Выращивание кристаллов в космосе. Выращивание полупроводниковых кристаллов в космосе

© И.Ж.Безбах, В.И.Стрелов, Б.Г.Захаров
© Государственный музей истории космонавтики им. К.Э. Циолковского , г. Калуга
Секция "К.Э. Циолковский и проблемы космического производства"
2004 г.

Одним из важных направлений как земной, так и космической биотехнологии является получение кристаллов биомакромолекул с целью определения их пространственной структуры кристаллографическими методами и дальнейшего использования полученной информации в биологических, медицинских и промышленных целях.

За последние несколько десятков лет были получены результаты по сотням макромолекул и тысячам их кристаллов, были значительно усовершенствованы методики кристаллизации, наука о выращивании кристаллов биоматериалов из эмпирической становится все более точной. Однако до сих пор стабильное получение биокристаллов пригодного для исследований размера и однородности является проблемным местом во всем этом процессе. К настоящему времени около 35% кристаллов белков, серийно выращенных в космических условиях, оказались более высокого структурного качества, чем полученные в аналогичных условиях на Земле. В невесомости удалось получить биокристаллы, превосходящие по объему и разрешению любые из их земных аналогов. Однако же остальные 65% кристаллов вопреки прогнозам оказались худшего качества, чем их земные аналоги.

В этой связи важно определить, какие факторы являются определяющими с точки зрения качества получаемых биокристаллов. Из-за слабых сил связи между молекулами в биокристаллах влияние как внешних условий, так и внутренних причин на процесс кристаллизации может быть определяющим. Обычно считается, что необходим переход к чисто диффузионным условиям. В полной мере это достижимо при проведении экспериментов в условиях невесомости.

Основным негативным моментом, влияющим на процесс кристаллизации биоматериалов на Земле, является следующее: в земных условиях, помимо диффузионного массопереноса, типичным является возникновение конвективных течений в растворе, что, при большой их величине, может крайне негативно влиять на процессы роста и качество получаемых кристаллов. Также может наблюдаться осаждение кристаллов, нарушающее симметричность подвода к ним растворенного биоматериала и влияющее на их форму. При этом попытки различными способами осуществить кристаллизацию биоматериала за счет исключительно диффузионного механизма приводит к значительному увеличению требуемого для проведения эксперимента времени и снижению устойчивости условий эксперимента.

В космических же условиях эти недостатки устранимы. Однако свое влияние обычно начинают оказывать вибрационные воздействия, особенно значительные на борту Международной космической станции. При этом важным являются способы их влияния и механизмы их компенсации.

Дальнейшее изучение процесса кристаллизации биоматериалов с целью лучшего его понимания, совершенствование методик кристаллизации и аппаратуры, снижение влияния внешних условий на процесс и т. д. даст возможность проведения космических экспериментов с получением совершенных биокристаллов.

Успешно совершившим свою исследовательскую миссию весной 2013 года, настала очередь "Фотона". Внешне космические аппараты - братья-близнецы. Но по научным задачам различаются. "Фотон-М" под номером 4 предназначен для проведения на орбите экспериментов в сфере космических технологий по производству полупроводников в условиях микрогравитации, биотехнологий для получения новых знаний по физике невесомости. "Фотон" отправится на орбиту через неделю.

В повседневной жизни мы даже не задумываемся, что соль, сахар, металлы, драгоценные камни — все это кристаллы. Сегодня без них не обходится ни один электронный прибор.

"Первая космическая установка по выращиванию кристаллов. В 1976 году на станции "Салют-5" на ней выращивали алюмокалиевые кристаллы. Никаких особых условий для их выращивания не требовалось, ни специальных температур, ни давления, ученым необходимо было посмотреть, как влияет отсутствие гравитации на кристаллическую решетку. И, кажется, с тех времен здесь еще что-то осталось", — рассматривает содержимой космической установки по выращиванию кристаллов Ксения Зима.

Исследования по выращиванию кристаллов на орбите показали, лучше всего там растут белки.

" , одна из задач - получить кристалл очень чистый, получить однородный кристалл. Для белков подавление конвекции - это благоприятный фактор. В космосе подавляется движение жидкости, поэтому там они лучше растут", — поясняет заместитель директора Института кристаллографии РАН Алексей Волошин.

На Байконуре завершилась установка научного оборудования в космический аппарат "Фотон-М". Старт — в ближайшее время. На борту спутника — приборы для десятков экспериментов по кристаллографии, материаловедению, биологии, микробиологии. И это лишь часть направлений. Словом, "Фотон" - кластер научных идей.

"Уникальность в том, что предыдущие "Фотоны" у нас больше чем на 20 суток не летали. Этот полет планируется на 60 суток. Это первое. Второе, на этом космическом аппарате имеется двигательная установка, мы можем поднимать аппарат на более высокую орбиту. Мы будем летать на высоте 500 километров", — отметил начальник отдела ракетно-космического центра "ЦСКБ-Прогресс" Валерий Абрашкин.

Чем выше, тем лучше, утверждают ученые. 500 километров - ближний космос: уже не так сильно влияет атмосфера, очень слабая гравитация, а значит, и чистота экспериментов будет высокой.

"На этом космическом аппарате у нас летит 22 типа аппаратуры. На каждой аппаратуре — несколько экспериментов. То есть мы постарались скомпоновать космический аппарат таким образом, чтобы ученые различных направлений исследований могли поставить свои эксперименты и получить нужную научную информацию", — продолжил Валерий Абрашкин.

Внешне "Фотон" похож на научный биологический аппарат "Бион". Братья-близнецы. Круглая капсула, которая и наполняется научными приборами. При возвращении из космоса она не сгорает в атмосфере, все эксперименты возвращаются на Землю.

В отличие от "Фотона" на биоспутниках есть система жизнеобеспечения. Поддерживается определенная температура, давление, уровень кислорода, так как основные пассажиры "Биона" - живые организмы. "Фотоны" пассажиров не возят, на них ученые проводят технологические эксперименты.

"Полезная нагрузка — одно из устройств кристаллизации белков, которые полетят на "Фотоне". Устройство основано на принципе встречной диффузии жидкости", — говорит Алексей Волошин.

Именно на орбите удается получить более точные белковые структуры. Для фармацевтов это большая помощь в создании новых эффективных лекарств.

"Если это белок какой-то вредной бактерии, то подбирают вещество, которое должно подавить структуру этого белка. Если белок выполняет полезную функцию, подбирают вещество, которое должно усилить эту функцию", — рассказывает о сути экспериментов замдиректора Института кристаллографии РАН Алексей Волошин.

В другой лаборатории работают настоящие стоматологи. Пломбируют лунки базальтов, в которых находятся микроорганизмы. Пластины с микробами прикрепят на внешнюю сторону корабля "Фотон".

Бактериям предстоит выдержать космическую радиацию, а при возвращении - высокие температуры. Если не погибнут - у сторонников теории панспермии — что жизнь на Земле посеяли метеориты - появится веский аргумент.

"После посадки разогретый базальт вынимается и дальше смотрят — выжили ли микроорганизмы. Так проверяется теория панспермии", — рассказывает замдиректора Института медико-биологических проблем РАН Владимир Сычев.

Микробов подбирали особых, которые выдержат гигантские температуры в сотни градусов. Правда, у иностранных коллег подобный эксперимент не получился - бактерии погибли. Однако отрицательный результат только вдохновил наших микробиологов.

"Мы, вдохновленные опытом европейских коллег, решили расширить спектр микроорганизмов. Вместе с Институтом микробиологии РАМН создали коллекцию тех культур и ассоциаций, которые именно могли быть внесены на Землю в составе метеоритов", — рассказал заведующий лабораторией Института медико-биологических проблем РАН Вячеслав Ильин.

Впервые на этом "Фотоне" будет нарушено главное правило: животных не возить. На космическом аппарате в своей специально оборудованной каюте.

"Этот вид обитает на острове Маврикий, основные причины, по которым был выбран этот вид, небольшие размеры, а самая главная причина, что этот вид может обходиться без живого корма, что позволит им в течение 2 месяцев прекрасно существовать", — подчеркивает ведущий научный сотрудник Института медико-биологических проблем РАН Рустам Бердиев.

Главная особенность этих животных, которая и привлекла ученых, гекконы могут цепляться к любой поверхности. Поэтому в невесомости они не летают, а живут своей привычной жизнью и прекрасно себя чувствуют. Ну, если только во время старта их немного подбросит.

"Они фиксируются на поверхности, их много видов, у кого-то на лапках есть присоски специальные или маленькие крючочки, они прилипают к любой поверхности, для них поверхность важнее, чем гравитация. Они прилипают к поверхности стенок и не испытывают стресса флотации. А раз так, мы впервые в истории смогли избавиться от стресса", — подчеркнул заведующий лабораторией НИИ морфологии человека Сергей Соловьев.

Многочисленные эксперименты на гекконах подсказали ученым, как бороться с негативным влиянием невесомости на людей. От долгого пребывания на орбите у космонавтов вымывается кальций из организма. У гекконов такого не наблюдалось.

"Оказалось, что классическая модель - это деминерализация скелета, оказалось, гекконы, которые могут крепиться к поверхности. Это избавляет их кости от деминерализации. Гекконы показали путь, по которому надо развиваться дальше, чтобы снижать деминерализацию скелета космонавтов", — отмечает Сергей Соловьев.

Отправлять в космос аппараты только ради науки начали 40 лет назад. С тех пор были запущены десятки спутников. На орбите бывали обезьяны, мыши, рыбки. И каждый такой полет - еще один шаг к заветной мечте человечества — межпланетным перелетам.

В широком поясе околоземного пространства, на высоте от трехсот с лишним до 35 800 километров, где синхронно с нашей планетой вращаются стационарные ИСЗ, Национальное управление по аэро-навтике и исследованию космического пространства (НАСА) предвидит развитие промыш-ленности. Работая в этом без-воздушном пространстве в условиях полной невесомости, космические предприятия смогут производить новые материалы, стоимость которых на Земле исчисляется десятками тысяч долларов за килограмм. Электростанции со сложной системой солнечных батарей смогут превращать энергию Солнца в электрическую и передавать ее на Землю. Обслу-живать небесную промышлен-ность будут космопланы.
Тем временем представители земной промышленности реагируют на эти многообещаю-щие планы по-разному и, в целом, весьма сдержанно. С одной стороны, ведущие промышленные предприятия, заключившие с НАСА контракты на разработку космического оборудования и экспериментальных технологических процессов, полны энтузиазма, то-гда как другие промышлен-ные корпорации, мало осведомленные о новых начинаниях, относятся к ним скептичеки. Роберт А. Фрош, директор НАСА, заявил, что его задача — это «обеспечить доступ в космос и разработать основные технологические процессы, которым потенциальный потребитель должен дать оценку, прежде чем он решится на капиталовложение».
Самообслуживающаяся лаборатория на борту космоплана станет первым производственным предприятием в космосе. Члены экипажа, получив соответствующую подготовку, будут создавать металлические сплавы в электро-плавильных печах, одна из которых изображена у левой стены на рисунке. В рабочем помещении исследователи, снабженные ботинками на присосках, смогут передвигаться во весь рост.
В командный отсек они будут «проплывать» через смежный воздушный шлюз. Вдоль правой стенки лаборатории разместятся клетки для подопытных животных.

Иллюстрация Николаса Соловьева

Однако скептицизм заинте-ресованных в прибылях корпо-раций, может быть, слишком преувеличен. Дело в том, что НАСА в космосе — не новичок, и планы свои строит на ба-зе успешных экспериментов, проведенных в ходе предыдущих орбитальных полетов. Эксперименты эти, проведенные главным образом на борту космической станции «Скайлаб» и во время совместных полетов кораблей «Аполлон» и «Союз», доказали, что за пределами земного притяжения с физическими телами происходят удивительные вещи: кристаллы растут более равномерно, в некоторых случаях в десять раз превышая размером земные экземпляры; биологические соединения легче поддаются разделению и сортировке, что позволяет надеятся на возможность производства более чистых вакцин и новых фармацевтических препаратов. Кроме того, в ходе предыдущих полетов выяснилось, что в космосе возможна выработка новых типов стекла, разнообразных суперсплавов, а также целого ряда материалов различной плотности, обладающих свойствами, неведомыми на Земле. Некоторые ученые полагают, что рейсы космопланов положат начало новым изобретениям, которые по своему значению можно будет уподобить разработанному в XVII веке вакуумному насосу.
На данном этапе оценка этой еще не изведанной области возможна лишь в том случае, если несколько промышленных корпораций сделают шаг в космос, ибо ни одно промышленное предприятие не должно на фоне нынешнего технологического прогресса игнорировать новую эру больших перемен, на пороге которой мы стоим.
Преимущества космического производства легче всего пояснить земными недостатками, из которых главным является гравитация. Большинство твердых материалов проходит стадию размягчения или плавки в процессах их создания или обработки, и там, где существует гравитация, они должны удерживаться стенками того или иного вместилища — причины изъянов материала.
Более того, гравитация вызывает конвективные течения, которые проходят вдоль температурных градиентов в слоях жидкости. Конвективные течения, хаотические и изменчивые по своему характеру, часто приводят к неожиданным и нежелательным структурным и композиционным различиям в твердых материалах, скажем, к образованию мягких или разжиженных участков. Гравитация также разъединяет молекулы, оставляя полости, в которых собираются посторонние примеси. Если жидкость состоит из двух и более составных частей, гравитация способствует разъединению этих материалов, нарушая их однородность в твердом состоянии.
Это вредное воздействие гравитации мучило не одно поколение промышленников со времен отлития первых бронзовых статуй; из-за него металлы никогда не могли достичь той прочности и других характеристик, которыми их наделяет теория. Так, например, сталь могла бы быть в десять, а то и в сто раз крепче нынешней. Лопасти реактивного двигателя распадаются при температуре, которая значительно повысила бы его эффективность. Микро-проводники электронного кардиостимулятора или штифты для костной пластики (цена то-го и другого высока, не говоря уже о травме при их замене) изнашиваются скорее, чем им теоретически положено.
В условиях космической невесомости большинство этих трудностей в процессах производства материалов отсутствует. Конечно, строго говоря, нулевой гравитации не существует, ибо каждая частица и каждый атом взаимно притягиваются. Однако на борту космоплана невесомость приблизится к этому недостижимому нулевому показателю: при спокойном режиме полета она будет равна одной миллионной доле земного притяжения, но когда астронавты включат вспомогательные ракеты для коррекции курса или, скажем, начнут передвигаться в своих снабженных присосками ботинках, невесомость повысится до одной тысячной земного тяготения, что ученые называют «микрогравиnацией». Одна фирма, производящая исследования для НАСА, укажет, что сила притяжения препятствует производству по меньшей мере четырехсот разных сплавов. Многие из них представляют комбинацию металлов, которые, подобно маслам и воде, в земных условиях не смешиваются. Зато в условиях невесомости они смешиваются до микромасштабов и, затвердев, обретают небывалую прочность и неведомые электрические, магнетические и другие физические свойства. Из этих металлических сплавов можно изготовлять прочные и легкие автомашины, почти невесомую мебель и т.д. Особенно большой интерес электроэнергетических фирм вызывают сверхпроводящие аллы, способные передавать электричество при низких температурах фактически без потери энергии.
Так, например, медь и свинец или свинец и алюминий, сплавленные в определенных пропорциях, проявляют свойства взаимосмазки, что, возможно, поможет конструкторам создать такой автомобильный двигатель, которого хватит на восемьсот или более тысяч километров пробега машины.
Многие из этих материалов можно производить лишь в космосе так называемым бесконтейнерным методом: жидкий металл затвердевает, ни с чем не соприкасаясь. Это возможно благодаря «всплыванию», что свойственно каждому предмету в космосе. Образец жидкости или твердого тела можно без особых усилий повесить» в нужное положение в акустическом, электромагнитном или электростатическом полях. Поскольку в космосе преобладают вторичные силы, как, например, поверхностное натяжение, то сплавленный материал автоматически приобретает форму сферы. Сфере можно придать нужную форму лишь незначимым воздействием на нее внешних сил. На Земле бесконтейнерный процесс далеко не пошел, ибо здесь он требует массивного воздействия внешних сил. В космосе же звуковыее волны обычного проигрывателя заставят воспарить стальной шарик.
Бесконтейнерный процесс может привести к улучшению микрокроструктуры вольфрама, одного из тугоплавких металлов (температура плавки 3410°С), который в расплавленном состоянии особенно под-вержен загрязнению. Посторонние примеси, образующиеся в тигеле, препятствуют производству чистого оптического стекла и повышают стоимость производства высококачественных стекловолокон, необходимых для новых линий связи, разрабатываемых Американской телефонно-телеграфной компанией и другими фирмами. Стекло космического производства, обладающее уникальной рефракцией и дисперсией, найдет себе широкое применение в лазерной технике и других оптических системах. «Список оптических приборов увеличится вдвое», — предсказывает Ральф Хаппе, специалист по производству стекла из фирмы «Рокуэлл интернэшонал корпорейшн».
Но, пожалуй, самые широкие перспективы в недалеком будущем открываются в космической промышленности перед кристаллами, ставшими неотъемлемой частью электроники и электронной оптики. В электронике используют свойство кристалла проводить электроны в строго определенных и полностью контролируемых условиях, в оптике — его прозрачность, с которой не сравнится даже самое высококочественное стекло, которое из-за своей аморфной структуры частично рассеивает свет.
Выращивание кристаллов на Земле в общем считается не наукой, а искусством. Специалисты, выращивающие наиболее крупные морковеобразные кристаллы, которые используются в изготовлении полупроводниковых интегральных микросхем, величают себя «кри сталловодами», что, собственно, недалеко от истины. Хотя кристаллы и не живые существа, они в какой-то мере подобны растениям. Кристаллы требуют пищи и тянутся в сто-рону источника питания. И тут, как выразился один исследователь, «кристалловод добавляет чуть-чуть того, чуть-чуть другого — как по рецепту». Равномерное распределение всех этих важных примесей, наделяющих полупроводниковый кристалл необходимыми электронными свойствами, в земных условиях осуществить трудно вследствие конвективных течений, вызываемых гравитацией. В результате, земной «урожай» пригодных для полупроводников кристаллов невелик.
Об успехах выращивания кристаллов в космосе красноречиво свидетельствуют опыты, проведенные на борту орбитальной станции «Скайлаб». Опыты бали разработаны Гарри Гатосом, профессором Массачусетского технологического института, специализирующимся по сопротивлению материалов и инженерному проектированию. Астронавтам удалось получить образец кристалла индий-антимонид. Измеряя проводимость образца во всю его длину, Гатос установил, что электрические свойства кристалла были постоянны. В подобном же кристаллы, выращенном в земных условиях, свойства эти менялись от одного конца к другому. Во время совместного полета «Апполон - Союз» Гатосу удалось вырастить такой же идеальный образец кристалла германия. И хотя опыты эти, в силу обстоятельств, были весьма простыми, они, тем не менее, превзошли все ожидания.
Выращивание кристаллов в космосе возобновится с началом первых полетов космопланов-лабораторий. В доказательство приведен пример с гелием-арсенидом, который широко используется в производстве излучающих светодиодов, лазеров, микроволновых устройств и другой технической аппаратуры. Фунт (450 граммов) галлия-арсенида не очень высокого качества стоит в настоящее время 15000 долларов. В итоге, стоимость производства этого кристалла составляет небольшую долю его продажной цены. Кристаллы из космоса, дают значительно большее количество совершенных полупроводниковых интегральных микросхем и оправдывают, таким образом, высокую цену кристалла. Если же высокое качество кристаллов породит новую область их применения, то им буквально не будет цены.
Вероятно, прибыльным окажется ещё один продукт — крошечный шарик из весьма обычной пластмассы — полистирольного латекса. Шарики, диаметром менее двух микронов и более 40 микронов, можно сделать на Земле, но шарики промежуточных размеров получаются неустойчивыми и по сложным техническим причинам не поддаются массовому производству. А ученые крайне нуждаются в та-ких средних диаметрах. Если, например, шарики разных диаметров ввести в бактериальную культуру перед ее анализом под электронным микроскопом, то с их помощью ученые смогли бы произвести точные измерения многих объектов от вирусов до отверстий в диафрагмах. Кроме того, крошечные шарики можно будет использовать для градуировки самого электронного микроскопа и других приборов.
Космос таит в себе широ-кие возможности для дальнейшего прогресса биологии и медицины. Микрогравитация поможет ученым разделять определенные типы клеток, клеточные компоненты и продукты, а также протеины. Вакцины обретут недостижимую на Земле чистоту. Предыдущие полеты дали не только ценную информацию, но и урок на будущее; во время опыта с ДНК молок лосося в среду проникли бактерии и целиком уничтожили ее.
Все дело в том, что сотни биологических веществ на Земле не поддаются ни синтезированию, ни разделению в силу все тех же конвективных течений, которые дают неравномерные и непрогнозируемые композиции. Многие из этих комплексных биологических продуктов вырабатывает человеческий организм. Урокиназа, например, способствует активизации ферментов, рассасывающих сгустки крови, а в выработке этого ценного химического вещества участвует всего пять процентов печеночных клеток. Задание космических лабораторий — разделить эти клетки и затем, в целях размножения, культивировать их на Земле. Печеночные клетки, выделенные в полете «Аполлон—Союз», выработали урокиназы в семь раз больше обычного, но по непонятным причинам, которые ученым интересно выяснить, на Земле эти клетки выработку урокиназы прекратили.
Вырабатываемые организмом гормоны и другие вещества, как, например, ативирусный агент интерферон или эндорфины — болеутоляющие агенты головного мозга, можно также получать в чистом виде в космосе. Следующим кандидатом в орбитальные лаборатории являются эритропоэтины, вырабатываемые почками и стимулирующие образование эритроцитов в красном костном мозге. Выработать чистые эритропоэтины на Земле еще никому не удавалось.
Тем не менее ученые сделали большой прогресс в изучении кровяных клеток, обнаружив в них целый ряд новых веществ, выполняющих роль иммунизирующих агентов. В условиях невесомости ученые надеются выделить новые препараты, которые помогут бороться, скажем, с ревматическим артритом, не поддающимся защитным действиям механизмов иммунитета. Джон Каррутерс, директор программы НАСА по разработке материалов, предсказывает, что «в один прекрасный день лекарства начнут поступать из космоса».
Помимо невесомости, другим важным преимуществом космоса является чистота и разряженность атмосферы на высоте 300 километров. Роберт Т. Фрост, директор отдела космических исследований фирмы «Дженерал электрик», называет верхние слои атмосферы «лучшей в мире вакуумной камерой». Но тут следует сделать оговорку. В районе челночных рейсов космическое пространство не будет таким чистым, как этого хотели бы исследователи, ибо выхлопные газы ракетных двигателей и мусор из грузовых отсеков будут неизменно сопровождать орбитальные аппараты. Кроме того, даже на этой высоте существует атмосфера, состоящая из рассеяных атомов кислорода и создающая давление, равное всего лишь десятимиллиардным долям земного давления над уровнем моря. В связи с этим НАСА намеревается сконструировать космический щит на носовой штанге аппарата. «Воздух» с космической скоростью будет обтекать щит и образовывать за ним почти идеальный вакуум. Фрост полагает, что в этом сверхчистом пространстве стоимость производства тонкой пленки для солнечных батарей составит всего один процент стоимости ее производства на Земле.
Конечно, все эти чудеса свершатся не в один день. В будущем астронавты найдут себе более широкое применение. Им придется монтировать в космосе энергетические установки для передачи на Землю солнечной энергии и выполнять другие функции. В обоз римом будущем НАСА, вероятно, превратится в своеобразный центр коммунального обслуживания. Владея всеми достояниями космоса, управление будет продавать свои услуги промышленным корпорациям всего мира. Впрочем, не исключена возможность, что НАСА передаст свое дело какой-нибудь частной фирме. Авиакомпания «Боинг», например, считает, что она могла бы извлечь прибыль из коммерческой эксплуатации космопланов.

Недавно ученым из Японии удалось вырастить идеальные кристаллы твердого гелия, что в земных лабораториях сделать весьма непросто - они легко деформируются под действием силы тяжести. Однако исследователи поступили весьма оригинально - они выращивали гелиевые кристаллы в условиях невесомости, которые были созданы на борту реактивного самолета.

Перед тем как начать рассказ о кристаллах твердого гелия, нужно напомнить о том, зачем вообще ученым они понадобились. Как мы знаем, среди различных агрегатных состояний вещества кроме жидкого, твердого и газообразного имеется еще и такое, которое называют конденсатом Бозе-Эйнштейна. В таком состоянии вещество состоит не из молекул и атомов, а из бозонов, охлаждённых до температур, близких к абсолютному нулю.

Одним из интересных свойств конденсата Бозе-Эйнштейна является сверхтекучесть - состояние, при котором он обладает нулевой вязкостью, то есть при прохождении через различные отверстия или просто по поверхности между ним вообще не возникает трения. Сами понимаете, такое свойство может быть весьма полезным. Кроме того, доказано, что в сверхтекучем состоянии вещества могут являться еще и высокотемпературными сверхпроводниками.

Словом, если бы ученые смогли переводить без всяких проблем известные нам вещества в сверхтекучее состояние, можно было бы решить множество проблем. Но вот беда - сделать это пока достаточно сложно. В то же время еще в 60-х годах прошлого столетия высказывались предположения о том, что сверхтекучестью могут обладать и некоторые твердые тела, особенно те, что образовывают кристаллы. И самыми первыми кандидатами на роль таковых назывались кристаллы твердого гелия, которые образуются при давлении более 25 атмосфер.

Еще в 2004 году американские физики из Университета Альберты сообщили об экспериментальном наблюдении совершенно неожиданного эффекта - сверхтекучести в твердом гелии. Однако их эксперименты не удалось воспроизвести в других лабораториях, в результате чего достоверность результатов данной работы была подвергнута сомнению. Чуть позже, в 2009 году, физикам из Калифорнийского университета в Беркли удалось получить газ рубидия в состоянии сверхтекучего твердого тела.

Однако подобное направление признали неперспективным - дело в том, что с рубидием сложно работать. Хотя он по распространенности в земной коре находится примерно на 20-м месте (как медь, никель и цинк), однако в природе этот металл существует в рассеянном состоянии, не образуя собственных минералов и встречаясь в основном вместе с другими щелочными элементами, например, с калием. То есть его достаточно сложно добывать, что делает все исследования с ним весьма дорогостоящими.

Из-за этого ученые вновь решили вернуться к любимому всеми гелию. Но чтобы исследовать его свойство сверхтекучести в твердом состоянии, сперва необходимо вырастить те самые кристаллы. В принципе это не сложно - для этого всего-то нужно создать давление выше 25 атмосфер и опустить температуру до -272 градусов по Цельсию. Было неоднократно показано, что в такой "морозилке" кристалл образуется практически за секунды. Однако есть еще одно "но": когда кристаллы гелия растут при наличии гравитации, они легко деформируются. А это сильно сказывается на всех их свойствах, в том числе и на сверхтекучести.

И вот недавно ученые из Японии предложили весьма оригинальный способ справиться с этой проблемой - нужно просто выращивать кристаллы в невесомости! Причем совсем не обязательно делать это в космосе - исследователи использовали для своих экспериментов небольшой реактивный самолет. Ведь при определенных траекториях движения, например, в параболическом полете, этот аэроплан мог находится в условиях невесомости в течение 20 секунд, чего вполне достаточно для того, чтобы вырастить нормальный кристалл. В итоге за 20 часов полетов физики сумели провести целых восемь экспериментов!

Опыты проходили так: сначала по стандартной технологии выращивались первичные кристаллы, а после их сбрызгивали "каплями" гелия-4, который уже находился в сверхтекучем состоянии. Все это происходило в специальном бортовом холодильнике. Большие кристаллы гелия размещали в его нижней камере высокого давления, а затем дробили их акустической волной, чтобы разрушить на мелкие кусочки. После того как их спрыскивали сверхтекучим гелием-4, кристаллики меньшего размера плавились, а крупные же быстро росли, достигая в итоге размера около 10 мм.

В итоге исследователям удалось полностью пронаблюдать процесс формирования кристалла. Интересно, что он был похож на явление, которое называют Оствальдовским созреванием. Его можно наблюдать в привычной жизни на примере мороженого: с течением времени в нем более крупные кристаллы льда присоединяют к себе мелкие, и в итоге весь продукт становится твердым и хрустящим. Но в этом случае Освальдовское созревание происходит достаточно медленно, а вот с гелием эффект получился весьма быстрым - процесс занял секунды.

"Кристаллы гелия могут очень быстро вырастать из сверхтекучей материи. Это идеальный материал для изучения фундаментальных свойств таких кристаллов, поскольку они образуются очень и очень быстро" - так прокомментировал результаты работы ведущий автор исследования профессор Номура Рюдзи. Теперь, когда физикам наконец-то удалось вырастить идеальный кристалл твердого гелия, можно будет попробовать проверить его на сверхтекучесть.

Кстати, американские ученые, обнаружившие это свойство в 2004 году, в ответ на критику работы указывали, что у их оппонентов ничего не получилось из-за того, что кристаллы, с которыми те работали, были деформированы. Сейчас же японские исследователи смогут перепроверить результаты своих коллег, используя уже абсолютно нормальный кристалл, выращенный в условиях невесомости…

© В.И.Стрелов, Б.Г.Захаров
© Государственный музей истории космонавтики им. К.Э. Циолковского , г. Калуга
Секция "К.Э. Циолковский и проблемы космического производства"
2008 г.

Анализ результатов экспериментов по выращиванию монокристаллов полупроводников в реальных условиях микрогравитации на борту космических аппаратов показывает, что по совокупности свойств полученные в космических экспериментах кристаллы были не лучше полученных в земных условиях. Они имели, как правило, или значительную микронеоднородность (полосы роста), или макронеоднородность распределения легирующей примеси по диаметру и длине слитков, происхождение которых может быть связано только изменением характера и возрастанием интенсивности конвекции в расплаве. Поэтому, для достижения высокой однородности свойств выращиваемых кристаллов необходимо в расплаве обеспечить условия диффузионного тепломассопереноса.

Эти условия и ожидаемые предельные параметры кристаллов могут быть получены:

– при отсутствии термогравитационной конвекции,

– при исключении свободной поверхности расплава,

– при минимизации внешних квазистатических воздействий на расплав, вызывающих в условиях микрогравитации из-за возрастающей гравитационной чувствительности расплавов вынужденные конвективные течения в них и, соответственно, неоднородность состава и свойств выращиваемых кристаллов.

Только в условиях диффузионного тепломассопереноса свободный рост кристаллов будет происходить в стабильных температурных условиях путем самоорганизации атомов и будут обеспечиваться однородность состава и свойств на этом уровне. В этих условиях можно получить эталонные образцы или отдельные рабочие образцы, на которых будут не только определены параметры кристаллов, но на них могут быть изготовлены образцы оптоэлектронных приборов с предельно достижимыми параметрами. Однако в настоящее время эти условия трудно реализуемы.

Поэтому основная задача космических технологий заключается не в организации серийного производства в космосе кристаллов из расплава, а в использовании новых знаний о процессах кристаллизации, получаемых в космосе, в земных технологиях с максимальным приближением к условиям, обеспечивающим минимизацию конвективных процессов.

Для современных приборных технологий требуются высокооднородные легированные кристаллы диаметром несколько сотен миллиметров. При этом для их выращивания необходимы многотонные установки, которые нереально и нет необходимости располагать в космосе, тем более, когда им есть альтернатива на Земле за счет минимизации конвективных процессов в расплавах. Как следует из анализа экспериментальных и теоретических исследований процессов тепломассопереноса в расплавах полупроводников, это проблема чисто техническая: прежде всего это минимизация радиального градиента температуры, точность ориентации направления кристаллизации и отсутствие свободной поверхности расплава.