

Несмотря на общность механизма различают реакции присоединения по связи углерод-углерод и углерод-гетероатом.

Реакции нуклеофильного присоединения более распространены для тройных, чем для двойных связей.

Реакции нуклеофильного присоединения по связи углерод-углерод

Нуклеофильное присоединение по кратной связи обычно двухстадийный процесс Ad N 2 - реакция бимолекулярного нуклеофильного присоединения:

Нуклеофильное присоединение по связи С=C встречается достаточно редко, и, как правило, если в соединении имеются электроноакцепторные заместители. Наибольшее значение имеет в этом классе реакция Михаэля:

Присоединение по тройной связи аналогично присоединению по связи С=C:


Реакции нуклеофильного присоединения по связи углерод-гетероатом Нуклеофильное присоединение по кратной связи углерод-гетероатом имеет механизм Ad N 2


Как правило, лимитирующей стадией процесса является нуклеофильная атака, электрофильное присоединение происходит быстро .

Иногда продукты присоединения вступают в реакцию отщепления, тем самым совокупно давая реакцию замещения:

Hуклеофильное присоединение по связи С=O очень распространено, что имеет большое практическое, промышленное и лабораторное значение.

Ацилирование ненасыщенных кетонов

Данный метод включает обработку субстрата альдегидом и цианид-ионом в полярном апротонном растворителе, таком, как ДМФ или Me 2 SO. Этот метод применим к a,b-ненасыщенным кетоном, сложным эфирам и нитрилам .

Конденсация сложных эфиров с кетонами


При конденсации сложных эфиров с кетонами выход?-дикетона невысок, около 40%, это объясняется побочной реакцией самоконденсации сложного эфира .

Гидролиз нитросоединений (Реакция Нефа)


Реакция Нефа - реакция кислотного гидролиза нитросоединений с образованием карбонильных соединений. Открыта в 1892 г. российским химиком М.И. Коноваловым и Дж. Нефом в 1894 г. Реакция Нефа заключается в гидролизе ацильных форм нитросоединений (нитроновых кислот), и поэтому в неё могут вступать первичные и вторичные алифатические и алициклические нитросоединения.

Реакция Нефа позволяет получить дикарбонильные соединения с выходом до 80-85 %. Для этого реакция проводится при pH=1, так как в менее кислой среде нитроновые кислоты изомеризуются обратно в нитросоединение со снижением конверсии нитросоединения, а в более кислой - повышается образование побочных продуктов. Данную реакцию проводят при t=0-5 0 C .

Взаимодействие кетонов с хлорангидридами в присутствии пиперидина


Хлорангидриды легко восстанавливаются до первичных спиртов под действием алюмогидрида лития. Но если енамин, полученный из кетона под действием пиперидина, вводить в реакцию с хлорангидридами, то после гидролиза первоначально полученной соли образуются b-дикетоны .

Химия альдегидов и кетонов определяется наличием карбонильной группы. Эта группа, во-первых, является местом нуклеофильной атаки и, во-вторых, увеличивает кислотность атомов водорода, связанных с -углеродным атомом. Оба эти эффекта вполне согласуются со строением карбонильной группы, и по сути дела оба обусловлены способностью кислорода принимать отрицательный заряд.

(В этой главе рассмотрены лишь простейшие типы реакций нуклеофильного присоединения. В гл. 27 будут обсуждены также реакции -водородных атомов.)

Карбонильная группа содержит двойную углерод-кислородную связь; поскольку подвижные -электроны сильно оттянуты к кислороду, углерод карбонильной группы является электронодефицитным центром, а кислород карбонильной группы - электроноизбыточным. Поскольку эта часть молекулы плоская, она относительно доступна для атаки сверху или снизу от этой плоскости в направлении, перпендикулярном к нему. Не удивительно, что эта доступная поляризованная группа очень реакционноспособна.

Какого рода реагенты будут атаковать такую группу? Поскольку важнейшая стадия в этих реакциях - образование связи с электронодефецитным (кислым) карбонильным углеродом, то карбонильная группа более всего склонна к взаимодействию с электроноизбыточными нуклеофильными реагентами, т. е. с основаниями. Типичными реакциями альдегидов и кетонов будут реакции нуклеофильного присоединения.

Как и следовало ожидать, наиболее верную картину реакционной способности карбонильной группы можно получить, если рассмотреть переходное состояние для присоединения нуклеофила. В реагенте атом углерода тригонален. В переходном состоянии атом углерода начинает принимать тетраэдрическую конфигурацию, которую он будет иметь в продукте; таким образом, связанные с ним группы несколько сближаются. Поэтому можно ожидать проявления некоторых пространственных затруднений, т. е. большие группы будут в большей степени препятствовать этому сближению, чем группы меньшего размера. Но переходное состояние в этой реакции будет относительно менее затрудненным, чем переходное состояние для, скажем, -реакции, в котором углерод связан с пятью атомами. Именно эта относительная незатрудненность и имеется в виду, когда говорят, что карбонильная группа доступна для атаки.

В переходном состоянии кислород начинает приобретать электроны и отрицательный заряд, который он будет иметь в конечном продукте. Именно тенденция кислорода приобретать электроны, точнее его способность нести отрицательный заряд, и является действительной причиной реакционноспособнасти карбонильной группы по отношению к нуклеофилам, (Полярность карбонильной группы не является причиной реакционноспособности, а лишь еще одним проявлением электроотрицательности кислорода.)

Альдегиды, как правило, легче вступают в реакцию нуклеофильного присоединения, чем кетоны. Это различие в реакционной способности согласуется с характером промежуточного состояния реакции и, по-видимому, объясняется совместным действием электронных и пространственных факторов. Кетон содержит вторую алкильную или арильную группу, а альдегид - атом водорода. Вторая арильная или алкильная группа кетона больше, чем атом водорода в альдегиде, и поэтому она в большей степени будет препятствовать увеличению пространственной затрудненности в переходном состоянии. Алкильная группа подает электроны и тем самым дестабилизует переходное состояние за счет усиления отрицательного заряда на кислороде.

Можно было ожидать, что арильная группа с ее электронооттягивающим индуктивным эффектом (задача 18.7, стр. 572) будет стабилизовать переходное состояние и тем самым ускорять реакцию; однако, по-видимому, этот эффект еще в большей степени стабилизует исходный кетон вследствие резонанса (вклад структуры I) и в результате дезактивирует кетон в рассматриваемой реакции.

а) Взаимодействие со спиртами. Альдегиды могут взаимодействовать с одной или двумя молекулами спирта, образуя соответственно полуацетали и ацетали.

Полуацеталями называют соединения, содержащие при одном атоме углерода гидроксильную и алкоксильную (OR) группы. Ацетали - это соединения, содержащие при одном атоме углерода две алкоксильные группы:

полуацеталь ацеталь

Реакцию получения ацеталей широко используют в органических синтезах для "защиты" активной альдегидной группы от нежелательных реакций:

Особенно важное значение подобные реакции имеют в химии углеводов.

б) Присоединение гидросульфитов служит для выделения альдегидов из смесей с другими веществами и для получения их в чистом виде, поскольку полученное сульфопроизводное очень легко гидролизуется:

R-CH=O + NaHSO 3 → R-CH(OH)-SO 3 Na.

в) реакция с теолами . альдегиды и кетоны взаимодействуют с тиолами в кислой среде, образуется дитиоацеталь:

Г) Присоединение циановодородной (синильной) кислоты:

СН 3 -СН=О + H-CN → СН 3 -СН(СN)-ОН.

Образовавшееся соединение содержит на один атом углерода больше, чем исходный альдегид или кетон, поэтому подобные реакции используются для удлинения углеродной цепи.

д) Присоединение реактива Гриньяра . В органическом синтезе чрезвычайно часто используется реактив Гриньяра - одно из простейших металлоорганических соединений.

При добавлении раствора галогеналкана в диэтиловом эфире к магниевой стружке легко происходит экзотермическая реакция, магний переходит в раствор и образуется реактив Гриньяра:

R-X + Mg → R-Mg-X ,

где R - алкильный или арильный радикал, X - галоген.

- Взаимодействием реактива Гриньяра с формальдегидом можно получить практически любой первичный спирт (кроме метанола). Для этого продукт присоединения реактива Гриньяра гидролизуют водой

Н 2 СО + RMgX → R-CH 2 -O-MgX → R-CH 2 -OH .

- При использовании любых других алифатических альдегидов могут быть получены вторичные спирты:

- Взаимодействием реактивов Гриньяра с кетонами получают третичные спирты :

(СН 3) 2 С=O + R-MgX → (СН 3) 2 С(R)-O-MgX → (СН 3) 2 С(R)-OH


16. Альдегиды и кетоны. Химические свойства: реакция конденсации, реакции с азотсодержащими соединениями. Отдельные представители и их применение.

Органические соединения, в молекуле которых имеется карбонильная группа С=О, называются карбонильными соединениями или оксосоединениями. Они делятся на две родственные группы - альдегиды и квтоны.

Реакция конденсации:

Альдольная конденсация

с соединениями обладающими СН кислотными свойствами альдегиды и кетоны способны вступать в различные реакции конденсации. соединения содержащие подвижный водород в этих реакциях выступает в качестве нуклеофильного реагента и называется мителеновой компонентой, а альдегиды и кетоны называются карбонильной компонентой. реакция альдольной конденсации протекает при действии на альдегид или кетон разбавленных щелочей. при этом одна молекула альдегида представляет собой метиленовую компоненту, другая карбоновую компоненту.

При действии основания альдегид отщепляет протон от α СН кислотного центра и превращается в карбанион. карбанион является сильным нуклеофилом и присоединяется к другой молекуле альдегида. стабилизация образующегося аниона происходит за счет отщепления протона от слабой кислоты.

Механизм:

Если альдольная конденсация сопровождается отщеплением воды (при высокой температуре), то такая конденсация называется кротоновой конденсацией:

Реакцию альдольной или кратоновой конденсации часто проводят в смешанном веществе. когда метеленовая и карбоновая компоненты – это разные соединения. подбор партнеров для этой реакции производят исходя из того, что карбониловая компонента должна обладать высокой реакционной способностью в реакциях нуклеофильного присоединения. в основном это альдегид. в тоже время метиленовая компонента должна обладать высокой СН-кислотностью – различные альдегиды или кетоны, имеющие α-атом водорода.