Генетические виды. Типы наследования

Генетический критерий оперирует набором хромосом, свойственным конкретному виду: числом хромосом и особенностями их строения. Этот критерий достаточно надежный, но не абсолютный, т.к. в пределах вида могут быть распространены хромосомные отклонения (мутации).[ ...]

Генетический фонд - совокупность всех видов живого, обладающих определенными наследственными задатками. Каждый биологический вид неповторим. Он хранит информацию филогенетического развития, расшифровка которой имеет исключительное значение, как научное, так и практическое. Исчезновение хотя бы одного вида - большая утрата для науки и практики.[ ...]

Генетические виды динамики ландшафтных комплексов. Проявления динамики ландшафтов вызваны суммой многих слагаемых, но из числа последних всегда можно выделить ведущий фактор и уже по нему различать ее генетические виды.[ ...]

Банк генетический - хранилище семян, замороженных тканей, половых клеток растений и животных, пригодных для последующего воспроизводства живых организмов, - их видов, сортов и пород; особенно семян культурных растений и их диких сородичей. Акад. Н. И. Вавиловым и сотрудниками Всесоюзного института растениеводства (ВИРа) в многочисленных экспедициях, охвативших все континенты, в 40-х гг. была собрана уникальная коллекция мировых растительных ресурсов из 250 тыс. образцов, из них 36 тыс. образцов пшеницы, 10 тыс. - кукурузы, 23 тыс. образцов кормовых ит. д. Н. И. Вавилов еще в 1939 г. в своей рукописи незавершенной книги «Пять континентов» (она увидела свет лишь в 1987 г.) писал: «Чтобы улучшить сорта культурных растений, надо иметь необходимый «строительный материал», располагать исходными видами, сортами, использовать их в соответствующих районах для непосредственной культуры или взять у них наиболее ценные качества путем скрещивания» .[ ...]

Запас генетической информации вида Homo sapiens, оцененный по числу пар нуклеотидов ДНК в геноме человека, составляет 7 109 . Примерно таков же средний объем сигнальной информации в долговременной памяти одного взрослого человека - около 8 109 бит. Большая часть этой информации у подавляющего большинства одновременно живущих людей совпадает. Поэтому умножать приведенную цифру на число людей было бы неправильно. По оценке В.Г. Горшкова (1995), уникальные несовпадения могут быть лишь у 0,01% (6 105) людей. Отсюда суммарный запас сигнальной информации в долговременной памяти людей, совпадающий, по-видимому, с объемом культурной и технической информации цивилизации, составляет 8 109 6 ■ 105 5 1015 бит. Книги и компьютеры практически не увеличивают этот запас (записанная в них информация не мертва только в том случае, если она содержится в памяти живущих людей), но многократно повышают доступность и оперативность его использования. Объемы памяти всей компьютерной техники способны вместить как культурную и техническую информацию цивилизации, так и генетическую информацию всей биоты.[ ...]

Человек как вид, принципиально отличающийся от всех предыдущих видов, возник в процессе эволюции под воздействием законов, общих для всех живых существ в результате фундаментального генетически закрепленного открытия в процессе эволюции организмов биосферы. Такие кардинальные открытия, приводящие к возникновению принципиально новых видов, происходили и до возникновения человека. Так, возникли многоклеточные организмы, позвоночные животные, гомойотермные животные с постоянной температурой тела.[ ...]

На молекулярно-генетическом уровне особенно чувствительно воздействие загрязняющих веществ, ионизирующей и ультрафиолетовой радиации. Они вызывают нарушение генетических систем, структуры клеток и подавляют действие ферментных систем. Все это приводит к болезням человека, животных и растений, угнетению и даже уничтожению видов, живых организмов.[ ...]

Учитывая указанные генетические особенности человека и что он занял такие пространства, где воздействия среды во многом противоположны, можно констатировать: человек, в отличие от животных, поставил вид в условия широчайшей экологической ниши, характеризующейся общей направленностью адаптаций.[ ...]

Социальное развитие вида человек разумный никто не отрицает. Зато его современный биологический прогресс оспаривается многими. Основанием для этого служит морфологическое сходство наших далеких предков с ныне живущими людьми. Предполагается, что генетически человечество принципиально однородно уже десятки тысяч лет, а факторы отбора в человеческих популяциях почти не действуют. И то, и другое утверждение кажутся весьма сомнительными. Расовая и адаптивная дифференциация людей1, шедшая на протяжении всего времени существования вида человек разумный, скорее говорят об обратном. Генетическая целостность вида в смысле репродуктивных возможностей и предполагаемой тысячелетней стабильности умственных потенций (тоже гипотеза, требующая доказательств, прямые из которых не могут быть получены2, так как оживить далеких предков невозможно) еще не означают его неизменности. Что касается отбора в условиях огромного давления мутаций, то тут нередко встречается упрощенно-биологический, огрубленный подход к человеку. Видимо, преимущества имеет более тонкий и разносторонний анализ, учитывающий реальные ограничения изменчивости, но и не сбрасывающий со счетов трудноуловимый «в снятом виде» под социальными наслоениями биологический механизм. После длительного процесса расообразования ныне идет обратный - слияния рас. Однако отнюдь не так просто, бесконфликтно и быстро, как это нередко упрощенно принимается.[ ...]

На КЧО цветом даются генетические типы четвертичных отложений, их возраст и литологический состав. Ландшафтно-индикационная интерпретация КЧО позволяет использовать их для выявления ландшафтов, видов местностей, а также для получения сведений о рельефе, литологическом составе отложений и лесорастительных условиях. Совместный анализ КЧО с ОК, картами лесов и планами лесонасаждений позволяет составить индикационные таблицы, необходимые для ландшафтного картографирования (табл. 10).[ ...]

Наибольшее богатство генетических ресурсов сосредоточено в тропических лесах, в прибрежных водах тропических морей, в зонах коралловых рифов, т.е. там, где расположены в основном экономически слабые развивающиеся страны. А генетические лаборатории и биотехнологические мощности, использующие эти ресурсы, принадлежат процветающим компаниям развитых стран. Поскольку в связи с угрозой исчезновения многих генетических форм ставится глобальная задача сохранения биоразнообразия, развивающиеся страны полагают справедливым передачу им части прибыли биотехнологических компаний для проведения мер по сохранению видов или передачу им на льготных условиях новых технологий и созданных на их основе материалов, нужных для охраны природной среды, биоиндикацим и биологических методов борьбы с вредителями сельского хозяйства.[ ...]

Ареалы двух близкородственных видов перекрываются. В тех частях ареалов, где встречается только один вид, его популяции сходны с популяциями другого вида, так что их иногда даже трудно отличить друг от друга. В области перекрывания, где оба вида встречаются вместе, их популяции расходятся больше и различимы легко, т. е. «сдвинуты» одна относительно другой по одному или большему числу признаков. Эти признаки могут быть морфологическими, экологическими или физиологическими; предполагается, что они генетически обусловлены.[ ...]

Человечество как биологический вид находится в ткани живого вещества планеты. Пока недостаточно ясна степень единства этого образования, глубина взаимосвязанности в нем видов. Имеющиеся косвенные данные говорят о наличии взаимозависимости. Так, вирусы гриппа непатогенных для человека форм широко циркулируют среди животных3. Генетические рекомбинации приводят к одинаковым изменениям вируса и к практически одновременной вспышке заболевания по всему миру, хотя природные резервуары вируса чрезвычайно разнообразны (дикие и домашние птицы и млекопитающие), а контакты между людьми нередко совершенно исключены. Английский эпидемиолог XIX века Черльз Крейтон винил в одновременности пандемий гриппа некие глобальные «миазмы»4. Были довольно успешные попытки связать время пандемий гриппа с периодами повышенной солнечной активности: 1917, 1928, 1937, 1947, 1957, 1968 и 1980- 81 гг.- одновременно годы высокой солнечной активности и пандемий гриппа5. Поднялась волна гриппа и в период повышения солнечной активности 1990-1991 гг. Впрочем, сейчас они следуют почти ежегодно.[ ...]

Жизнь на Земле однотипна в том смысле, что генетический код любого организма, любого биологического вида состоит из сходных органических соединений. Несмотря на это сходство, жизнь на Земле удивительно разнообразна. Ученым известно сегодня около 2 млн биологических видов, из них 20% - растения, 80% - животные.[ ...]

Тем не менее даже в пределах одного и того же вида между популяциями из различных мест часто существуют различия по характеру реакций на воздействия температуры, и различия эти нередко невозможно целиком списать на счет акклиматизации; скорее всего они представляют собой проявления генетических различий (рис. 2.9). Следовательно, было бы ошибочно полагать, что данный вид обладает некой единой нормой реагирования на температуру. Но все же влияние географических различий обычно не столь велико [возможные причины этого обсуждаются в работе Уоллеса (Wallace, I960)], и для большинства видов можно указать характерные для них температурные реакции. Это обстоятельство ограничивает интервал температур, при которых особи данных видов могут существовать, а тем самым ограничивает и набор местообитаний, которые они могут занимать.[ ...]

По степени развития основных свойств выделяются генетические виды почв. Так, например, обыкновенные черноземы подразделяют на средне- и малогумусные виды по содержанию гумуса.[ ...]

Программа эмочий может быть сложной, но она является генетически закрепленной, однозначной и неизменной для каждого вида. Она не может поддаваться никакой коррекции под влиянием внешних условий. Кроме того, у животных существует внегенетическая память, которая сохраняется на протяжении жизни особи, но не передается последующим поколениям. К этому виду памяти относятся рефлексы и импринтинг (информация, впечатываемая в память в раннем возрасте: запоминание координат местности рождения у перелетных птиц, речь у человека и т.д.).[ ...]

Утрата любого, даже самого бесполезного, на первый взгляд, вида означает необратимое обеднение генетического фонда планеты.[ ...]

Другое положение у человека, который является единственным видом в биосфере, у которого потребности неограниченно возрастают по мере развития цивилизации. Генетические потребности человека как вида, запрограмхмированные в геноме, остаются практически неизменными. Скорость изменения этой части потребностей человека, как и у всех остальных видов, определяется скоростью эволюции.[ ...]

В зонах сероводородного заражения (а Н28 может находиться в них в виде раствора и газа) происходит реакция взаимодействия Н28 с растворенными солями и металлами. Ее результатом является образование труднорастворимых сульфидов. Так формируются сероводородные барьеры. Глобальное распространение и генетическое разнообразие таких барьеров в биосфере позволяет объединять сероводородные барьеры по отношению к породам (осадкам), в которых они образуются и где происходит отложение сульфидов. При таком подходе в биосфере можно выделить осадочно-диагенети-ческие сероводородные и эпигенетические барьеры. Кроме них можно говорить о магматическом барьере, выходящем за пределы биосферы. Такое подразделение имеет и определенный геохимический смысл: есть некоторые различия в изотопном составе серы сульфидов, образующихся на этих барьерах.[ ...]

Мутагены поражают самое драгоценное, что создано эволюцией живой материи,- генетическую программу человека, а также генофонды популяций всех видов животных, растений, бактерий и вирусов, населяющих биосферу.[ ...]

Ландшафтные местности - наиболее крупные морфологические части ландшафта Они состоят из генетически и динамически сопряженных урочищ, совмещающихся с комплексом мезоформ рельефа, в пределах крупных форм (поймы крупных рек, днища долин малых рек, обособленные участки крупных речных террас, древние ложбины стока, однородные по составу повторяющихся видов урочищ, обособленные участки равнин, ограниченные уступами участки лавовых плато, ступенчатые расчлененные эрозией склоны плоскогорий и столовых гор, наклонные аккумулятивные переувлажненные равнины, обособленные окружающими их трапповыми грядами, и др.).[ ...]

ПРОДОЛЖИТЕЛЬНОСТЬ ЖИЗНИ ВИДОВАЯ средний максимальный возраст, дост игаемый особями данного вида при наиболее благоприятных условиях существования, т. е. лимитируемый лишь генетическими особенностями особей.[ ...]

Попросту говоря, фауна и флора островов обладают двумя отличительными чертами; на островах меньше видов, чем на сравнимых материковых участках тех же размеров; кроме того, многие из островных видов слегка или даже существенно отличаются от видов, населяющих ближайший сравнимый участок материка. Основных причин тому две. Во-первых, фауна и флора острова ограничены формами, предки которых сумели до этого острова добраться; сила этого ограничения, конечно, определяется удаленностью острова от материка или от других островов и различна для разных групп организмов в зависимости от присущей этим организмам способности к расселению. Во-вто-рых, из-за той же самой обособленности скорость эволюционного преобразования островной популяции может оказаться достаточной для того, чтобы преодолеть последствия обмена генетическим материалом с родительской популяцией на материке.[ ...]

Таким образом, можно сказать, что современный человек часть своего генома, неооходимого для жизни, имеет в виде культурного наследия прошлых поколений. В противоположность генетическому наследию (генетической информации), надежно охраняемому в нормальном геноме вида, пока существует достаточное для воспроизводства количество особей, культурное наследие (культурная информация) является достаточно уязвимым и может быть утеряно при жизни вида.[ ...]

Уникальным свойством, присущим только человеку, является способность использовать информацию, не закрепленную в генетической программе. Все известные организмы, кроме человека, содержат всю необходимую для существования информацию об окружающей среде в своем геноме. Ни одно животное не передает усвоенные при дрсссировкс навыки своему потомству. Вся информация, накопленная во внегенетиче-ской памяти организма, сохраняется только на протяжении жизни одной особи. Такое положение предотвращает у животного возможность передачи следующим поколениям неверной или не нужной информации.[ ...]

Расселение человека сопровождалось возникновением расового и этнического полиморфизма, зарождением наций. Высокая генетическая адаптивность ранних представителей Homo sapiens существенно дополнилась необычайно возросшими возможностями адаптивного поведения. Навыки оптимизации микросреды, огонь, одежда, жилища, изготовление и применение все более совершенных орудий, т.е. зачатки техногенеза способствовали освоению разных природных зон и разных стереотипов использования природных ресурсов. Возникшие этносы стали по существу эколого-географическими жизненными формами существования вида Homo sapiens (JI.H. Гумилев, 1990).[ ...]

Объектом изучения демоэкологии, или популяционной экологии, служит популяция. Ее определяют как группу организмов одного вида (внутри которой особи могут обмениваться генетической информацией), занимающую конкретное пространство и функционирующую как часть биотического сообщества. Популяция характеризуется рядом признаков; единственным их носителем является группа, но не особи в этой группе. Важнейшее свойство популяции -плотность, т. е. число особей, отнесенное к некоторой единице пространства.[ ...]

Как известно, наследственная информация организмов концентрируется в половых клетках в особых образованиях - хромосомах в виде нуклеиновых кислот (ДНК и РНК). Молекулы этих кислот или их отдельные участки и называют генами. Совокупность всех генов,- определяющих наследственные признаки, является генотипом, а совокупность всех особей, хранящих и передающих по наследству эту информацию потомкам, представляет собой генетический фонд, или генофонд.[ ...]

Важное значение для обеспечения биобезопасности и сохранения биоразнообразия имеют также профилактические меры по недопущению переноса генетической информации от домашних форм к диким видам и сокращению риска генетического загрязнения генофонда редких и исчезающих видов.[ ...]

Очень важной задачей является сохранение в качестве генофонда видового разнообразия растений. В случае, когда исчерпаны все резервы сохранения видов растений, создают специальные хранилища - генетические банки, где генофонд видов сохраняется в виде семян.[ ...]

Особый интерес представляет сопоставление энергетических и информационных потенциалов биосферы и техносферы. Согласно имеющимся оценкам (Горшков, 1987, 1995), запас генетической информации во всей биоте биосферы составляет около 1015 бит. Эта величина получена как произведение числа видов в биосфере 107 и среднего количества информации в геноме одного вида, которое можно считать совпадающим с информацией генома самой многочисленной группы видов - насекомых, имеющей порядок 108 бит. Внутривидовое генетическое разнообразие не увеличивает полученную оценку, поскольку включает в основном распадные изменения генома.[ ...]

К дифференцированным экологическим объектам относятся отдельные природные объекты: земля, недра, воды, леса, нелесная растительность, атмосферный воздух, животный мир, генетический фонд, природные ландшафты, природные ресурсы и природные комплексы. В природных комплексах на одной территории функционируют несколько природных объектов и ресурсов. И хотя вся природная среда - это не что иное, как один сплошной природный комплекс, тем не менее закон выделяет его в самостоятельный объект экологической защиты, имея в виду не любое соединение природных объектов, а лишь особо охраняемые территории: природные заповедники, заказники, национальные природные парки, памятники живой и неживой природы, лесопарки, типичные или редкие ландшафты. Все основные объекты природы относятся к особо охраняемым.[ ...]

ПОЛЕЗНОСТЬ (ОРГАНИЗМОВ) условное понятие, иногда применяемое для оценки роли растений и животных в природе и хозяйстве человека. В природе пет ни «полезных», ни «вредных» видов, существует тесная эволюционнообусловленная взаимная приспособленность организмов, при которой каждый вид оказывается «полезным», играя определенную роль в экосистемах и являясь носителем уникальной генетической информации.[ ...]

В составе биозкологического (санитарно-гигиенического) мониторинга большое внимание уделяют наблюдениям за ростом врожденных дефектов в популяциях человека и динамикой генетических последствий загрязнения биосферы, в первую очередь мутагенами. Экологическую опасность их трудно переоценить, ибо, как подчеркивают Д. П. Никитин и Ю. В; Новиков (1980), «мутагены поражают самое драгоценное, что создано эволюцией живой материи, - генетическую программу человека, а также генофонды популяций всех видов животных, растений, бактерий и вирусов, населяющих биосферу».[ ...]

Один из ярчайших примеров островного видообразования являют плодовые мухи рода Drosophila, населяющие Гавайские острова. Этот же пример, несомненно, наилучшим образом изучен в генетическом отношении. Гав.айская островная цепь - вулканического происхождения (рис. 1.7); она формировалась постепенно в течение последних 40 млн. лет по мере того, как центральная часть Тихоокеанской литосферной плиты, понемногу сдвигаясь в северо-западном направлении, проходила над магматическим очагом (таким образом, о. Ниихау--древнейший из Гавайских островов, а сам о. Гавайи - самый молодой). Разнообразие гавайских дрозофил поразительно: во всем мире, по-видимому, насчитывается около 1500 видов рода Drosophila, но из них по меньшей мере 500 встречаются исключительно на Гавайских островах. Такое многообразие, видимо, хотя бы отчасти объясняется тем, что Гавайи изобилуют «островами на островах»: во многих местах потоки лавы отгородили участки растительности (такие изоляты называются «кипука»).[ ...]

Необходимо сознавать, что животный мир - не только важный компонент естественной экологической системы и одновременно ценнейший биологический ресурс. Очень важно и то, что все виды животных образуют генетический фонд планеты, все они нужны и полезны. В природе нет пасынков, как нет и абсолютно полезных и абсолютно вредных животных. Все зависит от их численности, условий существования и от ряда других факторов. Одна из разновидностей 100 тыс. видов различных мух - комнатная муха, является переносчиком ряда заразных болезней. В то же время мухи кормят огромное количество животных (мелкие птицы, жабы, пауки, ящерицы и др). Лишь некоторые виды (клещи, грызуны-вредители и др.) подлежат строгому контролю.[ ...]

С позиции биобезопасности существенно важно также предварительное обоснование и прогнозирование возможных последствий, в частности, интродукции и акклиматизации носых для данной территории видов растений и животных. В этом отношении есть положительные примеры. Например, восстановление популяции соболя в таежной зоне, популяций зубра в центре европейской части России и на Кавказе, и др. Менее предсказуемы экологические и генетические последствия непреднамеренной интродукции. К примеру, по официальным данным Карантинной службы бывшего СССР, в результате экспертизы 1 млн импортных растительных грузов в них было обнаружено около 600 видов потенциальных возбудителей болезней (вирусов, бактерий, грибов) и более 1000 видов различных насекомых (в основном вредителей).[ ...]

Большое число врожденных дефектов обусловлено мутациями нескольких генов. Это полигенные болезни, или мультифак-ториальные заболевания, которые являются результатом сложного взаимодействия генетических факторов и факторов среды. Они существуют в виде наследственной предрасположенности и реализуются при определенных условиях в том или ином возрасте. К ним относятся такие широко распространенные заболевания, как сахарный диабет, гипертоническая болезнь, коронарная недостаточность, атеросклероз, ожирение, бронхиальная астма, шизофрения, глаукома, ревматизм, язва желудка и двенадцатиперстной кишки, подагра, некоторые формы рака и другие болезни. Схема Г. Харриса (1973), поясняющая соотношение генетических и средовых факторов в развитии мультифактори-альных заболеваний, представлена на рис. 5.8.[ ...]

Эксплуатация ресурсов живой природы (в первую очередь, растительного и животного мира) ведет к тому, что темпы восстановления их численности отстают от темпов эксплуатации (т. е. изъятия биомассы и обеднения генетического фонда). Тем самым исчерпаемые ресурсы, несмотря на способность к восстановлению, превращаются в исчерпанные. За последние 370 лет, по некоторым данным, с лица Земли исчезло 130 видов птиц и млекопитающих, а сотни видов вписаны в Красную книгу - скорбный перечень видов, находящихся под угрозой исчезновения. При этом численность некоторых видов составляет ныне лишь сотни пар или даже десятки особей. Многие сохранились только в зоопарках.[ ...]

Охрана среды обитания и системы здравоохранения - факторы, по существу, противостоящие естественному отбору в человеческих популяциях. Тем не менее отбор действует в особенности на пренатальном уровне (например, в виде ранних самопроизвольных абортов, которые могут остаться незамеченными). Любое заболевание снижает шансы на успешную карьеру, создание семьи и полноценный генетический вклад в следующее поколение. Поскольку люди неравноценны в отношении устойчивости к воздействиям специфического и общего характера, то отбор работает в пользу более устойчивых, невзирая на их личностные качества, и тем более активно, чем больше загрязнение среды. Эти процессы не только сокращают разнообразие людей (3 тыс. лет назад светлокудрые ахейцы сражались с темноволосыми малоазийскими племенами; теперь настоящие блондины редки даже среди скандинавов, не говоря уже о греках), но и вымывают из популяции редкие гены, способствующие развитию социально ценных свойств, если они не сцеплены с генетическими факторами устойчивости к загрязнениям.[ ...]

На плоских аккумулятивных равнинах особенно ценны снимки, полученные короткофокусными камерами (50-70 мм) при формате кадров 180x180 мм. Утрирование рельефа в 4-5 раз по высоте позволяет хорошо различать незначительные по высоте генетические формы рельефа, видеть форму поверхности болотных ПТК, различия в высоте древостоев. В горных ландшафтах фокусное расстояние камер должно быть около 200 мм при том же формате кадра. Для улучшения изображения растительности летние снимки желательны на инфрахроматической и спектрозональной пленках, а осенние, зимние и ранневесенние - на панхроматической.[ ...]

Восстановление генесиза помогает повысить достоверность и полноту раскрытия структуры ПТК (Киреев, 1973; 1977). Установление генезиса отдельных видов ландшафтных фаций помогает оценивать современное строение и природные свойства уже в процессе интерпретации ландшафтных источников информации. Так, например, на определённой стадии сегментообразования в результате наиболее интенсивной седиментации (отложения аллювиальных осадков), которая происходит в период пика паводка, в ландшафте Усолка-Бирюсинской равнины юга Приангарья формируется фация сосняков береговых валов. Условия формирования и генезис определяют физические свойства и экологические режимы этого вида фаций. Прирусловое местоположение, максимальная высота над меженью, равная высоте паводковой волны, большие скорости течения обуславливают песчаный состав аллювия, слоистость, крутизну склона, обращённого к руслу, и пологий склон к центру сегмента. Поэтому земли береговых валов характеризуются бедностью, сухостью, краткой поемностью, слабой засоленностью, подвижностью и интенсивной наносностью. Сочетание таких режимов в наибольшей степени отвечает развитию на береговых валах насаждений сосняков наземновейничниковых. Земли береговых валов часто распахиваются под овёс - культуру, не требующую значительного богатства земель.[ ...]

Всем этим лимитирующим механизмам организмы противопоставляют возможности преадаптации. Принцип преадаптации заключается в том, что организмы занимают все новые экологические ниши (при их возникновении) благодаря наличию у них свойства генетической преадаптации. Оно состоит в том, что способность к приспособлению у организмов заложена «изначально» и не связана непосредственно с их взаимодействием со средой обитания. Обусловлена такая способность практической неисчерпаемостью генетического кода, а потому информации в генотипе любого из организмов. При минимуме числа аллелей количество вариантов генов достигает Ю50. В этом многообразии всегда находятся необходимые для адаптации варианты. Если они бывают исчерпаны для одного вида и он вымирает, находится вид-дублер, и экологическая ниша бывает заполнена. Время формирования экологических ниш может быть различным. Иногда это происходит системно почти мгновенно (за отдельные годы), иногда замедленно.[ ...]

Как уже много раз подчеркивалось, организмы не являются рабами физических условий среды; они приспосабливаются сами и изменяют условия среды так, чтобы ослабить лимитирующее влияние температуры, света, воды и других физических факторов. Такая компенсация факторов особенно эффективна на уровне сообщества, но возможна и на уровне вида. Виды с широким географическим распространением почти всегда образуют адаптированные к местным условиям популяции, называемые экотипами. Их оптимумы и пределы толерантности соответствуют местным условиям. Компенсация в отношении разных участков градиента температуры, света и других факторов может сопровождаться появлением генетических рас (с морфологическими проявлениями или без них) или может быть просто физиологической акклимацией. Удобным методом для проверки того, сопровождается ли появление экотипов генетическим закреплением, служит метод реципрокных пересадок. МакМиллан (1956), например, обнаружил, что злаки, принадлежащие к одному виду и идентичные по всем внешним признакам, при пересадке на экспериментальные участки из разных районов географического ареала по-разному реагировали на свет. В каждом случае они сохраняли приспособленную к исходному району сезонную цикличность (время роста и размножения). В прикладной экологии часто оставляли без внимания возможность генетического закрепления особенностей местных линий, в результате чего интродукция животных и растений часто оканчивалась неудачей, так как вместо приспособленных к местным условиям линий использовались особи из отдаленных областей. Компенсация факторов в местном или сезонном градиенте также может сопровождаться появлением генетических рас, но часто осуществляется за счет физиологической адаптации органов или сдвигов взаимоотношений «фермент-субстрат» на клеточном уровне. Сомеро (1969), например, указывает, что кратковременная температурная компенсация основана на обратной зависимости сродства фермента к субстрату от температуры, а длительная эволюционная адаптация скорее изменяет само это сродство. У животных, особенно у крупных, с хорошо развитой локомоторной способностью, компенсация факторов возможна благодаря адаптивному поведению - они избегают крайностей местного градиента условий.[ ...]

Эти условия изменяет и сама биосистема, образуя биосреду собственного существования. Это свойство биосистем сформулировано в виде закона максимума биогенной энергии (энтропии) В. И. Вернадского - Э. С. Бауэра: любая биологическая или биокосная (с участием живого) система, находясь в подвижном (динамическом) равновесии с окружающей ее средой и эволю-ционно развиваясь, увеличивает свое воздействие на среду. Давление растет до тех пор, пока не будет строго ограничено внешними факторами (надсистемами или другими конкурентными системами того же уровня иерархии), либо не наступит эволюционно-экологическая катастрофа. Она может состоять в том, что экосистема, следуя за изменением более высокой надсистемы как более лабильное образование, уже изменилась, а вид, подчиняясь генетическому консерватизму, остается неизменным. Это приводит к длинному ряду противоречий, ведущих к аномальному явлению: разрушению видом собственной среды обитания (не срабатывает обратная связь, регулирующая деятельность вида в составе экосистемы, а отчасти разлаживаются и популяционные механизмы). В этом случае биосистема разрушается: вид вымирает, биоценоз подвергается деструкции и качественно меняется.[ ...]

Иногда полезно различать бедствия (disaster) и катастрофы (catastrophe). Первыми условимся считать события, происходящие в жизни популяций достаточно часто, чтобы вызвать давление отбора и привести к эволюционным изменениям. В результате бедствий популяция может приобрести новые свойства, и когда аналогичная ситуация встретится в следующий раз, отреагировать на нее уже иначе или даже вообще не пострадать. В отличие от этого катастрофой мы будем называть нарушение, слишком редкое для того, чтобы популяции сохранили о нем «генетическую память» к тому времени, когда оно повторится. Вашингтон, США), растения и животные населяющие его склоны, вряд ли пострадают меньше, чем при извержении 18 мая 1980 г. (Baross et al., 1982). Зато ураганы, вываливающие леса Новой Англии, наблюдаются достаточно часто, чтобы назвать их бедствиями, а не катастрофами. Экологическим (а возможно, и эволюционным) их следствием является то, что характерная здесь лесная порода, веймутова сосна (Pinus strobus), имеет все особенности видов пионерных стадий сукцессии - быстрое созревание, эффективное рассеивание семян и т. д.[ ...]

Совокупность БРЦ составляет биологический (биотический) круговорот, который является основой функционирования и эволюции жизни в планетарном масштабе. Биологический круговорот представляет собой процесс развития жизни по спирали, в котором живое все время как бы выходит за пределы замкнутого цикла, создавая новые формы, включающиеся в круговорот, и как форма организации биосферы благодаря спиральной структуре обеспечивает и непрерывность жизни, и ее прогрессивное развитие. В биологическом круговороте потери вещества минимальны, информация теряется с гибелью видов и необратимыми генетическими перестройками, в энергетических циклах преобладает однонаправленный поток энергии от растений-продуцентов с последующим выносом ее через консументы в околоземное и космическое пространство, при этом коэффициент круговорота энергии от редуцентов к продуцентам не превышает 0,24%.[ ...]

С теоретической точки зрения каждая из вышеописанных стадий лесообразовательного процесса представляет своеобразный биогеоценоз, так как изменение фитоценогического состава сообществ сопровождается изменениями других компонентов биогеоценоза, а также функциональных связей между ними, что изменяет особенности процессов обмена веществ. Таким образом, следуя концепции В. Н. Сукачева , что тип леса - это тип лесного биогеоценоза, отдельные стадии развития которого можно было бы считать отдельными типами леса. Однако разделять единый лесообразовательный процесс, охватывающий период развития одного древостоя на ряд типов леса, нецелесообразно. С позиций генетического направления лесной типологии Колесникова, а также динамической типологии Мелехова, концепции которых мы считаем справедливыми как с теоретической, так и с практической точки зрения, все стадии развития насаждения относятся к одному типу леса. В таком случае необходимо определить диагностические признаки, способствующие достоверно точно установить принадлежность отдельных биогеоценозов, отдельных участков леса, находящихся в разных стадиях возрастного развития к определенным типам леса. Такие признаки есть, хотя они и не всегда наглядны. Как уже упоминалось выше, даже на вырубках, под покровом господствующих растений вырубок, сохраняются и лесные виды. Это наглядно показано в табл. 2, из которой видно, что многие лесные виды сохраняются во всех стадиях лесообразовательного процесса, хотя и не на всех участках. Однако их проективное покрытие уменьшается и они становятся менее заметными.[ ...]

Древнейшие гоминиды были представлены австралопитеками (двуногие человекообезьяны), человеком умелым (Homo habilis) и человеком прямоходящим (Homo erectus), формирование которых охватывало интервал времени примерно 1,5-2 млн лет назад. Затем возникли (около 500 тыс. лет) группы - архантропы (питекантроп, синантроп, гейдельбергский человек), которые кроме Африки расселились по Юго-Восточной Азии и в Европе. Около 250 тыс. лет назад возникла новая ветвь - палеоантропы (неандертальцы), заселившие весь Старый Свет. Примерно около 40 тыс. лет назад возникли неантропы - человек разумный (.Homo sapiens), ранних представителей которых называли кроманьонцами. Возникновение и эволюция человека современного типа были связаны, очевидно, с крупными перестройками в биосфере нашей планеты. В итоге человек - как один из видов животного царства - стал обладать высокоразвитым мозгом, сложной социальной организацией и трудовой деятельностью. Как пишет И. Т. Фролов (1985): «Человек... - биосоциальное существо, генетически связанное с другими формами жизни, но выделившееся из них благодаря способности производить орудия труда, обладающее членораздельной речью и сознанием, творческой активностью и нравственным самосознанием».

Генетический (цитогенетический) критерий вида наряду с другими применяется для разграничения элементарных систематических групп, анализа состояния вида. В данной статье рассмотрим характеристику критерия, а также сложности, с которыми может столкнуться исследователь, применяющий его.

Что такое вид

В разных отраслях биологической науки вид определяется по-своему. В эволюционном ракурсе можно сказать, что вид - это совокупность особей, имеющих сходство внешнего строения и внутренней организации, физиологических и биохимических процессов, способных к неограниченному скрещиванию, оставлению плодовитого потомства и генетически обособленная от сходных групп.

Вид может быть представлен одной или несколькими популяциями и, соответственно, иметь цельный или рассеченный ареал (территорию/акваторию обитания)

Номенклатура вида

Каждый вид имеет свое название. В соответствии с правилами бинарной номенклатуры, оно состоит из двух слов: существительного и прилагательного. Имя существительное является родовым названием, а прилагательное - видовым. Например, в названии "Одуванчик лекарственный", вид "лекарственный" является одним из представителей растений рода "Одуванчик".

Особи родственных видов внутри рода имеют некоторые различия внешнего вида, физиологии, экологических предпочтений. Но если они слишком похожи, то их видовую принадлежность определяет генетический критерий вида на основе анализа кариотипов.

Для чего виду нужны критерии

Карл Линней, первым давший современные названия и описавший множество видов живых организмов, считал их неизменными и невариабельными. То есть все особи соответствуют единому видовому образу, а любые отклонения от него являются ошибкой воплощения видовой идеи.

С первой половины XIX века Чарльз Дарвин и его последователи обосновывают совершенно другую концепцию вида. В соответствии с ней, вид изменчив, неоднороден и включает переходные формы. Постоянство вида относительно, оно зависит от изменчивости условий окружающей среды. Элементарная единица существования вида - популяция. Она репродуктивно обособлена и соответствует генетическому критерию вида.

Учитывая неоднородность особей одного вида, ученым бывает сложно определить видовую принадлежность организмов или распределить их между систематическими группами.

Морфологический и генетический физиологический, географический, экологический, поведенческий (этологический) - все это комплексы различий между видами. Они определяют изолированность систематических групп, их репродуктивную дискретность. И по ним можно отличить один вид от другого, установить степень их родства и положение в биологической системе.

Характеристика генетического критерия вида

Сущность данного признака в том, что все особи одного вида обладают одинаковым кариотипом.

Кариотип - это своеобразный хромосомный "паспорт" организма, он определяется количеством хромосом, присутствующих в зрелых соматических клетках организма, их размерами и особенностями строения:

  • соотношением длины плеч хромосом;
  • положением в них центромер;
  • наличием вторичных перетяжек и спутников.

Принадлежащие к разным видам особи не смогут скрещиваться. Даже если получение потомства возможно, как у осла и лошади, тигра и льва, то межвидовые гибриды не будут плодовитыми. Это объясняется тем, что половинки генотипа неодинаковы и конъюгация между хромосомами не может произойти, поэтому гаметы не образуются.

На фото: мул - бесплодный гибрид осла и кобылы.

Объект исследования - кариотип

Кариотип человека представлен 46 хромосомами. У большинства исследованных видов количество отдельных молекул ДНК в ядре, образующих хромосомы, укладывается в диапазон 12 - 50. Но есть исключения. Плодовая мушка дрозофила имеет по 8 хромосом в ядрах клеток, а у мелкого представителя семейства Чешуекрылые Lysandra диплоидный хромосомный набор равен 380.

Электронная микрофотография кондесированных хромосом, позволяющая оценить их форму и размер, отражает кариотип. Анализ кариотипа в рамках исследования генетического критерия, а также сравнение кариотипов между собой помогает определить видовую принадлежность организмов.

Когда два вида как один

Общий вида в том, что они не являются абсолютными. Это значит, что применение только одного из них может быть недостаточным для точного определения. Организмы, внешне неотличимые друг от друга, могут оказаться представителями разных видов. Здесь морфологическому приходит на помощь генетический критерий. Примеры двойников:

  1. На сегодняшний день известно два вида черных крыс, которые раньше определялись как один благодаря внешней идентичности.
  2. Существует не менее 15 видов малярийных комаров, которые различимы лишь благодаря
  3. В Северной Америке найдено 17 видов сверчков, имеющих генетические различия, но фенотипически относимых к единому виду.
  4. Считается, что среди всех видов птиц есть 5% двойников, для идентификации которых нужно применять генетический критерий.
  5. Путаница в систематике горных полорогих была устранена благодаря кариологическому анализу. Выделено 3 разновидности кариотипов (у муфлонов 2n=54, у архаров и аргали - 56, уриалы имеют по 58 хромосом).

Один из видов черных крыс имеет 42 хромосомы, кариотип другого представлен 38 молекулами ДНК.

Когда один вид как два

Для видовых групп с большой площадью ареала и численностью особей, когда внутри них действует географическая изоляция или особи имеют широкую экологическую валентность, характерно наличие особей с различными кариотипами. Такое явление - еще один вариант исключений в генетическом критерии вида.

Примеры хромосомного и геномного полиморфизма часты у рыб:

  • у форели радужной количество хромосом меняется от 58 до 64;
  • две кариоморфы, с 52 и 54 хромосомами, обнаружены у сельди беломорской;
  • при диплоидном наборе в 50 хромосом, представители разных популяций имеют по 100 (тетраплоиды), 150 (гексаплоиды), 200 (октаплоиды) хромосом.

Полиплоидные формы находятся и у растений (козья ива), и у насекомых (долгоносики). Домовые мыши и песчанки могут иметь разное количество хромосом, не кратное диплоидному набору.

Двойники по кариотипу

У представителей разных классов и типов могут встречаться кариотипы с одним числом хромосом. Гораздо больше таких совпадений среди представителей одних семейств и родов:

  1. У горилл, орангутанов и шимпанзе кариотип, состоящий из 48 хромосом. На вид различия не определяются, тут нужно сравнивать порядок нуклеотидов.
  2. Незначительны отличия в кариотипах североамериканского бизона и европейского зубра. У обоих по 60 хромосом в диплоидном наборе. Они будут отнесены к одному виду, если проводить анализ только по генетическому критерию.
  3. Примеры генетических двойников находятся и среди растений, особенно внутри семейств. Среди ив возможно даже получение межвидовых гибридов.

Для выявления тонких различий генетического материала у таких видов нужно определять последовательности генов и порядок их включения.

Влияние мутаций на анализ критерия

Количество хромосом кариотипа может быть изменено в результате геномных мутаций - анеуплоидии или эуплоидии.

При анеуплоидии в кариотипе появляется одна или несколько добавочных хромосом, а также может быть число хромосом меньшее, чем у полноценной особи. Причина такого нарушения в нерасхождении хромосом на стадии образования гамет.

На рисунке пример анеуплоидии у человека (синдром Дауна).

Зиготы с уменьшенным числом хромосом, как правило, не приступают к дроблению. А полисомные организмы (с «лишними» хромосомами») вполне могут оказаться жизнеспособными. В случае трисомии (2n+1) или пентасомии (2n+3) нечетное число хромосом укажет на аномалию. Тетрасомия же (2n+2) может привести к фактической ошибке определения вида по генетическому критерию.

Умножение кариотипа - полиплоидия - также может ввести в заблуждение исследователя, когда кариотип мутанта представляет сумму нескольких диплоидных наборов хромосом.

Сложность критерия: неуловимые ДНК

Диаметр нити ДНК в раскрученном состоянии составляет 2 нм. Генетический критерий определяет кариотип в период, предшествующий делению клетки, когда тонкие молекулы ДНК многократно спирализуются (конденсируются) и представляют собой плотные палочковидные структуры - хромосомы. Толщина хромосомы в среднем 700 нм.

Школьные и университетские лаборатории обычно оснащены микроскопами с небольшим увеличением (от 8 до 100), рассмотреть в них детали кариотипа не представляется возможным. Разрешающая способность светового микроскопа, кроме того, позволяет на любом, даже самом большом увеличении увидеть объекты не меньше половины длины самой короткой световой волны. Наименьшая длина - у волн фиолетового цвета (400 нм). Это значит, что мельчайший объект, различимый в световой микроскоп будет от 200 нм.

Получается, что окрашенный деконденсированный хроматин будет выглядеть как замутненные области, а хромосомы будут видны без деталей. Четко увидеть и сравнить между собой разные кариотипы позволяет электронный микроскоп с разрешающей способностью от 0,5 нм. Учитывая толщину нитевидной ДНК (2 нм), она будет хорошо различима под таким прибором.

Цитогенетический критерий в школе

По причинам, описанным выше, использование микропрепаратов на лабораторных работах по генетическому критерию вида нецелесообразно. В заданиях можно применять фотографии хромосом, полученные под электронным микроскопом. Для удобства работы на фото отдельные хромосомы объединяют в гомологичные пары и располагают по порядку. Такая схема называется кариограммой.

Пример задания для лабораторной работы

Задание. Рассмотрите приведенные фотографии кариотипов, сравните их и сделайте вывод о принадлежности особей к одному или двум видам.

Фотографии кариотипов для сравнения на лабораторной работе.

Работа над заданием. Подсчитать общее количество хромосом на каждом фото кариотипа. В случае совпадения сравнить их по внешнему виду. Если представлена не кариограмма, среди хромосом средней длины найти самые короткие и самые длинные на обоих изображениях, сопоставить их по размеру и расположению центромер. Сделать вывод о различии/сходстве кариотипов.

Ответы на задание:

  1. Если количество, размер и форма хромосом совпадают, то две особи, чей генетический материал представлен для изучения, относятся к одному виду.
  2. Если количество хромосом отличается в два раза, и на обеих фотографиях встречаются одинаковые по размеру и форме хромосомы, то, скорее всего, особи являются представителями одного вида. Это будут кариотипы диплоидной и тетраплоидной форм.
  3. Если число хромосом неодинаково (отличается на одну - две), но в целом форма и размеры хромосом обоих кариотипов совпадают, речь идет о нормальной и мутантной формах одного вида (явление анеуплоидии).
  4. При разном количестве хромосом, а также несовпадении характеристик размера и формы, критерий отнесет представленных особей к двум разным видам.

В выводе требуется указать, можно ли на основании генетического критерия (и только его) определять видовую принадлежность особей.

Ответ: нельзя, поскольку любой видовой критерий, в том числе и генетический, имеет исключения и может дать ошибочный результат определения. Точность может гарантировать лишь применение комплекса критериев вида.

Вид – совокупность особей, обладающих наследственным сходством морфологических, физиологических и биологических особенностей, свободно скрещивающихся и дающих потомство, к определенным условиям жизни и занимающих в природе определенный ареал.

Виды представляют собой устойчивые генетические системы, так как в природе отделены друг от друга целым рядом барьеров.

Вид представляет собой одну из основных форм организации живого. Однако определить, принадлежат ли данные особи к одному виду или нет, иногда бывает трудно. Поэтому для решения вопроса о принадлежности особей к данному виду используется целый ряд критериев:

Морфологический критерий – главный критерий, основанный на внешних различиях между видами животных или растений. Этот критерий служит для разделения организмов, которые четко отличаются по внешним или внутренним морфологическим признакам. Но следует отметить, что очень часто между видами существуют очень тонкие отличия, которые можно выявить лишь при длительном изучении данных организмов.

Географический критерий – основан на том, что каждый вид обитает в пределах определенного пространства (). Ареал – это географические границы распространения вида, размеры, форма и расположение в которого отлично от ареалов других видов. Однако этот критерий также недостаточно универсален по трем причинам. Во-первых, ареалы многих видов географически совпадают, во-вторых, существуют виды космополиты, для которых ареалом является практически вся планета (кит-касатка). В-третьих, у некоторых быстрорасселяющихся видов (домового воробья, домовой мухи и др.) ареал настолько быстро изменяет свои границы, что не может быть определен.

Экологический критерий – предполагает, что каждый вид характеризуется определенным типом питания, местом обитания, сроками , т.е. занимает определенную нишу.
Этологический критерий – заключается в том, что поведение животных одних видов отличается от поведения других.

Генетический критерий – заключает в себе главное свойство вида – его изоляцию от других. Животные и растения разных видов почти никогда не скрещиваются между собой. Конечно, вид не может быть полностью изолирован от потока генов со стороны близкородственных видов, но при этом он сохраняет постоянство генетического состава на протяжении длительного времени. Самые четкие границы между видами проходят именно с генетической точки зрения.

Физиолого-биохимический критерий – этот критерий не может служить надежным способом разграничения видов, так как основные биохимические процессы протекают у сходных групп организмов одинаково. А в пределах каждого вида существует большое число приспособлений к конкретным условиям обитания путем изменения протекания физиолого-биохимических процессов.
По одному из критериев нельзя точно различать виды между собой. Определить принадлежность особи к конкретному виду можно только на основании совокупности всех или большинства критериев. Особи, занимающие определенную территорию и свободно скрещивающиеся между собой, называются популяцией.

Популяция – совокупность особей одного вида, занимающих определенную территорию и обменивающихся генетическим материалом. Совокупность генов всех особей в популяции называется генофондом популяции. В каждом поколении отдельные особи вносят больший или меньший вклад в общий генофонд в зависимости от их приспособительной ценности. Неоднородность организмов, входящих в популяцию, создает условия для действия , поэтому популяция считается наименьшей эволюционной единицей, с которой начинается преобразования вида — . Популяция, таким образом, представляет собой надорганизменную формулу организации жизни. Популяция не является полностью изолированной группой. Иногда происходит скрещивание между особями различных популяций. Если какая-то популяция окажется полностью географически или экологически изолированной от других, то она может дать начало новому подвиду, а впоследствии и виду.

Каждая популяция животных или растений состоит из особей разного пола и различного возраста. Соотношение численности этих особей может быть различно в зависимости от времени года, природных условий. Численность популяции определяется соотношением рождаемости и смертности, составляющих ее организмов. Если на протяжении достаточно длительного времени эти показатели равны, то численность популяции не изменяется. Факторы среды, взаимодействие с другими популяциями может изменять численность популяции.

1. Генетика как наука, ее предмет, задачи и методы. Основные этапы развития .

Генетика - дисциплина, изучающая механизмы и закономерности наследственности и изменчивости организмов, методы управления этими процессами.

Предмет генетики – наследственность и изменчивость организмов.

Задачи генетики вытекают из установленных общих закономерностей наследственности и изменчивости. К этим задачам относятся исследования:

1) механизмов хранения и передачи генетической информации от родительских форм к дочерним;

2) механизма реализации этой информации в виде признаков и свойств организмов в процессе их индивидуального развития под контролем генов и влиянием условий внешней среды;

3) типов, причин и механизмов изменчивости всех живых существ;

4) взаимосвязи процессов наследственности, изменчивости и отбора как движущих факторов эволюции органического мира.

Генетика является также основой для решения ряда важнейших практических задач. К ним относятся:

1) выбор наиболее эффективных типов гибридизации и способов отбора;

2) управление развитием наследственных признаков с целью получения наиболее значимых для человека результатов;

3) искусственное получение наследственно измененных форм живых организмов;

4) разработка мероприятий по защите живой природы от вредных мутагенных воздействий различных факторов внешней среды и методов борьбы с наследственными болезнями человека, вредителями сельскохозяйственных растений и животных;

5) разработка методов генетической инженерии с целью получения высокоэффективных продуцентов биологически активных соединений, а также для создания принципиально новых технологий в селекции микроорганизмов, растений и животных.

Объектами генетики являются вирусы, бактерии, грибы, растения, животные и человек.

Методы генетики:


Основные этапы развития генетики.

До начала ХХ в. попытки ученых объяснить явления, связанные с наследственностью и изменчивостью, имели в основном умозрительный характер. Постепенно было накоплено множество сведений относительно передачи различных признаков от родителей потомкам. Однако четких представлений о закономерностях наследования у биологов того времени не было. Исключением стали работы австрийского естествоиспытателя Г. Менделя.

Г. Мендель в своих опытах с различными сортами гороха установил важнейшие закономерности наследования признаков, которые легли в основу современной генетики. Результаты своих исследований Г. Мендель изложил в статье, опубликованной в 1865 г. в «Трудах Общества естествоиспытателей» в г. Брно. Однако опыты Г. Менделя опережали уровень исследований того времени, поэтому данная статья не привлекла внимания современников и оставалась невостребованной в течение 35 лет, вплоть до 1900 г. В этом году три ботаника – Г. Де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии, независимо проводившие опыты по гибридизации растений, натолкнулись на забытую статью Г. Менделя и обнаружили сходство результатов своих исследований с результатами, полученными Г. Менделем. 1900 год считается годом рождения генетики.

Первый этап развития генетики (с 1900 примерно до 1912 г.) характеризуется утверждением законов наследственности в гибридологических опытах, проведенных на разных видах растений и животных. В 1906 г. английский ученый В. Ватсон предложил важные генетические термины «ген», «генетика». В 1909 г. датский генетик В. Иоганнсен ввел в науку понятия «генотип», «фенотип».

Второй этап развития генетики (приблизительно с 1912 до 1925 г.) связан с созданием и утверждением хромосомной теории наследственности, в создании которой ведущая роль принадлежит американскому ученому Т. Моргану и его ученикам.

Третий этап развития генетики (1925 – 1940) связан с искусственным получением мутаций – наследуемых изменений генов или хромосом. В 1925 г. русские ученые Г. А. Надсон и Г. С. Филиппов впервые открыли, что проникающее излучение вызывает мутации генов и хромосом. В это же время были заложены генетико-математические методы изучения процессов, происходящих в популяциях. Фундаментальный вклад в генетику популяций внес С. С. Четвериков.

Для современного этапа развития генетики, начавшегося с середины 50-х годов XX в., характерны исследования генетических явлений на молекулярном уровне. Этот этап ознаменован выдающимися открытиями: созданием модели ДНК, определением сущности гена, расшифровкой генетического кода. В 1969 г. химическим путем вне организма был синтезирован первый относительно небольшой и простой ген. Спустя некоторое время ученым удалось осуществить введение в клетку нужного гена и тем самым изменить в желаемую сторону ее наследственность.

2. Основные понятия генетики

Наследственность - это неотъемлемое свойство всех живых существ сохранять и передавать в ряду поколений характерные для вида или популяции особенности строения, функционирования и развития.

Наследственность обеспечивает постоянство и многообразие форм жизни и лежит в основе передачи наследственных задатков, ответственных за формирование признаков и свойств организма.

Изменчивость - способность организмов в процессе онтогенеза приобретать новые признаки и терять старые.

Изменчивость выражается в том, что в любом поколении отдельные особи чем-то отличаются и друг от друга, и от своих родителей.

Ген – это участок молекулы ДНК, отвечающий за определенный признак.

Генотип - это совокупность всех генов организма, являющихся его наследственной основой.

Фенотип - совокупность всех признаков и свойств организма, которые выявляются в процессе индивидуального развития в данных условиях и являются результатом взаимодействия генотипа с комплексом факторов внутренней и внешней среды.

Аллельные гены - различные формы того же гена, занимающие одно и то же место (локус) гомологичных хромосом и определяющие альтернативные состояния одного и того же признака.

Доминантность - форма взаимоотношений междуаллелямиодногогена, при которой один из них подавляет проявление другого.

Рецессивность – отсутствие (непроявление) у гетерозиготного организма одного из пары противоположных (альтернативных) признаков.

Гомозиготность – состояние диплоидного организма, при котором в гомологичных хромосомах находятся идентичные аллели генов.

Гетерозиготность – состояние диплоидного организма, при котором в гомологичных хромосомах находятся разные аллели генов.

Гемизиготность - состояние гена, при котором в гомологичной хромосоме полностью отсутствует его аллель.

3. Основные типы наследования признаков.

    Моногенное (такой тип наследования, когда наследственный признак контролируется одним геном)

    1. Аутосомное

      1. Доминантное (прослеживается в каждом поколении; у больных родителей больной ребенок; болеют и мужчины и женщины; вероятность наследования – 50-100%)

        Рецессивное (не в каждом поколении; проявляется в потомстве у здоровых родителей; встречается и у мужчин и у женщин; вероятность наследования – 25-50-100%)

    2. Геносомное

      1. Х-сцепленное доминантное (сходен с аутосомным доминантным, но мужчины передают признак только дочерям)

        Х-сцепленное рецессивное (не в каждом поколении; болеют преимущественно мужчины; у здоровых родителей с вероятностью 25% - больные сыновья; больные девочки, если отец болен, а мать носительница)

        Y-сцепленное (голандрическое) (в каждом поколении; болеют мужчины; у больного отца все сыновья больные; вероятность наследования – 100% у всех мужчин)

    Полигенное

4. Моногибридное скрещивание. Первый и второй законы Менделя, их цитологические основы.

Моногибридным называется скрещивание, при котором родительские формы отличаются друг от друга по одной паре контрастных, альтернативных признаков.

Первый закон Менделя (Закон единообразия гибридов первого поколения):

«При скрещивании гомозиготных особей, анализируемых по одной паре альтернативных признаков, наблюдается единообразие гибридов первого поколения как по фенотипу, так и по генотипу»

Второй закон Менделя (Закон расщепления признаков):

«При скрещивании гибридов первого поколения, анализируемых по одной паре альтернативных признаков, наблюдается расщепление по фенотипу 3:1, по генотипу 1:2:1»

В опытах Менделя первое поколение гибридов получено от скрещивания чистолинейных (гомозиготных) родительских растений гороха с альтернативными признаками (АА х аа). Они образуют гаплоидные гаметы А и а. Следовательно, после оплодотворения гибридное растение первого поколения будет гетерозиготным (Аа) с проявлением только доминантного (желтая окраска семени) признака, т. е. будет единообразным, одинаковым по фенотипу.

Второе поколение гибридов получено при скрещивании между собой гибридных растений первого поколения (Аа), каждое из которых образует по два типа гамет: А и а. Равновероятное сочетание гамет при оплодотворении особей первого поколения дает расщепление у гибридов второго поколения в соотношении: по фенотипу 3 части растений с доминантным признаком (желтозерные) к 1 части растений с рецессивным признаком (зеленозерным), по генотипу - 1 АА: 2 Аа: 1 аа.

Генетика — наука о закономерностях наследственности и изменчивости. Датой «рождения» генетики можно считать 1900 год, когда Г. Де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии независимо друг от друга «переоткрыли» законы наследования признаков, установленные Г. Менделем еще в 1865 году.

Наследственность — свойство организмов передавать свои признаки от одного поколения к другому.

Изменчивость — свойство организмов приобретать новые по сравнению с родителями признаки. В широком смысле под изменчивостью понимают различия между особями одного вида.

Признак — любая особенность строения, любое свойство организма. Развитие признака зависит как от присутствия других генов, так и от условий среды, формирование признаков происходит в ходе индивидуального развития особей. Поэтому каждая отдельно взятая особь обладает набором признаков, характерных только для нее.

Фенотип — совокупность всех внешних и внутренних признаков организма.

Ген — функционально неделимая единица генетического материала, участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК. В широком смысле ген — участок ДНК, определяющий возможность развития отдельного элементарного признака.

Генотип — совокупность генов организма.

Локус — местоположение гена в хромосоме.

Аллельные гены — гены, расположенные в идентичных локусах гомологичных хромосом.

Гомозигота — организм, имеющий аллельные гены одной молекулярной формы.

Гетерозигота — организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой — рецессивным.

Рецессивный ген — аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.

Доминантный ген — аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.

Методы генетики

Основным является гибридологический метод — система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Впервые разработан и использован Г. Менделем. Отличительные особенности метода: 1) целенаправленный подбор родителей, различающихся по одной, двум, трем и т. д. парам контрастных (альтернативных) стабильных признаков; 2) строгий количественный учет наследования признаков у гибридов; 3) индивидуальная оценка потомства от каждого родителя в ряду поколений.

Скрещивание, при котором анализируется наследование одной пары альтернативных признаков, называется моногибридным , двух пар — дигибридным , нескольких пар — полигибридным . Под альтернативными признаками понимаются различные значения какого-либо признака, например, признак — цвет горошин, альтернативные признаки — желтый цвет, зеленый цвет горошин.

Кроме гибридологического метода, в генетике используют: генеалогический — составление и анализ родословных; цитогенетический — изучение хромосом; близнецовый — изучение близнецов; популяционно-статистический метод — изучение генетической структуры популяций.

Генетическая символика

Предложена Г. Менделем, используется для записи результатов скрещиваний: Р — родители; F — потомство, число внизу или сразу после буквы указывает на порядковый номер поколения (F 1 — гибриды первого поколения — прямые потомки родителей, F 2 — гибриды второго поколения — возникают в результате скрещивания между собой гибридов F 1); × — значок скрещивания; G — мужская особь; E — женская особь; A — доминантный ген, а — рецессивный ген; АА — гомозигота по доминанте, аа — гомозигота по рецессиву, Аа — гетерозигота.

Закон единообразия гибридов первого поколения, или первый закон Менделя

Успеху работы Менделя способствовал удачный выбор объекта для проведения скрещиваний — различные сорта гороха. Особенности гороха: 1) относительно просто выращивается и имеет короткий период развития; 2) имеет многочисленное потомство; 3) имеет большое количество хорошо заметных альтернативных признаков (окраска венчика — белая или красная; окраска семядолей — зеленая или желтая; форма семени — морщинистая или гладкая; окраска боба — желтая или зеленая; форма боба — округлая или с перетяжками; расположение цветков или плодов — по всей длине стебля или у его верхушки; высота стебля — длинный или короткий); 4) является самоопылителем, в результате чего имеет большое количество чистых линий, устойчиво сохраняющих свои признаки из поколения в поколение.

Опыты по скрещиванию разных сортов гороха Мендель проводил в течение восьми лет, начиная с 1854 года. 8 февраля 1865 года Г. Мендель выступил на заседании Брюннского общества естествоиспытателей с докладом «Опыты над растительными гибридами», где были обобщены результаты его работы.

Опыты Менделя были тщательно продуманы. Если его предшественники пытались изучить закономерности наследования сразу многих признаков, то Мендель свои исследования начал с изучения наследования всего лишь одной пары альтернативных признаков.

Мендель взял сорта гороха с желтыми и зелеными семенами и произвел их искусственное перекрестное опыление: у одного сорта удалил тычинки и опылил их пыльцой другого сорта. Гибриды первого поколения имели желтые семена. Аналогичная картина наблюдалась и при скрещиваниях, в которых изучалось наследование других признаков: при скрещивании растений, имеющих гладкую и морщинистую формы семян, все семена полученных гибридов были гладкими, от скрещивания красноцветковых растений с белоцветковыми все полученные — красноцветковые. Мендель пришел к выводу, что у гибридов первого поколения из каждой пары альтернативных признаков проявляется только один, а второй как бы исчезает. Проявляющийся у гибридов первого поколения признак Мендель назвал доминантным, а подавляемый — рецессивным.

При моногибридном скрещивании гомозиготных особей , имеющих разные значения альтернативных признаков, гибриды являются единообразными по генотипу и фенотипу.

Генетическая схема закона единообразия Менделя

(А — желтый цвет горошин, а — зеленый цвет горошин)

Закон расщепления, или второй закон Менделя

Г. Мендель дал возможность самоопылиться гибридам первого поколения. У полученных таким образом гибридов второго поколения проявился не только доминантный, но и рецессивный признак. Результаты опытов приведены в таблице.

Признаки Доминантные Рецессивные Всего
Число % Число %
Форма семян 5474 74,74 1850 25,26 7324
Окраска семядолей 6022 75,06 2001 24,94 8023
Окраска семенной кожуры 705 75,90 224 24,10 929
Форма боба 882 74,68 299 25,32 1181
Окраска боба 428 73,79 152 26,21 580
Расположение цветков 651 75,87 207 24,13 858
Высота стебля 787 73,96 277 26,04 1064
Всего: 14949 74,90 5010 25,10 19959

Анализ данных таблицы позволил сделать следующие выводы:

  1. единообразия гибридов во втором поколении не наблюдается: часть гибридов несет один (доминантный), часть — другой (рецессивный) признак из альтернативной пары;
  2. количество гибридов, несущих доминантный признак, приблизительно в три раза больше, чем гибридов, несущих рецессивный признак;
  3. рецессивный признак у гибридов первого поколения не исчезает, а лишь подавляется и проявляется во втором гибридном поколении.

Явление, при котором часть гибридов второго поколения несет доминантный признак, а часть — рецессивный, называют расщеплением . Причем, наблюдающееся у гибридов расщепление не случайное, а подчиняется определенным количественным закономерностям. На основе этого Мендель сделал еще один вывод: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в определенном числовом соотношении.

При моногибридном скрещивании гетерозиготных особей у гибридов имеет место расщепление по фенотипу в отношении 3:1, по генотипу 1:2:1.

Генетическая схема закона расщепления Менделя

(А — желтый цвет горошин, а — зеленый цвет горошин):

Закон чистоты гамет

С 1854 года в течение восьми лет Мендель проводил опыты по скрещиванию растений гороха. Им было выявлено, что в результате скрещивания различных сортов гороха друг с другом гибриды первого поколения обладают одинаковым фенотипом, а у гибридов второго поколения имеет место расщепление признаков в определенных соотношениях. Для объяснения этого явления Мендель сделал ряд предположений, которые получили название «гипотезы чистоты гамет», или «закона чистоты гамет». Мендель предположил, что:

  1. за формирование признаков отвечают какие-то дискретные наследственные факторы;
  2. организмы содержат два фактора, определяющих развитие признака;
  3. при образовании гамет в каждую из них попадает только один из пары факторов;
  4. при слиянии мужской и женской гамет эти наследственные факторы не смешиваются (остаются чистыми).

В 1909 году В. Иогансен назовет эти наследственные факторы генами, а в 1912 году Т. Морган покажет, что они находятся в хромосомах.

Для доказательства своих предположений Г. Мендель использовал скрещивание, которое сейчас называют анализирующим (анализирующее скрещивание — скрещивание организма, имеющего неизвестный генотип, с организмом, гомозиготным по рецессиву). Наверное, Мендель рассуждал следующим образом: «Если мои предположения верны, то в результате скрещивания F 1 с сортом, обладающим рецессивным признаком (зелеными горошинами), среди гибридов будут половина горошин зеленого цвета и половина горошин — желтого». Как видно из приведенной ниже генетической схемы, он действительно получил расщепление 1:1 и убедился в правильности своих предположений и выводов, но современниками он понят не был. Его доклад «Опыты над растительными гибридами», сделанный на заседании Брюннского общества естествоиспытателей, был встречен полным молчанием.

Цитологические основы первого и второго законов Менделя

Во времена Менделя строение и развитие половых клеток не было изучено, поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

Явления доминирования и расщепления признаков, наблюдавшиеся Менделем, в настоящее время объясняются парностью хромосом, расхождением хромосом во время мейоза и объединением их во время оплодотворения. Обозначим ген, определяющий желтую окраску, буквой А , а зеленую — а . Поскольку Мендель работал с чистыми линиями, оба скрещиваемых организма — гомозиготны, то есть несут два одинаковых аллеля гена окраски семян (соответственно, АА и аа ). Во время мейоза число хромосом уменьшается в два раза, и в каждую гамету попадает только одна хромосома из пары. Так как гомологичные хромосомы несут одинаковые аллели, все гаметы одного организмы будут содержать хромосому с геном А , а другого — с геном а .

При оплодотворении мужская и женская гаметы сливаются, и их хромосомы объединяются в одной зиготе. Получившийся от скрещивания гибрид становится гетерозиготным, так как его клетки будут иметь генотип Аа ; один вариант генотипа даст один вариант фенотипа — желтый цвет горошин.

У гибридного организма, имеющего генотип Аа во время мейоза, хромосомы расходятся в разные клетки и образуется два типа гамет — половина гамет будет нести ген А , другая половина — ген а . Оплодотворение — процесс случайный и равновероятный, то есть любой сперматозоид может оплодотворить любую яйцеклетку. Поскольку образовалось два типа сперматозоидов и два типа яйцеклеток, возможно возникновение четырех вариантов зигот. Половина из них — гетерозиготы (несут гены А и а ), 1/4 — гомозиготы по доминантному признаку (несут два гена А ) и 1/4 — гомозиготы по рецессивному признаку (несут два гена а ). Гомозиготы по доминанте и гетерозиготы дадут горошины желтого цвета (3/4), гомозиготы по рецессиву — зеленого (1/4).

Закон независимого комбинирования (наследования) признаков, или третий закон Менделя

Организмы отличаются друг от друга по многим признакам. Поэтому, установив закономерности наследования одной пары признаков, Г. Мендель перешел к изучению наследования двух (и более) пар альтернативных признаков. Для дигибридного скрещивания Мендель брал гомозиготные растения гороха, отличающиеся по окраске семян (желтые и зеленые) и форме семян (гладкие и морщинистые). Желтая окраска (А ) и гладкая форма (В ) семян — доминантные признаки, зеленая окраска (а ) и морщинистая форма (b ) — рецессивные признаки.

Скрещивая растение с желтыми и гладкими семенами с растением с зелеными и морщинистыми семенами, Мендель получил единообразное гибридное поколение F 1 с желтыми и гладкими семенами. От самоопыления 15-ти гибридов первого поколения было получено 556 семян, из них 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых (расщепление 9:3:3:1).

Анализируя полученное потомство, Мендель обратил внимание на то, что: 1) наряду с сочетаниями признаков исходных сортов (желтые гладкие и зеленые морщинистые семена), при дигибридном скрещивании появляются и новые сочетания признаков (желтые морщинистые и зеленые гладкие семена); 2) расщепление по каждому отдельно взятому признаку соответствует расщеплению при моногибридном скрещивании. Из 556 семян 423 были гладкими и 133 морщинистыми (соотношение 3:1), 416 семян имели желтую окраску, а 140 — зеленую (соотношение 3:1). Мендель пришел к выводу, что расщепление по одной паре признаков не связано с расщеплением по другой паре. Для семян гибридов характерны не только сочетания признаков родительских растений (желтые гладкие семена и зеленые морщинистые семена), но и возникновение новых комбинаций признаков (желтые морщинистые семена и зеленые гладкие семена).

При дигибридном скрещивании дигетерозигот у гибридов имеет место расщепление по фенотипу в отношении 9:3:3:1, по генотипу в отношении 4:2:2:2:2:1:1:1:1, признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Р ♀АABB
желтые, гладкие
× ♂aаbb
зеленые, морщинистые
Типы гамет AB ab
F 1 AaBb
желтые, гладкие, 100%
P ♀АaBb
желтые, гладкие
× ♂AаBb
желтые, гладкие
Типы гамет AB Ab aB ab AB Ab aB ab

Генетическая схема закона независимого комбинирования признаков:

Гаметы: AB Ab aB ab
AB AABB
желтые
гладкие
AABb
желтые
гладкие
AaBB
желтые
гладкие
AaBb
желтые
гладкие
Ab AABb
желтые
гладкие
AАbb
желтые
морщинистые
AaBb
желтые
гладкие
Aabb
желтые
морщинистые
aB AaBB
желтые
гладкие
AaBb
желтые
гладкие
aaBB
зеленые
гладкие
aaBb
зеленые
гладкие
ab AaBb
желтые
гладкие
Aabb
желтые
морщинистые
aaBb
зеленые
гладкие
aabb
зеленые
морщинистые

Анализ результатов скрещивания по фенотипу: желтые, гладкие — 9/16, желтые, морщинистые — 3/16, зеленые, гладкие — 3/16, зеленые, морщинистые — 1/16. Расщепление по фенотипу 9:3:3:1.

Анализ результатов скрещивания по генотипу: AaBb — 4/16, AABb — 2/16, AaBB — 2/16, Aabb — 2/16, aaBb — 2/16, ААBB — 1/16, Aabb — 1/16, aaBB — 1/16, aabb — 1/16. Расщепление по генотипу 4:2:2:2:2:1:1:1:1.

Если при моногибридном скрещивании родительские организмы отличаются по одной паре признаков (желтые и зеленые семена) и дают во втором поколении два фенотипа (2 1) в соотношении (3 + 1) 1 , то при дигибридном они отличаются по двум парам признаков и дают во втором поколении четыре фенотипа (2 2) в соотношении (3 + 1) 2 . Легко посчитать, сколько фенотипов и в каком соотношении будет образовываться во втором поколении при тригибридном скрещивании: восемь фенотипов (2 3) в соотношении (3 + 1) 3 .

Если расщепление по генотипу в F 2 при моногибридном поколении было 1:2:1, то есть было три разных генотипа (3 1), то при дигибридном образуется 9 разных генотипов — 3 2 , при тригибридном скрещивании образуется 3 3 — 27 разных генотипов.

Третий закон Менделя справедлив только для тех случаев, когда гены анализируемых признаков находятся в разных парах гомологичных хромосом.

Цитологические основы третьего закона Менделя

Пусть А — ген, обусловливающий развитие желтой окраски семян, а — зеленой окраски, В — гладкая форма семени, b — морщинистая. Скрещиваются гибриды первого поколения, имеющие генотип АаВb . При образовании гамет из каждой пары аллельных генов в гамету попадает только один, при этом в результате случайного расхождения хромосом в первом делении мейоза ген А может попасть в одну гамету с геном В или с геном b , а ген а — с геном В или с геном b . Таким образом, каждый организм образует четыре сорта гамет в одинаковом количестве (по 25%): АВ , Ab , aB , ab . Во время оплодотворения каждый из четырех типов сперматозоидов может оплодотворить любую из четырех типов яйцеклеток. В результате оплодотворения возможно появление девяти генотипических классов, которые дадут четыре фенотипических класса.

    Перейти к лекции №16 «Онтогенез многоклеточных животных, размножающихся половым способом»

    Перейти к лекции №18 «Сцепленное наследование»