IV.Вектор электростатической индукции.Поток индукции. Теорема гаусса Поток вектора электростатической индукции

Общая формулировка: Поток вектора напряжённости электрического поля через любую, произвольно выбранную замкнутую поверхность пропорционален заключённому внутри этой поверхности электрическому заряду.

В системе СГСЭ:

В системе СИ:

— поток вектора напряженности электрического поля через замкнутую поверхность .

— полный заряд, содержащийся в объеме, который ограничивает поверхность .

— электрическая постоянная.

Данное выражение представляет собой теорему Гаусса в интегральной форме.

В дифференциальной форме теорема Гаусса соответствует одному из уравнений Максвелла и выражается следующим образом

в системе СИ:

,

в системе СГСЭ:

Здесь — объёмная плотность заряда (в случае присутствия среды — суммарная плотность свободных и связанных зарядов), а — оператор набла.

Для теоремы Гаусса справедлив принцип суперпозиции, то есть поток вектора напряжённости через поверхность не зависит от распределения заряда внутри поверхности.

Физической основой теоремы Гаусса является закон Кулона или, иначе, теорема Гаусса является интегральной формулировкой закона Кулона.

Теорема Гаусса для электрической индукции (электрическое смещение).

Для поля в веществе электростатическая теорема Гаусса может быть записана иначе — через поток вектора электрического смещения (электрической индукции). При этом формулировка теоремы выглядит следующим образом: поток вектора электрического смещения через замкнутую поверхность пропорционален заключённому внутри этой поверхности свободному электрическому заряду:

Если же рассматривать теорему для напряжённости поля в веществе, то в качестве заряда Q необходимо брать сумму свободного заряда, находящегося внутри поверхности и поляризационного (индуцированного, связанного) заряда диэлектрика:

,

где ,
— вектор поляризации диэлектрика.

Теорема Гаусса для магнитной индукции

Поток вектора магнитной индукции через любую замкнутую поверхность равен нулю:

.

Это эквивалентно тому, что в природе не существует «магнитных зарядов» (монополей), которые создавали бы магнитное поле, как электрические заряды создают электрическое поле. Иными словами, теорема Гаусса для магнитной индукции показывает, что магнитное поле является вихревым.

Применение теоремы Гаусса

Для вычисления электромагнитных полей используются следующие величины:

Объёмная плотность заряда (см. выше).

Поверхностная плотность заряда

где dS — бесконечно малый участок поверхности.

Линейная плотность заряда

где dl — длина бесконечно малого отрезка.

Рассмотрим поле, создаваемое бесконечной однородной заряженной плоскостью. Пусть поверхностная плотность заряда плоскости одинакова и равна σ. Представим себе мысленно цилиндр с образующими, перпендикулярными к плоскости, и основанием ΔS, расположенным относительно плоскости симметрично. В силу симметрии . Поток вектора напряжённости равен . Применив теорему Гаусса, получим:


,

из которого

в системе СГСЭ

Важно отметить, что несмотря на свою универсальность и общность, теорема Гаусса в интегральной форме имеет сравнительно ограниченное применение в силу неудобства вычисления интеграла. Однако в случае симметричной задачи решение её становится гораздо более простым, чем с использованием принципа суперпозиции.

Основная прикладная задача электростатики – расчет электрических полей, создаваемых в различных приборах и аппаратах. В общем виде эта задача решается с помощью закона Кулона и принципа суперпозиции. Однако эта задача очень усложняется при рассмотрении большого числа точечных или пространственно распределенных зарядов. Еще большие трудности возникают при наличии в пространстве диэлектриков или проводников, когда под действием внешнего поля Е 0 происходит перераспределение микроскопических зарядов, создающих свое дополнительное поле Е. Поэтому для практического решения этих задач используют вспомогательные методы и приемы, использующие сложный математический аппарат. Мы рассмотрим самый простой метод, основанный на применении теоремы Остроградского – Гаусса. Чтобы сформулировать эту теорему введем несколько новых понятий:

А)плотность заряда

Если заряженное тело велико, то нужно знать распределение зарядов внутри тела.

Объемная плотность заряда – измеряется зарядом единицы объема:

Поверхностная плотность заряда – измеряется зарядом единицы поверхности тела (когда заряд распределяется по поверхности):

Линейная плотность заряда (распределение заряда вдоль проводника):

б) вектор электростатической индукции

Вектором электростатической индукции (вектором электрического смещения) называется векторная величина, характеризующая электрическое поле.

Вектор равен произведению векторана абсолютную диэлектрическую проницаемость среды в данной точке:

Проверим размерность D в системе единиц СИ:

, т.к.
,

то размерности D и Е не совпадают, а также различны и их численные значения.

Из определения следует, что для поля вектораимеет место тот же принцип суперпозиции, как и для поля:

Поле графически изображается линиями индукции, точно так же как и поле . Линии индукции проводятся так, что касательная в каждой точке совпадает с направлением , а число линий равно численному значениюD в данном месте.

Чтобы понять смысл введения рассмотрим пример.

ε> 1

на границе полости с диэлектриком концентрируются связанные отрицательные заряды и поля уменьшается враз и скачком уменьшается густота.

Для этого же случая:D = Eεε 0

, тогда: линииидут непрерывно. Линииначинаются на свободных зарядах (уна любых – связанных или свободных), и на границе диэлектрика их густота остается неизменной.

Таким образом – непрерывность линий индукции значительно облегчает вычисление , а, зная связьсможно найти вектор.

в) поток вектора электростатической индукции

Рассмотрим в электрическом поле поверхность S и выберем направление нормали

1. Если поле однородно, то число силовых линий через поверхность S:

2. Если поле неоднородно, то поверхность разбивают на бесконечно малые элементы dS, которые считают плоскими и поле возле них однородным. Поэтому поток через элемент поверхности равен: dN = D n dS,

а полный поток через любую поверхность:

(6)

Поток индукции N – величина скалярная; в зависимости от  может быть > 0 или < 0, или = 0.

Рассмотрим, как меняется значение вектора Е на границе раздела двух сред, например, воздуха (ε 1) и воды (ε = 81). На­пряженность поля в воде уменьшается скачком в 81 раз. Такое по­ведение вектора Е создает определенные неудобства при расчете полей в различных средах. Чтобы избежать этого неудобства вводят новый вектор D – вектор индукции или электрического смещения поля. Связь векторов D и Е имеет вид

D = ε ε 0 Е .

Очевидно, для поля точечного заряда электрическое смещение будет равно

Нетрудно увидеть, что электрическое смещение измеряется в Кл/м 2 , не зависит от свойств и графически изображается линиями, анало­гичными линиям напряженности.

Направление силовых линий поля характеризует направле­ние поля в пространстве (силовые линии, конечно, не существуют, их вводят для удобства иллюстрации) или направление вектора на­пряженности поля. С помощью линий напряженности можно характеризовать не только направление, но и величину напряженно­сти поля. Для этого условились прово­дить их с определенной густотой, так, чтобы число линий напряженности, про­низывающих единицу поверхности, пер­пендикулярной линиям напряженности, было пропорционально модулю вектора Е (рис. 78). Тогда число линий, пронизываю­щих элементарную площадку dS, нормаль к которой n образует угол α с вектором Е , равно E dScos α = E n dS,

где E n - составляющая вектора Е по направлению нормали n . Величину dФ Е = E n dS = E dS называют потоком вектора напряженности че­рез площадку dS (dS = dS·n ).

Для произвольной замкнутой поверхности S поток вектора Е через эту поверхность равен

Аналогичное выражение имеет поток вектора электрического сме­щения Ф D

.

Теорема Остроградского-Гаусса

Эта теорема позволяет определить поток векторов Е и D от любого количества зарядов. Возьмем точечный заряд Q и определим поток вектора Е че­рез шаровую поверхность радиуса r , в центре которой он располо­жен.

Для шаровой поверхности α = 0, cos α = 1, E n = E, S = 4 πr 2 и

Ф E = E · 4 πr 2 .

Подставляя выражение для Е получим

Таким образом, из каждого точечного заряда выходит поток Ф Е вектора Е равный Q/ ε 0 . Обобщая этот вывод на общий случай про­извольного числа точечных зарядов дают формулировку теоремы: полный поток вектора Е через замкнутую поверхность про­извольной формы численно равен алгебраической сумме электрических зарядов, заключенных внутри этой поверхно­сти, поделенной на ε 0 , т.е.

Для потока вектора электрического смещения D можно получить аналогичную формулу

поток вектора индукции через замкнутую поверхность равен алгебраической сумме электрических зарядов, охватываемых этой поверхностью.

Если взять замкнутую поверхность, не охватывающую заряд, то каждая линия Е и D будут пересекать эту поверхность дважды – на входе и выходе, поэтому суммарный поток оказывается равным нулю. Здесь необходимо учитывать алгебраическую сумму линий, входящих и выходящих.

Применение теоремы Остроградского-Гаусса для расчета элек­трических полей, создаваемых плоскостями, сферой и цилин­дром

    Сферическая поверхность радиуса R несет на себе заряд Q, равномерно распределенный по поверхности с поверхностной плотностью σ

Возьмем точку А вне сферы на расстоянии r от центра и проведем мысленно сферу радиуса r симметричную заряженной (рис. 79). Ее площадь S = 4 πr 2 . Поток вектора Е будет равен

По теореме Остроградского-Гаусса
, следовательно,
учитывая, чтоQ = σ·4 πr 2 , получим

Для точек, находящихся на поверхности сферы (R = r)

Для точек, находящихся внутри полой сферы (внутри сферы нет за­ряда), Е = 0.

2 . Полая цилиндрическая поверхность радиусом R и длиной l заряжена с постоянной поверхностной плотностью заряда
(Рис. 80). Проведем коаксиальную цилиндрическую поверхность радиусаr > R.

Поток вектора Е через эту поверхность

По теореме Гаусса

Приравнивая правые части приведенных равенств, получим

.

Если задана линейная плотность заряда цилиндра (или тонкой нити)
то

3. Поле бесконечных плоскостей с поверхностной плотно­стью заряда σ (рис. 81).

Рассмотрим поле, создаваемое бесконечной плоскостью. Из сооб­ражений симметрии вытекает, что напряженность в любой точке поля имеет направление, перпендикулярное к плоскости.

В симметричных точках Е будет одинакова по величине и противоположна по направлению.

Построим мысленно поверхность цилиндра с основанием ΔS. Тогда через каждое из оснований цилиндра будет выходить поток

Ф Е = Е ΔS, а суммарный поток через цилиндрическую поверхность будет равен Ф Е = 2Е ΔS.

Внутри поверхности заключен заряд Q = σ · ΔS. Согласно теореме Гаусса должно выполняться

откуда

Полученный результат не зависит от высоты выбранного цилиндра. Таким образом напряжённость поля Е на любых расстояниях одинакова по величине.

Для двух разноименно заряженных плоскостей с одинаковой по­верхностной плотностью заряда σ по принципу суперпозиции вне про­странства между плоскостями напряжённость поля равна нулю Е = 0, а в пространстве между плос­костями
(рис. 82а). В случае, если плоскости заряжены одноименными зарядами с одинаковой поверхностной плотностью зарядов, наблюдается об­ратная картина (рис. 82б). В пространстве между плоскостями Е=0, а в пространстве за пределами плоскостей
.

Цель урока: Теорема Остроградского–Гаусса была установлена русским математиком и механиком Михаилом Васильевичем Остроградским в виде некоторой общей математической теоремы и немецким математиком Карлом Фридрихом Гауссом. Данная теорема может быть использована при изучении физики на профильном уровне, так как позволяет более рационально производить расчёты электрических полей.

Вектор электрической индукции

Для вывода теоремы Остроградского–Гаусса необходимо ввести такие важные вспомогательные понятия, как вектор электрической индукции и поток этого вектора Ф.

Известно, что электростатическое поле часто изображают при помощи силовых линий. Предположим, что мы определяем напряжённость в точке, лежащей на границе раздела двух сред: воздуха(=1) и воды (=81). В этой точке при переходе из воздуха в воду напряжённость электрического поля согласно формуле уменьшится в 81 раз. Если пренебречь проводимостью воды, то во столько же раз уменьшится число силовых линий. При решении различных задач на расчёт полей из-за прерывности вектора напряжённости на границе раздела сред и на диэлектриках создаются определённые неудобства. Чтобы избежать их, вводится новый вектор , который называется вектором электрической индукции:

Вектор электрической индукции равен произведению вектора на электрическую постоянную и на диэлектрическую проницаемость среды в данной точке.

Очевидно, что при переходе через границу двух диэлектриков число линий электрической индукции не изменяется для поля точечного заряда (1).

В системе СИ вектор электрической индукции измеряется в кулонах на квадратный метр (Кл/м 2). Выражение (1) показывает, что численное значение вектора не зависит от свойств среды. Поле вектора графически изображается аналогично полю напряжённости (например, для точечного заряда см. рис.1). Для поля вектора имеет место принцип суперпозиции:

Поток электрической индукции

Вектор электрической индукции характеризует электрическое поле в каждой точке пространства. Можно ввести ещё одну величину, зависящую от значений вектора не в одной точке, а во всех точках поверхности, ограниченной плоским замкнутым контуром.

Для этого рассмотрим плоский замкнутый проводник (контур) с площадью поверхности S, помещённый в однородное электрическое поле. Нормаль к плоскости проводника составляет угол с направлением вектора электрической индукции (рис. 2).

Потоком электрической индукции через поверхность S называют величину, равную произведению модуля вектора индукции на площадь S и на косинус угла между вектором и нормалью :

Вывод теоремы Остроградского–Гаусса

Эта теорема позволяет найти поток вектора электрической индукции через замкнутую поверхность, внутри которой находятся электрические заряды.

Пусть вначале один точечный заряд q помещён в центр сферы произвольного радиуса r 1 (рис. 3). Тогда ; . Вычислим полный поток индукции проходящий через всю поверхность этой сферы: ; (). Если возьмём сферу радиуса , то также Ф = q. Если проведём сферу , не охватывающую заряд q, то полный поток Ф = 0 (так как каждая линия войдёт в поверхность, а другой раз выйдет из неё).

Таким образом, Ф = q, если заряд расположен внутри замкнутой поверхности и Ф = 0, если заряд расположен вне замкнутой поверхности. Поток Ф от формы поверхности не зависит. Он также не зависит от расположения зарядов внутри поверхности. Это значит, что полученный результат справедлив не только для одного заряда, но и для какого угодно числа произвольно расположенных зарядов, если только подразумевать под q алгебраическую сумму всех зарядов, находящихся внутри поверхности.

Теорема Гаусса: поток электрической индукции через любую замкнутую поверхность равен алгебраической сумме всех зарядов, находящихся внутри поверхности: .

Из формулы видно, что размерность электрического потока такая же, как и электрического заряда. Поэтому единицей потока электрической индукции служит кулон (Кл).

Примечание: если поле неоднородно и поверхность, через которую определяют поток, не является плоскостью, то эту поверхность можно разбить на бесконечно малые элементы ds и каждый элемент считать плоским, а поле возле него однородным. Поэтому для любого электрического поля поток вектора электрической индукции через элемент поверхности есть: =. В результате интегрирования полный поток через замкнутую поверхность S в любом неоднородном электрическом поле равен: , где q – алгебраическая сумма всех зарядов, окружённых замкнутой поверхностью S. Выразим последнее уравнение через напряжённость электрического поля (для вакуума): .

Это одно из фундаментальных уравнений Максвелла для электромагнитного поля, записанное в интегральной форме. Оно показывает, что источником постоянного во времени электрического поля являются неподвижные электрические заряды.

Применение теоремы Гаусса

Поле непрерывно распределённых зарядов

Определим теперь с помощью теоремы Остроградского-Гаусса напряжённость поля для ряда случаев.

1. Электрическое поле равномерно заряженной сферической поверхности.

Сфера радиусом R. Пусть заряд +q равномерно распределён по сферической поверхности радиуса R. Распределение заряда по поверхности характеризуется поверхностной плотностью заряда (рис.4). Поверхностной плотностью заряда называют отношение заряда к площади поверхности, по которой он распределён. . В СИ .

Определим напряжённость поля:

а) вне сферической поверхности,
б) внутри сферической поверхности.

а) Возьмём точку А, отстоящую от центра заряженной сферической поверхности на расстоянии r>R. Проведём через неё мысленно сферическую поверхность S радиуса r, имеющую общий центр с заряженной сферической поверхностью. Из соображения симметрии очевидно, что силовые линии являются радиальными прямыми перпендикулярными к поверхности S и равномерно пронизывают эту поверхность, т.е. напряжённость по всех точках этой поверхности постоянна по величине. Применим теорему Остроградского-Гаусса к этой сферической поверхности S радиуса r. Поэтому полный поток через сферу равен N = E? S; N=E. С другой стороны . Приравниваем: . Отсюда: при r>R.

Таким образом: напряжённость, создаваемая равномерно заряженной сферической поверхностью, вне её такая же, как если бы весь заряд находился в её центре (рис.5).

б) Найдём напряжённость поля в точках, лежащих внутри заряженной сферической поверхности. Возьмём точку В отстоящую от центра сферы на расстоянии . Тогда , E = 0 при r

2. Напряжённость поля равномерно заряженной бесконечной плоскости

Рассмотрим электрическое поле создаваемое бесконечной плоскостью, заряженной с плотностью , постоянной во всех точках плоскости. По соображениям симметрии можно считать, что линии напряжённости перпендикулярны к плоскости и направлены от неё в обе стороны (рис.6).

Выберем точку А, лежащую справа от плоскости и вычислим в этой точке, применяя теорему Остроградского-Гаусса. В качестве замкнутой поверхности выберем цилиндрическую поверхность таким образом, чтобы боковая поверхность цилиндра была параллельна силовым линиям, а его основания и параллельны плоскости и основание проходит через точку А (рис. 7). Рассчитаем поток напряжённости через рассматриваемую цилиндрическую поверхность. Поток через боковую поверхность равен 0, т.к. линии напряжённости параллельны боковой поверхности. Тогда полный поток складывается из потоков и проходящих через основания цилиндра и . Оба эти потока положительны =+; =; =; ==; N = 2 .

– участок плоскости лежащий внутри выбранной цилиндрической поверхности. Заряд внутри этой поверхности равен q.

Тогда ; – можно принять за точечный заряд) с точкой А. Для нахождения суммарного поля надо геометрически сложить все поля, создаваемые каждым элементом: ; .

Теорема Гаусса для электрической индукции (электрического смещения)[

Для поля в диэлектрической среде электростатическая теорема Гаусса может быть записана еще и иначе (альтернативным образом) - через поток вектора электрического смещения(электрической индукции). При этом формулировка теоремы выглядит следующим образом: поток вектора электрического смещения через замкнутую поверхность пропорционален заключённому внутри этой поверхности свободному электрическому заряду:

В дифференциальной форме:

Теорема Гаусса для магнитной индукции

Поток вектора магнитной индукции через любую замкнутую поверхность равен нулю:

или в дифференциальной форме

Это эквивалентно тому, что в природе не существует «магнитных зарядов» (монополей), которые создавали бы магнитное поле, как электрические заряды создают электрическое поле . Иными словами, теорема Гаусса для магнитной индукции показывает, что магнитное поле является (полностью) вихревым .

Теорема Гаусса для ньютоновской гравитации

Для напряжённости поля ньютоновской гравитации (ускорения свободного падения) теорема Гаусса практически совпадает с таковой в электростатике, за исключением только констант (впрочем, всё равно зависящих от произвольного выбора системы единиц) и, главное, знака :

где g - напряжённость гравитационного поля, M - гравитационный заряд (то есть масса) внутри поверхности S , ρ - плотность массы, G - ньютоновская константа.

    Проводники в электрическом поле. Поле внутри проводника и на его поверхности.

Проводниками называют тела, через которые электрические заряды могут переходить от заряженного тела к незаряженному. Способность проводников пропускать через себя электрические заряды объясняется наличием в них свободных носителей заряда. Проводники - металлические тела в твердом и жидком состоянии, жидкие растворы электролитов. Свободные заряды проводника, внесенного в электрическое поле, под его действием приходят в движение. Перераспределение зарядов вызывает изменение электрического поля. Когда напряженность электрического поля в проводнике становится равной нулю, электроны прекращают движение. Явление разделения разноименных зарядов в проводнике, помещенным в электрическое поле называется электростатической индукцией. Внутри проводника электрического поля нет. Это используют для электростатической защиты - защиты с помощью металлических проводников от электрического поля. Поверхность проводящего тела любой формы в электрическом поле является эквипотенциальной поверхностью.

    Конденсаторы

Для получения устройств, которые при небольшом относительно среды потенциале накапливали бы на себе (конденсировали) заметные по величине заряды используют тот факт, что электроемкость проводника возрастает при приближении к нему других тел. Действительно, под действием поля, создаваемого заряженными проводниками, на поднесенном к нему теле возникают индуцированные (на проводнике) или связанные (на диэлектрике) заряды (рис.15.5). Заряды, противоположные по знаку заряду проводника q располагаются ближе к проводнику, чем одноименные с q, и, следовательно, оказывают большое влияние на его потенциал.

Поэтому при поднесении к заряженному проводнику какого либо тела напряженность поля уменьшается, а, следовательно, уменьшается потенциал проводника. Согласно уравнение это означает увеличение емкости проводника.

Конденсатор состоит из двух проводников (обкладок) (рис.15.6), разделенных прослойкой диэлектрика. При приложении к проводнику некоторой разности потенциалов его обкладки заряжаются равными по величине зарядами противоположного знака. Под электроемкостью конденсатора понимается физическая величина, пропорциональная заряду q и обратно пропорциональна разности потенциалов между обкладками

Определим емкость плоского конденсатора.

Если площадь обкладки S , а заряд на ней q, то напряженность поля между обкладками

С другой стороны разность потенциалов между обкладками откуда

    Энергия системы точечных зарядов, заряженного проводника и конденсатора.

Всякая система зарядов обладает некоторой потенциальной энергией взаимодействия, которая равна работе, затраченной на создание этой системы. Энергия системы точечных зарядов q 1 , q 2 , q 3 ,… q N определяется следующим образом:

где φ 1 – потенциал электрического поля, создаваемого всеми зарядами кроме q 1 в той точке, где находится зарядq 1 и т.д. Если изменяется конфигурация системы зарядов, то изменяется и энергия системы. Для изменения конфигурации системы необходимо совершение работы.

Потенциальную энергию системы точечных зарядов можно рассчитать другим способом. Потенциальная энергия двух точечных зарядов q 1 , q 2 на расстоянии друг от друга равна. Если зарядов несколько, то потенциальную энергию этой системы зарядов можно определить как сумму потенциальных энергий всех пар зарядов, которые можно составить для этой системы. Так, для системы трех положительных зарядов энергия системы равна

Электрическое поле точечного заряда q 0 на расстоянии от него в среде с диэлектрической проницаемостьюε (см. рисунок 3.1.3).

Рисунок 3.1.3

;

Потенциал – скаляр, его знак зависит от знака заряда, создающего поле.

Рисунок 3.1.4.

Электрическое поле равномерно заряженной сферы радиуса в точке С на расстоянииот её поверхности (рисунок 3.1.4). Электрическое поле сферы аналогично полю точечного заряда, равного заряду сферыq сф и сосредоточенного в её центре. Расстояние до точки, где определяется напряженность, равно (R +a )

Вне сферы:

;

Потенциал внутри сферы постоянен и равен ,

а напряженность внутри сферы равна нулю

Электрическое поле равномерно заряженной бесконечной плоскости с поверхностной плотностью σ (см. рисунок 3.1.5).

Рисунок 3.1.5.

Поле, напряженность которого во всех точках одинакова, называется однородным .

Поверхностная плотность σ – заряд единицы поверхности (, где– соответственно заряд и площадь плоскости). Размерность поверхностной плотности заряда.

Электрическое поле плоского конденсатора с одинаковыми по величине, но противоположными по знаку зарядами на пластинах (см. рисунок 3.1.6).

Рисунок 3.1.6

Напряженность между обкладками плоского конденсатора , вне конденсатораЕ =0.

Разность потенциалов u между пластинами (обкладками) конденсатора: , гдеd – расстояние между обкладками, – диэлектрическая проницаемость диэлектрика, помещённого между пластинами конденсатора.

Поверхностная плотность заряда на пластинах конденсатора равна отношению величины заряда на ней к площади пластины:.

    Энергия заряженного уединенного проводника и конденсатора

Если уединенный проводник имеет заряд q, то вокруг него существует электрическое поле, потенциал которого на поверхности проводника равен , а емкость - С. Увеличим заряд на величину dq. При переносе заряда dq из бесконечности должна быть совершена работа равная . Но потенциал электростатического поля данного проводника в бесконечности равен нулю . Тогда

При переносе заряда dq с проводника в бесконечность такую же работу совершают силы электростатического поля. Следовательно, при увеличении заряда проводника на величину dq возрастает потенциальная энергия поля, т.е.

Проинтегрировав данное выражение, найдем потенциальную энергию электростатического поля заряженного проводника при увеличении его заряда от нуля до q:

Применяя соотношение , можно получить следующие выражения для потенциальной энергии W:

Для заряженного конденсатора разность потенциалов (напряжение) равна поэтому соотношение для полной энергии его электростатического поля имеют вид