Пирамида в основании которой лежит квадрат. Геометрические фигуры

Рассмотрим, какими свойствами обладают пирамиды, в которых боковые грани перпендикулярны основанию.

Если две смежные боковые грани пирамиды перпендикулярны основанию , то общее боковое ребро этих граней является высотой пирамиды . Если в задаче сказано, что ребро пирамиды является ее высотой , то речь идет именно об этом виде пирамид.

Грани пирамиды, перпендикулярные основанию — прямоугольные треугольники.

Если основание пирамиды — треугольник

Боковую поверхность такой пирамиды в общем случае ищем как сумму площадей всех боковых граней.

Основание пирамиды является ортогональной проекцией грани, не перпендикулярной основанию (в данном случае, SBC). А значит, по теореме о площади ортогональной проекции, площадь основания равна произведению площади этой грани на косинус угла между нею и плоскостью основания.

Если основание пирамиды — прямоугольный треугольник

В этом случае все грани пирамиды — прямоугольные треугольники .

Треугольники SAB и SAС прямоугольные, так как SA — высота пирамиды. Треугольник ABC прямоугольный по условию.

То, что треугольник SBC прямоугольный, следует из теоремы о трех перпендикулярах (AB — проекция наклонной SB на плоскость основания. Так как AB перпендикулярна BC по условию, то и SB перпендикулярна BC).

Угол между боковой гранью SBC и основанием в этом случае — угол ABS.

Площадь боковой поверхности равна сумме площадей прямоугольных треугольников:

Так как в данном случае

Если основание пирамиды — равнобедренный треугольник

В этом случае угол между плоскостью боковой грани BCS и плоскостью основания — это угол AFS, где AF — высота, медиана и биссектриса равнобедренного треугольника ABC.

Аналогично — если в основании пирамиды лежит равносторонний треугольник ABC.

Если основание пирамиды — параллелограмм

В этом случае основание пирамиды является ортогональной проекцией боковых граней, не перпендикулярных основанию.

Если разбить основание на два треугольника, то

где α и β — соответственно углы между плоскостями ADS и CDS и плоскостью основания.

Если BF и BK — высоты параллелограмма, то угол BFS — это угол наклона боковой грани CDS к плоскости основания, а угол BKS — угол наклона грани ADS.

(чертеж сделан для случая, когда B — тупой угол).

Если в основании пирамиды лежит ромб ABCD, то углы BFS и BKS равны. Треугольники ABS и CBS, а также ADS и CDS в этом случае также равны.

Если основание пирамиды — прямоугольник

В этом случае угол между плоскостью боковой грани SAD и плоскостью основания есть угол SAB,

а угол между плоскостью боковой грани SCD и плоскостью основания — угол SCB

(по теореме о трех перпендикулярах).

Понятие пирамиды

Определение 1

Геометрическая фигура, образованная многоугольником и точкой, не лежащей в плоскости, содержащей этот многоугольник, соединенной со всеми вершинами многоугольника называется пирамидой (рис. 1).

Многоугольник, из которого составлена пирамида, называется основанием пирамиды, получаемые при соединение с точкой треугольники - боковыми гранями пирамиды, стороны треугольников -- сторонами пирамиды, а общая для всех треугольников точка-- вершиной пирамиды.

Виды пирамид

В зависимости от количества углов в основании пирамиды ее можно назвать треугольной, четырехугольной и так далее (рис. 2).

Рисунок 2.

Еще один вид пирамид -- правильная пирамида.

Введем и докажем свойство правильной пирамиды.

Теорема 1

Все боковые грани правильной пирамиды являются равнобедренными треугольниками, которые равны между собой.

Доказательство.

Рассмотрим правильную $n-$угольную пирамиду с вершиной $S$ высотой $h=SO$. Опишем вокруг основания окружность (рис. 4).

Рисунок 4.

Рассмотрим треугольник $SOA$. По теореме Пифагора, получим

Очевидно, что так будет определяться любое боковое ребро. Следовательно, все боковые ребра равны между собой, то есть все боковые грани -- равнобедренные треугольники. Докажем, что они равны между собой. Так как основание -- правильный многоугольник, то основания всех боковых граней равны между собой. Следовательно, все боковые грани равны по III признаку равенства треугольников.

Теорема доказана.

Введем теперь следующее определение, связанное с понятием правильной пирамиды.

Определение 3

Апофемой правильной пирамиды называется высота её боковой грани.

Очевидно, что по теореме один все апофемы равны между собой.

Теорема 2

Площадь боковой поверхности правильной пирамиды определяется как произведение полупериметра основания на апофему.

Доказательство.

Обозначим сторону основания $n-$угольной пирамиды через $a$, а апофему через $d$. Следовательно, площадь боковой грани равна

Так как, по теореме 1, все боковые стороны равны, то

Теорема доказана.

Еще один вид пирамиды -- усеченная пирамида.

Определение 4

Если через обычную пирамиду провести плоскость, параллельную её основанию, то фигура, образованная между этой плоскостью и плоскостью основания называется усеченной пирамидой (рис. 5).

Рисунок 5. Усеченная пирамида

Боковыми гранями усеченной пирамиды являются трапеции.

Теорема 3

Площадь боковой поверхности правильной усеченной пирамиды определяется как произведение суммы полупериметров оснований на апофему.

Доказательство.

Обозначим стороны оснований $n-$угольной пирамиды через $a\ и\ b$ соответственно, а апофему через $d$. Следовательно, площадь боковой грани равна

Так как все боковые стороны равны, то

Теорема доказана.

Пример задачи

Пример 1

Найти площадь боковой поверхности усеченной треугольной пирамиды, если она получена из правильной пирамиды со стороной основания 4 и апофемой 5 путем отсечения плоскостью, проходящей через среднюю линию боковых граней.

Решение.

По теореме о средней линии получим, что верхнее основание усеченной пирамиды равно $4\cdot \frac{1}{2}=2$, а апофема равна $5\cdot \frac{1}{2}=2,5$.

Тогда, по теореме 3, получим

Многогранники. Основные элементы. Выпуклые и невыпуклые многогранники.

Многогранник – это ограниченное тело, поверхность которого состоит из конечного числа многоугольников. Многоугольники, составляющие многогранную поверхность, называется ее гранями, их стороны – ее ребрами, а их вершины – вершинами многогранной поверхности. Отрезки, соединяющие вершины многогранника, не принадлежащей одной грани, наз-ся диагоналями . Простой многогранник (двумерный или трехмерный) называется выпуклым , если он расположен по одну сторону от любой плоскости, содержащей его грань (н-р: куб, призма, пирамиды, усеченные пирамиды и др.). Теорема Декарта – Эйлера о многогранниках. Т1: Сумма числа вершин и числа граней выпуклого многогранника на 2 единицы больше числа его ребер (В+Г=Р+2). Т2: Эйлерова характеристика выпуклого многогранника равна двум. Выпуклые правильные многогранники. Многогранник наз-ся правильным, если все его грани правильные многоугольники и все многогранные углы при вершинах равны и правильны. Многогранный угол наз-ся правильным, если все его двугранные углы равны между собой и все его плоские углы равны между собой. Примечание: 1. Говорят, что 2 правильных многогранника относятся к одному типу, если у них одинаковы следующие характеристики: число вершин – В, число граней – Г, число ребер – Р, число вершин у каждой грани – n, число граней в каждой вершине s. 2. Не следует путать выпуклые правильные многогранники с правильной призмой, правильной пирамидой, прав.усеченной пирамидой, т.к. у названных фигур равны только ребра оснований, а боковые ребра могут быть и не равны ребрам основания и, кроме того, не все их грани являются равными многоугольниками. Существует 5 типов правильных выпуклых многогранников: тетраэдр, гексаэдр, октаэдр, додекаэдр, икосаэдр. Невыпуклый многогранник – многогранник, расположенный по разные стороны от плоскости одной из его граней. Существует 4 типа (или тела Кеплера - Пуансо): Большой икосаэдр, Малый звездчатый додекаэдр, большой звездчатый додекаэдр.



Призма. Основные элементы. Прямая и наклонная призмы. Правильная призма. Построение изображения призмы.

Призма – многогранник, у которого 2 грани, называемые основаниями призмы, равны и их соответственные стороны параллельны, а остальные грани – параллелограммы, у каждого из которых 2 стороны являются соответственными сторонами оснований. Стороны боковых граней называются ребрами оснований, стороны оснований называются ребрами оснований, вершины оснований наз-ся вершинами призмы. Все равны между собой, равны и параллельны соотв.стороны оснований. Высотой призмы наз-ся расстояние между плоскостями и ее основаниями. Призма называется прямой , если её боковые ребра перпендикулярны основанию. В такой случае боковые ребра являются высотой прямой призмы. У прямой призмы боковые грани – прямоугольники. Наклонная призма – призма, боковые ребра которой не перпендикулярны основанию. Прямая призма называется правильной, если ее основанием является правильный многогранник. Построение : сначала строится одно из оснований. Это будет некоторый плоский многоугольник. Затем из вершин многоугольника проводятся боковые ребра призмы в виде параллельных отрезков равной длины. Концы этих отрезков соединяются, и получается другое основание призмы. Невидимые ребра проводятся штриховыми линиями.

Параллелепипед. Основные элементы. Свойства параллелепипеда. Прямой и прямоугольный параллелепипед. Куб. Построение изображения парал-да и куба.

Параллелепипед – призма, у которой основание – параллелограмм. Параллелепипед имеет 8 вершин, 12 ребер, 6 граней. Эл-ты: 2 грани параллелепипеда, не имеющие общего ребра, называются противоположными, а имеющие общее ребро – смежными. Две вершины парал-да, не принадлежащие одной грани, наз-ся противоположными. Отрезок, соединяющий противоположные вершины, наз-ся диагональю парал-да. Длины трех ребер прямоугольного парал-да, имеющих общую вершину, наз-т его измерениями. Свойства : 1. В параллелепипеде все его диагонали пересекаются в одной точке и делятся этой точкой пополам. 2. Противоположные грани парал-да попарно равны и параллельны. 3. Боковые грани прямого параллелепипеда - прямоугольники. 4. Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений. Прямоугольный параллелепипед – прямой параллелепипед, основание которого прямоугольники, параллельные и равные между собой. Прямой параллелепипед - это параллелепипед, боковые рёбра которого перпендикулярны основанию. Однако в основании прямого параллелепипеда в общем случае лежит параллелограмм. А вот в основании прямоугольного параллелепипеда - обязательно прямоугольник. Куб – это прямоугольный параллелепипед, все ребра которого равны, т.е. все грани которого – квадраты. Квадрат диагонали куба = 3*А (в квадрате), А – измерение куба. Построение: Построить параллелепипед можно с помощью обычной и треугольной линейки. Суть построений заключается в параллельном проведении всех линий геометрической фигуры; Чтобы построить куб во всех этих положениях, достаточно построить переднюю грань, провести линии из четырех углов в точку схода, отложить на этих линиях верхние и нижние ребра и соединить их между собой.

Пирамида. Основные элементы. Правильная пирамида, её свойства. Построение изображения пирамиды.

Пирамида - многогранник, одна грань которого плоский многоугольник (основание пирамиды), а остальные грани (боковые грани) - треугольники с общей вершиной, а их общая вершина - вершина пирамиды.

Высота - перпендикуляр, опущенный из вершины пирамиды на плоскость её основания, а также длина этого перпендикуляра.

Пирамида называется правильной , если её основание - правильный многоугольник и высота проходит через центр этого многоугольника.

Высота боковой грани правильной пирамиды - апофема .

Сечение пирамиды плоскостью, проходящей через вершину пирамиды и диагональ основания - диагональное сечение пирамиды.

Свойства правильной пирамиды:

1. Апофемы равны.

2. Высота проходит через центр основания.

3. Боковые ребра равны между собой

4. все боковые грани являются равными равнобедренными треугольниками

5.площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему

6. все боковые грани образуют с плоскостью основания правильной пирамиды равные углы

7. все высоты боковых граней равны между собой

Чтобы изобразить правильную пирамиду , сначала чертят правильный многоугольник, лежащий в основании, и его центр - точку О. Затем проводят вертикальный отрезок OS, изображающий высоту пирамиды. Точку S соединяют со всеми вершинами основания.

Формула площади боковой поверхности для правильной пирамиды: ½ h * P основания

Решая задачу C2 методом координат, многие ученики сталкиваются с одной и той же проблемой. Они не могут рассчитать координаты точек , входящих в формулу скалярного произведения. Наибольшие трудности вызывают пирамиды . И если точки основания считаются более-менее нормально, то вершины - настоящий ад.

Сегодня мы займемся правильной четырехугольной пирамидой. Есть еще треугольная пирамида (она же - тетраэдр ). Это более сложная конструкция, поэтому ей будет посвящен отдельный урок.

Для начала вспомним определение:

Правильная пирамида - это такая пирамида, у которой:

  1. В основании лежит правильный многоугольник: треугольник, квадрат и т.д.;
  2. Высота, проведенная к основанию, проходит через его центр.

В частности, основанием четырехугольной пирамиды является квадрат . Прямо как у Хеопса, только чуть поменьше.

Ниже приведены расчеты для пирамиды, у которой все ребра равны 1. Если в вашей задаче это не так, выкладки не меняются - просто числа будут другими.

Вершины четырехугольной пирамиды

Итак, пусть дана правильная четырехугольная пирамида SABCD , где S - вершина, основание ABCD - квадрат. Все ребра равны 1. Требуется ввести систему координат и найти координаты всех точек. Имеем:

Вводим систему координат с началом в точке A :

  1. Ось OX направлена параллельно ребру AB ;
  2. Ось OY - параллельно AD . Поскольку ABCD - квадрат, AB ⊥ AD ;
  3. Наконец, ось OZ направим вверх, перпендикулярно плоскости ABCD .

Теперь считаем координаты. Дополнительное построение: SH - высота, проведенная к основанию. Для удобства вынесем основание пирамиды на отдельный рисунок. Поскольку точки A , B , C и D лежат в плоскости OXY , их координата z = 0. Имеем:

  1. A = (0; 0; 0) - совпадает с началом координат;
  2. B = (1; 0; 0) - шаг на 1 по оси OX от начала координат;
  3. C = (1; 1; 0) - шаг на 1 по оси OX и на 1 по оси OY ;
  4. D = (0; 1; 0) - шаг только по оси OY .
  5. H = (0,5; 0,5; 0) - центр квадрата, середина отрезка AC .

Осталось найти координаты точки S . Заметим, что координаты x и y точек S и H совпадают, поскольку они лежат на прямой, параллельной оси OZ . Осталось найти координату z для точки S .

Рассмотрим треугольники ASH и ABH :

  1. AS = AB = 1 по условию;
  2. Угол AHS = AHB = 90°, поскольку SH - высота, а AH ⊥ HB как диагонали квадрата;
  3. Сторона AH - общая.

Следовательно, прямоугольные треугольники ASH и ABH равны по одному катету и гипотенузе. Значит, SH = BH = 0,5 · BD . Но BD - диагональ квадрата со стороной 1. Поэтому имеем:

Итого координаты точки S :

В заключение, выпишем координаты всех вершин правильной прямоугольной пирамиды:


Что делать, когда ребра разные

А что, если боковые ребра пирамиды не равны ребрам основания? В этом случае рассмотрим треугольник AHS :


Треугольник AHS - прямоугольный , причем гипотенуза AS - это одновременно и боковое ребро исходной пирамиды SABCD . Катет AH легко считается: AH = 0,5 · AC . Оставшийся катет SH найдем по теореме Пифагора . Это и будет координата z для точки S .

Задача. Дана правильная четырехугольная пирамида SABCD , в основании которой лежит квадрат со стороной 1. Боковое ребро BS = 3. Найдите координаты точки S .

Координаты x и y этой точки мы уже знаем: x = y = 0,5. Это следует из двух фактов:

  1. Проекция точки S на плоскость OXY - это точка H ;
  2. Одновременно точка H - центр квадрата ABCD , все стороны которого равны 1.

Осталось найти координату точки S . Рассмотрим треугольник AHS . Он прямоугольный, причем гипотенуза AS = BS = 3, катет AH - половина диагонали. Для дальнейших вычислений нам потребуется его длина:

Теорема Пифагора для треугольника AHS : AH 2 + SH 2 = AS 2 . Имеем:

Итак, координаты точки S :

Данный видеоурок поможет пользователям получить представление о теме Пирамида. Правильная пирамида. На этом занятии мы познакомимся с понятием пирамиды, дадим ей определение. Рассмотрим, что такое правильная пирамида и какими свойствами она обладает. Затем докажем теорему о боковой поверхности правильной пирамиды.

На этом занятии мы познакомимся с понятием пирамиды, дадим ей определение.

Рассмотрим многоугольник А 1 А 2 ...А n , который лежит в плоскости α, и точку P , которая не лежит в плоскости α (рис. 1). Соединим точку P с вершинами А 1 , А 2 , А 3 , … А n . Получим n треугольников: А 1 А 2 Р , А 2 А 3 Р и так далее.

Определение . Многогранник РА 1 А 2 …А n , составленный из n -угольника А 1 А 2 ...А n и n треугольников РА 1 А 2 , РА 2 А 3 РА n А n -1 , называется n -угольной пирамидой. Рис. 1.

Рис. 1

Рассмотрим четырехугольную пирамиду PABCD (рис. 2).

Р - вершина пирамиды.

ABCD - основание пирамиды.

РА - боковое ребро.

АВ - ребро основания.

Из точки Р опустим перпендикуляр РН на плоскость основания АВСD . Проведенный перпендикуляр является высотой пирамиды.

Рис. 2

Полная поверхность пирамиды состоит из поверхности боковой, то есть площади всех боковых граней, и площади основания:

S полн = S бок + S осн

Пирамида называется правильной, если:

  • ее основание - правильный многоугольник;
  • отрезок, соединяющий вершину пирамиды с центром основания, является ее высотой.

Пояснение на примере правильной четырехугольной пирамиды

Рассмотрим правильную четырехугольную пирамиду PABCD (рис. 3).

Р - вершина пирамиды. Основание пирамиды АВСD - правильный четырехугольник, то есть квадрат. Точка О , точка пересечения диагоналей, является центром квадрата. Значит, РО - это высота пирамиды.

Рис. 3

Пояснение : в правильном n -угольнике центр вписанной и центр описанной окружности совпадает. Этот центр и называется центром многоугольника. Иногда говорят, что вершина проектируется в центр.

Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой и обозначается h а .

1. все боковые ребра правильной пирамиды равны;

2. боковые грани являются равными равнобедренными треугольниками.

Доказательство этих свойств приведем на примере правильной четырехугольной пирамиды.

Дано : РАВСD - правильная четырехугольная пирамида,

АВСD - квадрат,

РО - высота пирамиды.

Доказать :

1. РА = РВ = РС = РD

2. ∆АВР = ∆ВCР =∆СDР =∆DAP См. Рис. 4.

Рис. 4

Доказательство .

РО - высота пирамиды. То есть, прямая РО перпендикулярна плоскости АВС , а значит, и прямым АО, ВО, СО и , лежащим в ней. Значит, треугольники РОА, РОВ, РОС, РОD - прямоугольные.

Рассмотрим квадрат АВСD . Из свойств квадрата следует, что АО = ВО = СО = DО.

Тогда у прямоугольных треугольников РОА, РОВ, РОС, РОD катет РО - общий и катеты АО, ВО, СО и равны, значит, эти треугольники равны по двум катетам. Из равенства треугольников вытекает равенство отрезков, РА = РВ = РС = РD. Пункт 1 доказан.

Отрезки АВ и ВС равны, так как являются сторонами одного квадрата, РА = РВ = РС . Значит, треугольники АВР и ВCР - равнобедренные и равны по трем сторонам.

Аналогичным образом получаем, что треугольники АВР, ВCР, СDР, DAP равнобедренны и равны, что и требовалось доказать в пункте 2.

Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему:

Для доказательства выберем правильную треугольную пирамиду.

Дано : РАВС - правильная треугольная пирамида.

АВ = ВС = АС.

РО - высота.

Доказать : . См. Рис. 5.

Рис. 5

Доказательство.

РАВС - правильная треугольная пирамида. То есть АВ = АС = ВС . Пусть О - центр треугольника АВС , тогда РО - это высота пирамиды. В основании пирамиды лежит равносторонний треугольник АВС . Заметим, что .

Треугольники РАВ, РВC, РСА - равные равнобедренные треугольники (по свойству). У треугольной пирамиды три боковые грани: РАВ, РВC, РСА . Значит, площадь боковой поверхности пирамиды равна:

S бок = 3S РАВ

Теорема доказана.

Радиус окружности, вписанной в основание правильной четырехугольной пирамиды, равен 3 м, высота пирамиды равна 4 м. Найдите площадь боковой поверхности пирамиды.

Дано : правильная четырехугольная пирамида АВСD ,

АВСD - квадрат,

r = 3 м,

РО - высота пирамиды,

РО = 4 м.

Найти : S бок. См. Рис. 6.

Рис. 6

Решение .

По доказанной теореме, .

Найдем сначала сторону основания АВ . Нам известно, что радиус окружности, вписанной в основание правильной четырехугольной пирамиды, равен 3 м.

Тогда, м.

Найдем периметр квадрата АВСD со стороной 6 м:

Рассмотрим треугольник BCD . Пусть М - середина стороны DC . Так как О - середина BD , то (м).

Треугольник DPC - равнобедренный. М - середина DC . То есть, РМ - медиана, а значит, и высота в треугольнике DPC . Тогда РМ - апофема пирамиды.

РО - высота пирамиды. Тогда, прямая РО перпендикулярна плоскости АВС , а значит, и прямой ОМ , лежащей в ней. Найдем апофему РМ из прямоугольного треугольника РОМ .

Теперь можем найти боковую поверхность пирамиды:

Ответ : 60 м 2 .

Радиус окружности, описанной около основания правильной треугольной пирамиды, равен м. Площадь боковой поверхности равна 18 м 2 . Найдите длину апофемы.

Дано : АВСP - правильная треугольная пирамиды,

АВ = ВС = СА,

R = м,

S бок = 18 м 2 .

Найти : . См. Рис. 7.

Рис. 7

Решение .

В правильном треугольнике АВС дан радиус описанной окружности. Найдем сторону АВ этого треугольника с помощью теоремы синусов.

Зная сторону правильного треугольника ( м), найдем его периметр.

По теореме о площади боковой поверхности правильной пирамиды , где h а - апофема пирамиды. Тогда:

Ответ : 4 м.

Итак, мы рассмотрели, что такое пирамида, что такое правильная пирамида, доказали теорему о боковой поверхности правильной пирамиды. На следующем уроке мы познакомимся с усечённой пирамидой.

Список литературы

  1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е изд., испр. и доп. - М.: Мнемозина, 2008. - 288 с.: ил.
  2. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил.
  3. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. - 6-е изд., стереотип. - М.: Дрофа, 008. - 233 с.: ил.
  1. Интернет портал «Якласс» ()
  2. Интернет портал «Фестиваль педагогических идей «Первое сентября» ()
  3. Интернет портал «Slideshare.net» ()

Домашнее задание

  1. Может ли правильный многоугольник быть основанием неправильной пирамиды?
  2. Докажите, что непересекающиеся ребра правильной пирамиды перпендикулярны.
  3. Найдите величину двугранного угла при стороне основания правильной четырехугольной пирамиды, если апофема пирамиды равна стороне ее основания.
  4. РАВС - правильная треугольная пирамида. Постройте линейный угол двугранного угла при основании пирамиды.