От чего зависит работа по перемещению заряда из одной точки в другую. Работа по перемещению электрического заряда в электростатическом поле

Электростатическое поле - это электрическое поле неподвижного заряда.
Сила F эл , действующая на заряд, перемещает его, совершая раборту.
В однородном электрическом поле Fэл = qE - постоянная величина

Работа поля (электрической силы) не зависит от формы траектории и на замкнутой траектории равна нулю.

ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ ЗАРЯЖЕННОГО ТЕЛА В ОДНОРОДНОМ ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ

Электростатическая энергия - потенциальная энергия системы заряженных тел (т.к. они взаимодействуют и способны совершить работу)

Так как работа поля не зависит от формы траектории, то одновременно

Сравнивая формулы работы, получим потенциальную энергию заряда в однородном электростатическом поле

Если поле совершает положительную работу (вдоль силовых линий), то потенциальная энергия заряженного тела уменьшается (но согласно закону сохранения энергии увеличивается кинетическая энергия) и наоборот.


ПОТЕНЦИАЛ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ

Энергитическая характеристика электрического поля.
- равен отношению потенциальной энергии заряда в поле к этому заряду.
- скалярная величина, определяющая потенциальную энергию заряда в любой точке электрического поля.

Величина потенциала считается относительно выбранного нулевого уровня.


РАЗНОСТЬ ПОТЕНЦИАЛОВ (или иначе НАПРЯЖЕНИЕ)

Это разность потенциалов в начальной и конечной точках траектории заряда.

Напряжение между двумя точками (U) равно разности потенциалов этих точек и равно работе поля по перемещению единичного заряда.


СВЯЗЬ МЕЖДУ НАПРЯЖЕННОСТЬЮ ПОЛЯ И РАЗНОСТЬЮ ПОТЕНЦИАЛОВ

Чем меньше меняется потенциал на отрезке пути, тем меньше напряженность поля.
Напряженность электрического поля направлена в сторону уменьшения потенциала.


ЭКВИПОТЕНЦИАЛЬНЫЕ ПОВЕРХНОСТИ

Поверхности, все точки которых имеют одинаковый потенциал

для однородного поля - это плоскость

для поля точечного заряда - это концентрические сферы

Эквипотенциальная поверхность имеется у любого проводника в электростатическом поле, т.к. силовые линии перпендикулярны поверхности проводника.
Все точки внутри проводника имеют одинаковый потенциал (=0).
Напряженность внутри проводника = 0, значит и разность потенциалов внутри = 0.




Электростатика и законы постоянного тока - Класс!ная физика

Рассмотрим ситуацию: заряд q 0 попадает в электростатическое поле. Это электростатическое поле тоже создается каким-то заряженным телом или системой тел, но нас это не интересует. На заряд q 0 со стороны поля действует сила, которая может совершать работу и перемещать этот заряд в поле.


Работа электростатического поля не зависит от траектории . Работа поля при перемещении заряда по замкнутой траектории равна нулю. По этой причине силы электростатического поля называются консервативными , а само поле называется потенциальным .

Потенциал

Система "заряд - электростатическое поле" или "заряд - заряд" обладает потенциальной энергией , подобно тому, как система "гравитационное поле - тело" обладает потенциальной энергией.

Физическая скалярная величина, характеризующая энергетическое состояние поля называется потенциалом данной точки поля. В поле помещается заряд q, он обладает потенциальной энергией W. Потенциал - это характеристика электростатического поля.


Вспомним потенциальную энергию в механике . Потенциальная энергия равна нулю, когда тело находится на земле. А когда тело поднимают на некоторую высоту, то говорят, что тело обладает потенциальной энергией.

Касательно потенциальной энергии в электричестве, то здесь нет нулевого уровня потенциальной энергии. Его выбирают произвольно. Поэтому потенциал является относительной физической величиной.

В механике тела стремятся занять положение с наименьшей потенциальной энергией. В электричестве же под действием сил поля положительно заряженное тело стремится переместится из точки с более высоким потенциалом в точку с более низким потенциалом, а отрицательно заряженное тело - наоборот.

Потенциальная энергия поля - это работа, которую выполняет электростатическая сила при перемещении заряда из данной точки поля в точку с нулевым потенциалом.

Рассмотрим частный случай, когда электростатическое поле создается электрическим зарядом Q. Для исследования потенциала такого поля нет необходимости в него вносить заряд q. Можно высчитать потенциал любой точки такого поля, находящейся на расстоянии r от заряда Q.


Диэлектрическая проницаемость среды имеет известное значение (табличное), характеризует среду, в которой существует поле. Для воздуха она равна единице.

Разность потенциалов

Работа поля по перемещению заряда из одной точки в другую, называется разностью потенциалов


Эту формулу можно представить в ином виде


Эквипотенциальная поверхность (линия) - поверхность равного потенциала. Работа по перемещению заряда вдоль эквипотенциальной поверхности равна нулю.

Напряжение

Разность потенциалов называют еще электрическим напряжением при условии, что сторонние силы не действуют или их действием можно пренебречь.

Напряжение между двумя точками в однородном электрическом поле, расположенными по одной линии напряженности , равно произведению модуля вектора напряженности поля на расстояние между этими точками.

От величины напряжения зависит ток в цепи и энергия заряженной частицы.

Принцип суперпозиции

Потенциал поля, созданного несколькими зарядами, равен алгебраической (с учетом знака потенциала) сумме потенциалов полей каждого поля в отдельности

При решении задач возникает много путаницы при определении знака потенциала, разности потенциалов, работы.

На рисунке изображены линии напряженности. В какой точке поля потенциал больше?

Верный ответ - точка 1. Вспомним, что линии напряженности начинаются на положительном заряде, а значит положительный заряд находится слева, следовательно максимальным потенциалом обладает крайняя левая точка.

Если происходит исследование поля, которое создается отрицательным зарядом, то потенциал поля вблизи заряда имеет отрицательное значение, в этом легко убедиться, если в формулу подставить заряд со знаком "минус". Чем дальше от отрицательного заряда, тем потенциал поля больше.

Если происходит перемещение положительного заряда вдоль линий напряженности, то разность потенциалов и работа являются положительными. Если вдоль линий напряженности происходит перемещение отрицательного заряда, то разность потенциалов имеет знак "+", работа имеет знак "-".

Лекция А.П.Зубарева

Работа сил поля по перемещению заряда.

Потенциал и разность потенциалов электрического поля.

Как следует из закона Кулона, сила, действующая на точечный заряд q в электрическом поле, созданном другими зарядами, является центральной . Напомним, что центральной называется сила, линия действия которой направлена по радиус-вектору, соединяющему некоторую неподвижную точку О (центр поля) с любой точкой траектории. Из «Механики» известно, что все центральные силы являются потенциальными . Работа этих сил не зависит от формы пути перемещения тела, на которое они действуют, и равна нулю по любому замкнутому контуру (пути перемещения). В применении к электростатическому полю (см. рисунок) ниже:


.

Рисунок. К определению работы сил электростатического поля.

То есть, работа сил поля по перемещению заряда q из точки 1 в точку 2 равна по величине и противоположна по знаку работе по перемещению заряда из точки 2 в точку 1, независимо формы пути перемещения. Следовательно, работа сил поля по перемещению заряда может быть представлена разностью потенциальных энергий заряда в начальной и конечной точках пути перемещения:

Введем потенциал электростатического поля φ, задав его как отношение:

, (размерность в СИ: ).

Тогда работа сил поля по перемещению точечного заряда q из точки 1 в точку 2 будет:

Разность потенциалов называется электрическим напряжением. Размерность напряжения, как и потенциала, [U] = B.

Считается, что на бесконечности электрические поля отсутствуют, и значит . Это позволяет дать определение потенциала как работы, которую нужно совершить, чтобы переместить заряд q = +1 из бесконечности в данную точку пространства. Таким образом, потенциал электрического поля является его энергетической характеристикой.

Связь между напряженностью и потенциалом электрического поля. Градиент потенциала. Теорема о циркуляции электрического поля.

Напряженность и потенциал – это две характеристики одного и того же объекта – электрического поля, поэтому между ними должна существовать функциональная связь. Действительно, работа сил поля по перемещению заряда q из одной точки пространства в другую может быть представлена двояким образом:

Откуда следует, что

Это и есть искомая связь между напряженностью и потенциалом электрического поля в дифференциальном виде.

- вектор, направленный из точки с меньшим потенциалом в точку с большим потенциалом (см. рисунок ниже).


Рисунок. Векторы и gradφ.

При этом модуль вектора напряженности равен

Из свойства потенциальности электростатического поля следует, что работа сил поля по замкнутому контуру (φ 1 = φ 2) равна нулю:

поэтому можем написать

Последнее равенство отражает суть второй основной теоремы электростатики – теоремы о циркуляции электрического поля , согласно которой циркуляция поля вдоль произвольного замкнутого контура равна нулю. Эта теорема является прямым следствиемпотенциальности электростатического поля.

Эквипотенциальные линии и поверхности и их свойства.

Линии и поверхности, все точки которых имеют одинаковый потенциал, называются эквипотенциальными . Их свойства непосредственно вытекают из представления работы сил поля и иллюстрируются на рисунке:


Рисунок. Иллюстрация свойств эквипотенциальных линий и поверхностей.

1) - работа по перемещению заряда вдоль эквипотенциальной линии (поверхности) равна нулю, т. к. .

При перемещении заряда в электростатическом поле, действующие на

заряд кулоновские силы, совершают работу. Пусть заряд q 0 >0 перемещается в поле заряда q>0 из точки С в точку В вдоль произвольной траектории (рис.2.1). На q 0 действует кулоновская сила

При элементарном перемещении заряда dl , эта сила совер­шает работу , где a - угол между векторами и . Величина dl cosa=dr является про­екцией вектора на направление силы . Таким образом, dA=Fdr, . Полная работа по перемещению заряда из точки С в В определяется интегра­лом , где r 1 и r 2 - расстояния заряда q до точек С и В. Из полученной формулы следует, что работа, совершаемая при перемещении электрического заряда q 0 в поле точеч­ного заряда q, не зависит от формы траектории перемещения, а зависит только от начальной и конечной точки перемещения .

Поле, удовлетворяющее этому условию, яв­ляется потенциальным. Следовательно, электростатическое поле точечного заряда - потенциальное , а действующие в нем силы - консервативные .

Если заряды q и q 0 одного знака, то работа сил отталкивания будет положи­тельной при их удалении и отрицательной при их сближении. Если заряды q и q 0 разноименные, то работа сил притяжения будет положительной при их сближении и отрицательной при удалении друг от друга.

Пусть электростатическое поле, в котором перемещается заряд q 0 , создано сис­темой зарядов q 1 , q 2 ,...,q n . Следовательно, на q 0 действуют независимые силы , равнодействующая которых равна их векторной сумме. Работа А рав­но­действующей силы равна алгебраической сумме работ составляющих сил, , где r i 1 и r i 2 - начальное и конечное расстояния между зарядами q i и q 0 .

Когда пробный заряд q перемещается в электрическом поле, можно говорить о работе, совершаемой в данный момент электрическими силами. Для малого перемещения ∆ l → формулу работы можно записать так: ∆ A = F · ∆ l · cos α = E q ∆ l cos α = E l q ∆ l .

Рисунок 1 . 4 . 1 . Малое перемещение заряда и работа, совершаемая в данный момент электрическими силами.

Теперь посмотрим, какую работу по перемещению заряда совершают силы в электрическом поле, которое создается распределенным зарядом, не изменяющимся во времени. Такое поле еще называют электростатическим. У него есть важное свойство, о котором мы поговорим в этой статье.

Определение 1

При перемещении заряда из одной точки электростатического поля в другую работа сил электрического поля будет зависеть только от величины этого заряда и положением начальной и конечной точки в пространстве. Форма траектории при этом не имеет значения.

У гравитационного поля есть точно такое же свойство, что неудивительно, поскольку соотношения, с помощью которых мы описываем кулоновские и гравитационные силы, одинаковы.

Исходя из того, что форма траектории не имеет значения, мы можем также сформулировать следующее утверждение:

Определение 2

Когда заряд в электростатическом поле перемещается по любой замкнутой траектории, работа сил поля равна 0 . Поле, обладающее таким свойством, называется консервативным, или потенциальным.

Ниже приведена иллюстрация силовых линий в кулоновском поле, образованных точечным зарядом Q , а также две траектории перемещения пробного заряда q в другую точку. Символом ∆ l → на одной из траекторий обозначается малое перемещение. Запишем формулу работы кулоновских сил на нем:

∆ A = F ∆ l cos α = E q ∆ r = 1 4 π ε 0 Q q r 2 ∆ r .

Следовательно, зависимость существует только между работой и расстоянием между зарядами, а также их изменением Δ r . Проинтегрируем данное выражение на интервале от r = r 1 до r = r 2 и получим следующее:

A = ∫ r 1 r 2 E · q · d r = Q q 4 π ε 0 1 r 1 - 1 r 2 .

Рисунок 1 . 4 . 2 . Траектории перемещения заряда и работа кулоновских сил. Зависимость от расстояния между начальной и конечной точкой траектории.

Результат применения данной формулы не будет зависеть от траектории. Для двух различных траекторий перемещения заряда, указанных на изображении, работы кулоновских сил будут равны. Если же мы изменим направление на противоположное, то и работа также поменяет знак. А если траектории будут соединены, т.е. заряд будет перемещаться по замкнутой траектории, то работа кулоновских сил будет нулевой.

Вспомним, как именно создается электростатическое поле. Оно представляет собой сочетание точечных разрядов. Значит, согласно принципу суперпозиции, работа результирующего поля, совершаемая при перемещении пробного заряда, будет равна сумме работ кулоновских полей тех зарядов, из которых состоит электростатическое поле. Соответственно, величина работы каждого заряда не будет зависеть от того, какой формы траектория. Значит, и полная работа не будет зависеть от пути – важно лишь местоположение начальной и конечной точки.

Поскольку у электростатического поля есть свойство потенциальности, мы можем добавить новое понятие – потенциальная энергия заряда в электрическом поле. Выберем какую-либо точку, поместим в нее разряд и примем его потенциальную энергию за 0 .

Определение 3

Потенциальная энергия заряда, помещенного в любую точку пространства относительно нулевой точки, будет равна той работе, которая совершается электростатическим полем при перемещении заряда из этой точки в нулевую.

Обозначив энергию как W , а работу, совершаемую зарядом, как A 10 , запишем следующую формулу:

Обратите внимание, что энергия обозначается именно буквой W , а не E , поскольку в электростатике E – это напряженность поля.

Потенциальная энергия электрического поля является определенной величиной, которая зависит от выбора точки отсчета (нулевой точки). На первый взгляд в таком определении есть заметная неоднозначность, однако на практике она, как правило, не вызывает недоразумений, поскольку сама по себе потенциальная энергия физического смысла не имеет. Важна лишь разность ее значений в начальной и конечной точке пространства.

Определение 4

Чтобы вычислить работу, которая совершается электростатическим полем при перемещении точечного заряда из точки 1 в точку 2 , нужно найти разность значений потенциальной энергии в них. Путь перемещения и выбор нулевой точки значения при этом не имеют.

A 12 = A 10 + A 02 = A 10 – A 20 = W p 1 – W p 2 .

Если мы поместим заряд q в электростатическое поле, то его потенциальная энергия будет прямо пропорциональна его величине.

Понятие потенциала электрического поля

Определение 5

Потенциал электрического поля – это физическая величина, значение которой можно найти, разделив величину потенциальной энергии электрического заряда в электростатическом поле на величину этого заряда.

Он обозначается буквой φ . Это важная энергетическая характеристика электростатического поля.

Если мы умножим величину заряда на разность потенциалов начальной и конечной точки перемещения, то мы получим работу, совершаемую при этом перемещении.

A 12 = W p 1 – W p 2 = q φ 1 – q φ 2 = q (φ 1 – φ 2) .

Потенциал электрического поля измеряется в вольтах (В) .

1 В = 1 Д ж 1 К л.

Разность потенциалов в формулах обычно обозначается Δ φ .

Чаще всего при решении задач на электростатику в качестве нулевой берется некая бесконечно удаленная точка. Учитывая это, мы можем переформулировать определение потенциала так:

Определение 6

Потенциал электростатического поля точечного заряда в некоторой точке пространства будет равен той работе, которая совершается электрическими силами тогда, когда единичный положительный заряд удаляется из этой точки в бесконечность.

φ ∞ = A ∞ q .

Чтобы вычислить потенциал точечного заряда на расстоянии r , на котором размещается бесконечно удаленная точка, нужно использовать следующую формулу:

φ = φ ∞ = 1 q ∫ r ∞ E d r = Q 4 π ε 0 ∫ r ∞ d r r 2 = 1 4 π ε 0 Q r

С помощью нее мы также можем найти потенциал поля однородно заряженной сферы или шара при r ≥ R , что следует из теоремы Гаусса.

Чтобы наглядно изобразить электростатические поля, кроме силовых линий используются поверхности, называемые эквипотенциальными.

Определение 7

Эквипотенциальная поверхность (поверхность равного потенциала) – это такая поверхность, у которой во всех точкам потенциал электрического поля одинаков.

Эквипотенциальные поверхности и силовые линии на изображении всегда находятся перпендикулярно друг другу.

Если мы имеем дело с точечным зарядом в кулоновском поле, то эквипотенциальные поверхности в данном случае являются концентрическими сферами. На изображениях ниже показаны простые электростатические поля.

Рисунок 1 . 4 . 3 . Красным показаны силовые линии, а синим – эквипотенциальные поверхности простого электрического поля. На первом рисунке изображен точечный заряд, на втором –электрический диполь, на третьем – два равных положительных заряда.

Если поле однородное, то его эквипотенциальные поверхности являются параллельными плоскостями.

В случае малого перемещения пробного заряда q вдоль силовой линии из начальной точки 1 в конечную точку 2 мы можем записать такую формулу:

Δ A 12 = q E Δ l = q (φ 1 – φ 2) = – q Δ φ ,

где Δ φ = φ 1 - φ 2 – изменение потенциала. Отсюда выводится, что:

E = - ∆ φ ∆ l , (∆ l → 0) или E = - d φ d l .

Это соотношение передает связь между потенциалом поля и его напряженностью. Буквой l обозначена координата, которую следует отсчитывать вдоль силовой линии.

Зная принцип суперпозиции напряженности полей, которые создаются электрическими разрядами, мы можем вывести принцип суперпозиции для потенциалов:

φ = φ 1 + φ 2 + φ 3 + . . .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter