Когда возникает трение качения. Сила трения качения: описание, формула

Сила трения в земных условиях сопутствует любым движениям тел. Она возникает при соприкосновении двух тел, если эти тела двигаются относительно друг друга. Направлена сила трения всегда вдоль поверхности соприкосновения, в отличие от силы упругости, которая направлена перпендикулярно (рис. 1, рис. 2).

Рис. 1. Отличие направлений силы трения и силы упругости

Рис. 2. Поверхность действует на брусок, а брусок – на поверхность

Существуют сухие и не сухие виды трения. Сухой вид трения возникает при соприкосновении твердых тел.

Рассмотрим брусок, лежащий на горизонтальной поверхности (рис. 3). На него действуют сила тяжести и сила реакции опоры . Подействуем на брусок с небольшой силой , направленной вдоль поверхности. Если брусок не сдвигается с места, значит, приложенная сила уравновешивается другой силой, которая называется силой трения покоя .

Рис. 3. Сила трения покоя

Сила трения покоя () противоположна по направлению и равна по модулю силе, стремящейся сдвинуть тело параллельно поверхности его соприкосновения с другим телом.

При увеличении «сдвигающей» силы брусок остается в покое, следовательно, сила трения покоя также увеличивается. При некоторой, достаточно большой, силе брусок придет в движение. Это означает, что сила трения покоя не может увеличиваться до бесконечности – существует верхний предел, больше которого она быть не может. Величина этого предела – максимальная сила трения покоя.

Подействуем на брусок с помощью динамометра.

Рис. 4. Измерение силы трения с помощью динамометра

Если динамометр действует на него с силой , то можно увидеть, что максимальная сила трения покоя становится больше при увеличении массы бруска, то есть при увеличении силы тяжести и силы реакции опоры. Если провести точные измерения, то они покажут, что максимальная сила трения покоя прямо пропорциональна силе реакции опоры:

где – модуль максимальной силы трения покоя; N – сила реакции опоры (нормального давления); – коэффициент трения покоя (пропорциональности). Следовательно, максимальная сила трения покоя прямо пропорциональна силе нормального давления.

Если провести опыт с динамометром и бруском постоянной массы, при этом переворачивая брусок на разные стороны (меняя площадь соприкосновения со столом), то можно увидеть, что максимальная сила трения покоя не меняется (рис. 5). Следовательно, от площади соприкосновения максимальная сила трения покоя не зависит.

Рис. 5. Максимальное значение силы трения покоя не зависит от площади соприкосновения

Более точные исследования показывают, что трение покоя полностью определяется приложенной к телу силой и формулой .

Сила трения покоя не всегда препятствует движению тела. Например, сила трения покоя действует на подошву обуви, при этом сообщая ускорение и позволяя ходить по земле без проскальзывания (рис. 6).

Рис. 6. Сила трения покоя, действующая по подошву обуви

Еще один пример: сила трения покоя, действующая на колесо автомобиля, позволяет начинать движение без пробуксовки (рис. 7).

Рис. 7. Сила трения покоя, действующая на колесо автомобиля

В ременных передачах также действует сила трения покоя (рис. 8).

Рис. 8. Сила трения покоя в ременных передачах

Если тело движется, то сила трения, действующая на него со стороны поверхности, не исчезает, такой вид трения называется трение скольжения . Измерения показывают, что сила трения скольжения по величине практически равна максимальной силе трения покоя (рис. 9).

Рис. 9. Сила трения скольжения

Сила трения скольжения всегда направлена против скорости движения тела, то есть она препятствует движению. Следовательно, при движении тела только под действием силы трения она сообщает ему отрицательное ускорение, то есть скорость тела постоянно уменьшается.

Величина силы трения скольжения также пропорциональна силе нормального давления.

где – модуль силы трения скольжения; N – сила реакции опоры (нормального давления); – коэффициент трения скольжения (пропорциональности).

На рисунке 10 изображен график зависимости силы трения от приложенной силы. На нем видно два различных участка. Первый участок, на котором сила трения возрастает при увеличении приложенной силы, соответствует трению покоя. Второй участок, на котором сила трения не зависит от внешней силы, соответствует трению скольжения.

Рис. 10. График зависимости силы трения от приложенной силы

Коэффициент трения скольжения приблизительно равен коэффициенту трения покоя. Обычно коэффициент трения скольжения меньше единицы. Это означает, что сила трения скольжения по величине меньше силы нормального давления.

Коэффициент трения скольжения является характеристикой двух трущихся друг о друга тел, он зависит от того, из каких материалов изготовлены тела и насколько хорошо обработаны поверхности (гладкие или шероховатые).

Происхождение сил трения покоя и скольжения обуславливается тем, что любая поверхность на микроскопическом уровне не является плоской, на любой поверхности всегда присутствуют микроскопические неоднородности (рис. 11).

Рис. 11. Поверхности тел на микроскопическом уровне

Когда два соприкасающихся тела подвергаются попытке перемещения относительно друг друга, эти неоднородности зацепляются и препятствуют этому перемещению. При небольшой величине приложенной силы этого зацепления достаточно для того, чтобы не позволить телам смещаться, так возникает трение покоя. Когда внешняя сила превосходит максимальное трение покоя, то зацепления шероховатостей недостаточно для удержания тел, и они начинают смещаться относительно друг друга, при этом между телами действует сила трения скольжения.

Данный вид трения возникает при перекатывании тел друг по другу или при качении одного тела по поверхности другого. Трение качения, как и трение скольжения, сообщает телу отрицательное ускорение.

Возникновение силы трения качения обусловлено деформацией катящегося тела и опорной поверхностью. Так, колесо, расположенное на горизонтальной поверхности, деформирует последнюю. При движении колеса деформации не успевают восстановиться, поэтому колесу приходится как бы все время взбираться на небольшую горку, из-за чего появляется момент сил, тормозящий качение.

Рис. 12. Возникновение силы трения качения

Величина силы трения качения, как правило, во много раз меньше силы трения скольжения при прочих равных условиях. Благодаря этому качение является распространенным видом движения в технике.

При движении твердого тела в жидкости или газе на него действует со стороны среды сила сопротивления. Эта сила направлена против скорости тела и тормозит движение (рис. 13).

Главная особенность силы сопротивления заключается в том, что она возникает только при наличии относительного движения тела и окружающей его среды. То есть силы трения покоя в жидкостях и газах не существует. Это приводит к тому, что человек может сдвинуть даже тяжелую баржу, находящуюся на воде.

Рис. 13. Сила сопротивления, действующая на тело при движении в жидкости или газе

Модуль силы сопротивления зависит:

От размеров тела и его геометрической формы (рис. 14);

Состояния поверхности тела (рис. 15);

Свойства жидкости или газа (рис. 16);

Относительной скорости тела и окружающей его среды (рис. 17).

Рис. 14. Зависимости модуля силы сопротивления от геометрической формы

Рис. 15. Зависимости модуля силы сопротивления от состояния поверхности тела

Рис. 16. Зависимости модуля силы сопротивления от свойства жидкости или газа

Рис. 17. Зависимости модуля силы сопротивления от относительной скорости тела и окружающей его среды

На рисунке 18 показан график зависимости силы сопротивления от скорости тела. При относительной скорости, равной нулю, сила сопротивления не действует на тело. С увеличением относительной скорости сила сопротивления сначала растет медленно, а затем темп роста увеличивается.

Рис. 18. График зависимости силы сопротивления от скорости тела

При низких значениях относительной скорости сила сопротивления прямо пропорциональна величине этой скорости:

где – величина относительной скорости; – коэффициент сопротивления, который зависит от рода вязкой среды, формы и размеров тела.

Если относительная скорость имеет достаточно большое значение, то сила сопротивления становится пропорциональной квадрату этой скорости.

где – величина относительной скорости; – коэффициент сопротивления .

Выбор формулы для каждого конкретного случая определяется опытным путем.

Тело массой 600 г равномерно движется по горизонтальной поверхности (рис. 19). При этом к нему приложена сила, величина которой равна 1,2 Н. Определить величину коэффициента трения между телом и поверхностью.

Трение и сопротивление качению

Процесс трения (фрикционное взаимодействие) играет важную роль в промышленном мире и повседневной жизни. Сила трения оказывает сопротивление скольжению, вращению, качению, полёту объекта из-за его контакта с другим объектом. Она может быть полезной (к примеру, когда нужно задействовать тормоза, чтобы остановить автомобиль), или вредной (при попытке ехать с ногой на педали тормоза). Эта статья расскажет о важном аспекте промышленных колёс – о сопротивлении качению.

Сопротивление качению – притормаживающее действие, которое оказывает поверхность пола на шинку (контактный слой) катящегося колеса. Оно является мерой энергии, потерянной на определённом расстоянии.

Рассмотрим катящееся по плоской поверхности колесо. Его шинка деформируется, что вызывает некоторое сопротивление движению качения. Плоская поверхность также может деформироваться, особенно если она мягкая. Хорошие примеры сильно сопротивляющихся вращению поверхностей – грязь или песок. Катить тележку по асфальту значительно легче, чем по песку.

Факторы, влияющие на рассеивание энергии катящегося промышленного колеса:

  • трение контактирующих поверхностей;
  • упругие свойства материалов;
  • грубость поверхностей.

На рисунке 1: Деформация поверхностей происходит до степени, определённой их упругими свойствами.

Трение качения и трение скольжения

Коэффициент трения качения не следует путать с коэффициентом трения скольжения. Коэффициент трения скольжения выражает отношение силы трения между телами и силы, прижимающей тела друг к другу. Данный коэффициент зависит от типа используемых материалов. К примеру, сталь на льду имеет низкий коэффициент трения, а резина на асфальте имеет высокий коэффициент трения.

Рисунок 2 поясняет понятие трения скольжения. Представьте силу, которую нужно применить, чтобы протянуть тяжёлый ящик по полу. Статическое трение требует применения определённой силы, чтобы сдвинуть ящик с места. С началом движения, возникает динамическое трение, требующее постоянного приложения определенной силы для поддержания движения. В этом примере, человек, толкающий ящик, прикладывает силу Fapp, ящик весит N, а пол создает силу трения f, которая сопротивляется движению.

Причина, по которой мы используем колёса для перемещения материалов в том, что они позволяют тратить значительно меньше силы. Представьте, что приходится волочь холодильник или пианино! Более того, подумайте, насколько легче было бы передвинуть вышеупомянутый ящик, если бы применялись колёса.

Сила, требуемая для передвижения оборудования на колёсах, велика только при старте. Ее часто называют «первоначальной или «стартовой» силой. Как только получено нужное ускорение, для продолжения движения необходима гораздо меньшая сила, которую называют «перманентной» или «катящей». Как правило «стартовая» сила превышает ее в 2-2.5 раза.

Расчёт силы трения качения

Помочь узнать сопротивление качению промышленных колёс помогает коэффициент трения качения. Его значение для различных материалов получено эмпирическим путем и может варьироваться в зависимости от скорости вращения колеса, нагрузки на колесо, материала опорной поверхности.

В таблице ниже приведены коэффициенты трения качения наиболее распространенных материалов, из которых изготавливают промышленные колеса. Неудивительно, что самый мягкий, легко деформирующийся материал (резина) обладает самым высоким коэффициентом трения качения, а самый твёрдый материал (кованая сталь) – самым низким.

Формула для расчётов

F = сила трения качения
f = коэффициент трения качения

W = сила давления на опору (вес)
R = радиус колеса

Из формулы видно, что сила трения качения F пропорциональна силе давления на опору W и обратно пропорциональна радиусу R колеса. Таким образом, диаметр колес играет важную роль при транспортировке тяжёлых грузов.

Узнав силу трения качения каждого и умножив ее на число, можно узнать примерную силу сопротивления движению. Однако вышеприведенная формула неточна, потому что не учитывает другие факторы, влияющие на лёгкость качения (к примеру, силу адгезии).

Как выбрать промышленные колёса для лёгкого передвижения?

Чтобы снизить сопротивление качению, необходимо выбирать колёса большого диаметра и из материалов с низким коэффициентом трения.
Выбор подшипников не столь критичен для лёгкости хода тележки, как диаметр и материал шинки. Понятно, что подшипники качения предпочтительнее подшипников скольжения. Также стоит учитывать, что шариковые и роликовые подшипники лучше выдерживают нагрузки, меньше изнашиваются и дольше служат.

Главные факторы, влияющие на сопротивление качению:

  • масса;
  • диаметр колес;
  • материал и мягкость шинки;
  • материал и качество поверхности пола;
  • условия на полу (грубость поверхности, чистота, наклон и т.д.).

Факторы, которые обычно игнорируют:

  • тип подшипников;
  • рисунок протектора;
  • эффект скольжения или адгезии;
  • температура окружающей среды;
  • уклоны поверхности.
  1. Покупайте колесо промышленное , основываясь на грузоподъёмности и состоянии полов.
  2. Дополнительно принимайте во внимание: диапазон температур, ударопрочность, устойчивость к влаге, стойкость к свету и химикатам, возможность восстановления.
  3. Выбирайте максимально большой из возможных диаметров.
  4. Остановите выбор на шинке с минимальным сопротивлением качению.
  5. Подсчитайте силу сопротивления качению, принимая во внимание величину «стартовой» силы.
  6. Учитывайте фактор безопасности.
  7. Помните про уклоны поверхности. Сопротивление качению возрастает на подъёмах и снижается на спусках. F = Fx/cosa.
  8. Для буксировки самоходным транспортом лучше выбирать промышленные колёса с шариковыми подшипниками в оси. Только они обеспечат большой пробег, выдержат высокие скорости и нагрузки.

Трением называется сопротивление, возникающее при перемещении одного тела по поверхности другого.

В зависимости от характера этого перемещения (от того, скользит ли тело или катится) различают два рода трения: трение скольжения, или трение первого рода, и трение качения, или трение второго рода.

Примерами трения скольжения могут служить: трение полозьев саней о снег, пилы о дерево, подошвы обуви о землю, втулки колеса об ось и т. д. Примерами трения качения служат: трение при перекатывании колес автомобиля по земле или вагона по рельсам, трение при перекатывании круглых бревен, трение в шариковых и роликовых подшипниках и т. д.

Трение является одним из самых распространенных явлений природы и играет очень большую роль в технике. Однако вследствие крайней сложности этого физико-механического явления и трудности оценки многочисленных факторов, на него влияющих, точных общих законов трения до сих пор не существует. На практике в тех случаях, когда не требуется большой точности, все еще продолжают пользоваться эмпирическими законами, установленными в конце XVIII века (1781г.) французским ученым Кулоном, хотя они и представляют собой лишь грубое приближение к действительности. В случаях же, требующих большей точности, приходится определять величину силы трения из опыта для каждой данной пары трущихся поверхностей и конкретных условий трения. Трением качения называется сопротивление перекатыванию одного тела по поверхности другого. Сопротивление это возникает главным образом оттого, что как само катящееся тело, так и тело, по которому оно катится, не являются абсолютно твердыми и потому всегда несколько деформируются в месте их соприкосновения. Если лежащий на горизонтальной плоскости цилиндрический каток находится только под действием нормального усилия G (рисунок 1.2), то деформации катка и опорной плоскости будут симметричными относительно линии действия силы G. Приводя реакции плоскости, распределенные по малой площадке соприкосновения катка с плоскостью, к одной равнодействующей, мы будем всегда получать ее равной по модулю и противоположной по направлению силе G.

Рисунок 1.2

Основной характеристикой трения качения является коэффициент пропорциональности k, называемый коэффициентом трения качения.

Коэффициент трения качения зависит от упругих свойств материалов трущихся тел и состояния их поверхностей. Для данной пары трущихся тел он является величиной постоянной.

Трение при качении в большинстве случаев значительно (во много раз) меньше, чем трение скольжения, поэтому на практике всегда и стремятся заменить там, где это возможно, скольжение качением. Так, когда нужно передвинуть какой-нибудь тяжелый предмет, под него часто подкладывают катки, по которым его и катят, вместо того чтобы просто тащить по земле или полу, т. е. заставлять его скользить.

На принципе замены трения скольжения трением качения основано и устройство широко применяемых в настоящее время роликовых и шариковых подшипников. Преимущество этих подшипников перед подшипниками скольжения, помимо значительно меньших потерь на трение, заключается еще и в том, что их сопротивление при пуске почти равно сопротивлению при установившемся движении (так как трение качения почти не зависит от скорости).

Тре́ние каче́ния - сопротивление движению, возникающее при перекатывании тел друг по другу т.е. сопротивление качению одного тела (катка) по поверхности другого. Причина трения качения - деформация катка и опорной поверхности. Проявляется, например, между элементами подшипников качения , между автомобильной шиной колеса автомобиля и дорожным полотном. В большинстве случаев величина трения качения гораздо меньше величины трения скольжения при прочих равных условиях, и потому качение является распространенным видом движения в технике. Трение качения возникает на границе двух тел, и поэтому оно классифицируется как вид внешнего трения.

Энциклопедичный YouTube

  • 1 / 5

    Пусть на тело вращения, располагающееся на опоре, действуют

    Если векторная сумма этих сил равна нулю

    N → + P → + R → p = 0 , {\displaystyle {\vec {N}}+{\vec {P}}+{\vec {R}}_{p}=0,}

    то ось симметрии тела движется равномерно и прямолинейно или остаётся неподвижной (см. рис. 1) . Вектор F → t = − P → {\displaystyle {\vec {F}}_{t}=-{\vec {P}}} определяет силу трения качения, противодействующую движению. Это означает, что прижимающая сила уравновешивается вертикальной составляющей реакции опоры, а внешняя сила уравновешивается горизонтальной составляющей реакции опоры.

    Равномерное качение означает также, что сумма моментов сил относительно произвольной точки равна нулю. Из равновесия относительно оси вращения моментов сил, изображённых на рис. 2 и 3 , следует:

    F t ⋅ R = N ⋅ f , {\displaystyle F_{t}\cdot R=N\cdot f,} F t = f R ⋅ N , {\displaystyle F_{t}={\frac {f}{R}}\cdot N,}

    Эта зависимость подтверждается экспериментально. Для малой скорости качения сила трения качения не зависит от величины этой скорости. Когда скорость качения достигает значений, сопоставимых со значениями скорости деформации в материале опоры, трение качения резко возрастает и даже может превысить трение скольжения при аналогичных условиях.

    Момент сил трения качения

    Определим для подвижного цилиндра момент, тормозящий вращательное движение тела. Рассматривая данный момент относительно оси вращающегося колеса (например, колеса автомобиля), находим, что он равен произведению тормозного усилия на оси на радиус колеса. Относительно точки контакта движущегося тела с землей момент будет равен произведению внешней силы, уравновешивающей силу трения, на радиус колеса (рис. 2) :

    M t = F t ⋅ R = P ⋅ R {\displaystyle M_{t}=F_{t}\cdot R=P\cdot R} .

    С другой стороны, момент трения равен моменту прижимающей силы N → {\displaystyle {\vec {N}}} на плечо, длина которого равна коэффициенту трения качения f :

    M t = f ⋅ N , {\displaystyle M_{t}=f\cdot N,}

    Коэффициент трения качения

    Из выписанного выше уравнения следует, что коэффициент трения качения может быть определен как отношение момента трения качения M t {\displaystyle M_{t}} к прижимной силе N :

    f = M t N . {\displaystyle f={\frac {M_{t}}{N}}.}

    Графическая интерпретация коэффициента трения качения f дана на рисунке 3 и 4 .

    Коэффициент трения качения имеет следующие физические интерпретации:

    • Если тело находится в покое и внешняя сила отсутствует, то реакция опоры лежит на той же линии, что и прижимающая сила. Когда тело катится, то из условия равновесия следует, что нормальная составляющая реакции опоры параллельна и противонаправлена прижимающей силе, но не лежит с ней на одной линии. Коэффициент трения качения равен расстоянию между прямыми, вдоль которых действуют прижимающая сила и нормальная составляющая реакции опоры (рис. 4 ).

    Ориентировочные значения коэффициента трения для различных пар качения

    Катящееся тело Подстилающая поверхность Коэффициент трения в мм
    мягкое дерево мягкое дерево 1,5
    мягкое дерево сталь 0,8
    твердое дерево твердое дерево 0,8
    эбонит бетон 10-20
    эбонит сталь 7,7
    резина бетон 15-35
    закалённая сталь закалённая сталь 0,01
    полимер сталь 2
    сталь асфальт 6
    сталь тротуарная плитка 1,5
    сталь сталь 0,5
    железо мягкое дерево 5,6
    железо гранит 2,1
    железо железо 0,51
    чугунное литьё чугунное литьё 0,8

    Силы трения возникают при непосредственном контакте поверхностей двух твердых тел. Различают силы трения — покоя, скольжения и качения. Когда тело не скользит по поверхности другого тела, а катится, то в этом случае сопротивление оказывает сила трения качения. Трение качения в десятки раз меньше трения скольжения. Разберемся с механизмом возникновения этой силы.

    Катить легче, чем тащить

    В повседневной жизни мы пользуемся преимуществами качения практически ежедневно:

    • Тяжелые, крупногабаритные предметы можно легко переместить, подложив под них круглые катки или трубы. Например, чтобы передвигать по асфальту чугунную болванку массой в 1 тонну, нужно приложить силу в 200 кгс — на такое способны только могучие силачи. А на тележке катить эту же болванку сможет даже ребенок, ведь для этого нужна сила не более 10 кгс;
    • Все транспортные средства, перемещающиеся по поверхности земли, используют колеса;
    • Для облегчения подъема тяжелых предметов на высоту с давних времен применяется блок, имеющий форму колеса;
    • Роликовые и шариковые подшипники качения применяются во всех устройствах, когда требуется добиться минимального трения во вращающихся деталях.

    Конечно, изобретение колеса — это одно из самых выдающихся достижений человеческой цивилизации.

    Рис. 1. Примеры силы трения качения.

    Итак, сила трения качения — это сила, возникающая при качении тела по поверхности без проскальзывания. Существенным моментом в этом определении является исключение проскальзывания, потому что при проскальзывании трение возрастает в десятки раз!

    Почему возникает сила трения качения

    Круглый предмет (диск, шар, цилиндр) при качении слегка вдавливается в поверхность, образуя “ямку и бугорок”. Получается так, катящееся тело собственным весом создает себе препятствие (бугорок), и преодолевает его как бы вкатываясь все время в гору. При этом само тело тоже немного деформируется.

    Вторая причина - сила сцепления (адгезия), возникающая между поверхностями в момент контакта. Адгезия возникает в результате межмолекулярного взаимодействия.

    Рис. 2. Возникновение силы трения качения.

    Чем тверже поверхность, по которой катится тело, тем меньше будет “ямка” (вдавливание) и, значит, меньше сила трения качения. Сопротивление качению меньше, чем трение скольжения, потому что площадь контакта обычно очень мала, и поэтому нормальная сила, придавливающая тело к поверхности, тоже мала и недостаточна, чтобы предотвратить движение тела.

    Для железнодорожного транспорта, где колеса и рельсы стальные, трение при качении во много раз меньше, чем у грузовых автомобильных шин. Если бы само тело и поверхность были абсолютно твердыми, то сила трения была бы рана нулю.

    От чего зависит и чему равна сила трения качения

    Если круглое тело, например, колесо радиусом R катится по поверхности, то для формулы силы трения качения F t справедливо следующее выражение:

    $ F_t = N * {μ\over R} $ (1),

    N — прижимающая сила, Н;

    μ — коэффициент трения качения, м/Н.

    Из формулы следует, что F t растет с ростом массы тела и уменьшается с увеличением радиуса колеса R . Это и понятно: чем больше колесо, тем меньшее значение имеют для него неровности поверхности (бугорки), по которой оно катится.

    Коэффициент трения качения μ имеет размерность $[м/Н]$ в отличии от коэффициента трения скольжения k , который безразмерен.

    Рис. 3. Формула для силы трения качения.

    Подшипники

    Для снижения трения скольжения сначала была изобретена смазка, которая позволила добиться уменьшения трения в 8-10 раз. И только в конце ХIХ века возникла идея заменить в подшипнике трение скольжения трением качения. Эту замену осуществляют шариковые и роликовые подшипники. При вращении колеса или вала двигателя шарики (или ролики) катятся по втулке (обойме для шариков), а вал или ось колеса — по шарикам. Таким способом удалось снизить трение в десятки раз.

    Что мы узнали?

    Итак, мы узнали что представляет собой сила трения качения. Рассмотрели два основных механизма, вызывающих эту силу. Согласно формуле (1) сила трения качения растет с ростом веса тела и уменьшается с увеличением радиуса колеса. Роликовые и шариковые подшипники качения находят свое применение в большинстве устройств, имеющих вращающиеся детали.

    Тест по теме

    Оценка доклада

    Средняя оценка: 4.2 . Всего получено оценок: 285.