Этот элемент назван в честь планеты земля. Теллур история

Казахстанско-Российский Медицинский Университет


СРС

На тему: История развития иммунологии. Теория иммунитета.

Сделала:Сарсенова.А.Б.
Проверила: Доцент М.Г.Сабирова.
Кафедра: Микробиологии, иммунологии с курсами эпидемиологии.
Факультет:Мед.Проф.Дело.
Группа:202 А

Алматы 2011

Содержание

Введение
1. Зарождение иммунологии
2. Образование макрофагов и лимфоцитов
3. Развитие клеток иммунной системы
4. Барьеры против инфекций
4.1 Механизмы иммунологической защиты организма
5. Воспаление как механизм неспецифического иммунитета
6. Роль Т - лимфоцитов в иммунном ответе
7. Фагоцитоз
8. Гуморальный и клеточный иммунитет
9. Характерные черты специфического иммунитета
10. Клеточные механизмы иммунитета
11. Эффекторные механизмы иммунитета
12. Иммунодефицитные состояния (ИДС)
13. Как организм защищается от вирусов
14. Как организм защищается от бактерий
15. Апоптоз как средство профилактики
Выводы
Заключение
Список литературы
Приложение

Дженнер Э.

Мечников И.И.
Введение

Глава I. Органы и клетки иммунной системы
1. Зарождение иммунологии
Начало развития иммунологии относится к концу XVIII века и связано с именем Э. Дженнера, впервые применившего на основании лишь практических наблюдений впоследствии обоснованный теоретически метод вакцинации против натуральной оспы.
Открытый Э. Дженнером факт лег в основу дальнейших экспериментов Л. Пастера, завершившихся формулировкой принципа профилактики от инфекционных заболеваний - принцип иммунизации ослабленными или убитыми возбудителями.
Развитие иммунологии долгое время происходило в рамках микробиологической науки и касалось лишь изучения невосприимчивости организма к инфекционным агентам. На этом пути были достигнуты большие успехи в раскрытии этиологии ряда инфекционных заболеваний. Практическим достижением явилась разработка методов диагностики, профилактики и лечения инфекционных заболеваний в основном путем создания различного рода вакцин и сывороток. Многочисленные попытки выяснения механизмов, обусловливающих устойчивость организма против возбудителя, увенчались созданием двух теорий иммунитета - фагоцитарной, сформулированной в 1887 году И. И. Мечниковым, и гуморальной, выдвинутой в 1901 году П. Эрлихом.
Начало XX века - время возникновения другой ветви иммунологической науки - иммунологии неинфекционной. Как отправной точкой для развития инфекционной иммунологии явились наблюдения Э. Дженнера, так для неинфекционной - обнаружение Ж. Борде и Н. Чистовичем факта выработки антител в организме животного в ответ на введение не только микроорганизмов, а вообще чужеродных агентов. Свое утверждение и развитие неинфекционная иммунология получила в созданном И. И. Мечниковым в 1900 г. учении о цитотоксинах - антителах против определенных тканей организма, в открытии К. Ландштейнером в 1901 году антигенов человеческих эритроцитов.
Результаты работ П. Медавара (1946) расширили рамки и привлекли пристальное внимание к неинфекционной иммунологии, объяснив, что в основе процесса отторжения чужеродных тканей организмом лежат тоже иммунологические механизмы. И именно дальнейшее расширение исследований в области трансплантационного иммунитета привлекло к открытию в 1953 году явления иммунологической толерантности - неотвечаемости организма на введенную чужеродную ткань.
Во главу своей системы И. И. Мечников ставил фагоцит, или клетку. Против такой трактовки яростно выступали сторонники “гуморального” иммунитета Э. Беринг, Р. Кох, П. Эрлих (Нобелевские премии 1901, 1905 и 1908 гг.). Латинское “гумор” или “юмор” означает жидкость, в данном случае имелась в виду кровь и лимфа. Все трое считали, что организм защищается от микробов с помощью особых веществ, плавающих в гуморах. Их назвали “а н т и т о к с и н ы” и “а н т и т е л а”.
Нужно отметить прозорливость членов Нобелевского комитета, которые еще в 1908 г. попытались примирить две противоборствующие теории иммунитета, наградив И. И. Мечникова и немца Пауля Эрлиха. Потом премии иммунологам посыпались как из рога изобилия (см. Приложение).
Ученик Мечникова бельгиец Ж. Борде открыл в крови особое вещество.Оно оказалось белком, который помогает антителам распознать антиген.
А н т и г е н а м и называют вещества, которые при попадании в организм стимулируют выработку а н т и т е л. В свою очередь, антитела представляют собой высокоспецифические белки. Связываясь с антигенами (например бактериальными токсинами), они нейтрализуют их, не давая разрушать клетки. А н т и т е л а синтезируются в организме лимфоцитами или клетками лимфы. Л и м ф о й греки называли чистую и прозрачную воду подземных ключей и источников. Лимфа, в отличие от крови, прозрачная желтоватая жидкость. Лимфоциты находятся не только в лимфе, но и в крови. Однако попадания антигена в кровь еще не достаточно для того, чтобы начался синтез антител. Необходимо, чтобы антиген был поглощен и переработан фагоцитом, или макрофагом. Таким образом, мечниковский макрофаг стоит в самом начале иммунного ответа организма. Схема этого ответа может выглядеть следующим образом:
Антиген - Макрофаг - ? - Лимфоцит - Антитела - Инфекционный агент
Можно сказать, что вокруг этой простенькой схемки вот уже столетие кипят страсти. Иммунология стала теорией медицины и важной биологической проблемой. Здесь завязываются молекулярная и клеточная биология, генетика, эволюция и многие другие дисциплины. Неудивительно, что именно иммунологи получили львиную долю биомедицинских Нобелевских премий.

2. Образование макрофагов и лимфоцитов
В анатомическом отношении иммунная система кажется разобщенной. Ее органы и клетки рассеяны по всему телу, хотя на самом деле все они связаны в единую систему кровеносными и лимфатическими сосудами. Органы иммунной системы принято делить на ц е н т р а л ь н ы е и п е р и ф е р и ч е с к и е. К центральным органам относят костный мозг и тимус , к периферическим органам - лимфоузлы, селезенку, лимфоидные скопления (разных размеров), расположенные вдоль кишечника, легких и т.д. (рис. 3).
Костный мозг содержитстволовые (или зародышевые ) клетки - родоначальницы всех кроветворных клеток (эритроцитов, тромбоцитов, лейкоцитов, макрофагов и лимфоцитов ). Макрофаги и лимфоциты - основные клетки иммунной системы. Обобщенно и кратко их принято называть и м м у н н о ц и т а м и. Первые стадии развития иммуноциты проходят в костном мозге. Это их колыбель.
Макрофаги , они же фагоциты , - пожиратели инородных тел и самые древние клетки иммунной системы. Пройдя несколько стадий развития (рис. 4), они покидают костный мозг в виде моноцитов (округлых клеток) и определенное время циркулируют в крови. Из кровяного русла они проникают во все органы и ткани, где меняют свою круглую форму на отороченную. В таком виде они становятся более подвижными и способными прилипать к любым потенциальным “чужеродцам”.
Лимфоциты сегодня считаются главными фигурами в иммунологическом надзоре. Это система клеток с различным функциональным предназначением. Уже в костном мозге предшественники лимфоцитов разделяются на две крупные ветви. Одна из них - у млекопитающих - завершает свое развитие в костном мозге, а у птиц в специализированном лимфоидном органе - бурсе (сумке), от латинского слова bursa. Отсюда эти лимфоциты получили название bursa-зависимые, или В-лимфоциты . Другая крупная ветвь предшественников из костного мозга переселяется в другой центральный орган лимфоидной системы - тимус. Эта ветвь лимфоцитов получила название тимус-зависимые, или Т-лимфоциты (общая схема развития клеток иммунной системы представлена на рис. 4).

3. Развитие клеток иммунной системы
В - лимфоциты, как и моноциты, проходят созревание в костном мозге, откуда зрелые клетки выходят в кровяное русло. В-лимфоциты также могут покидать кровяное русло, оседая в селезенке и лимфоузлах, и превращаться в плазматические клетки.
Важнейшее событие в развитии В-лимфоцитов - перекомбинация и мутирование генов, имеющих отношение к синтезу а н т и т е л (белков из класса иммуноглобулинов, направленных против антигенов). В результате такой генной перекомбинации каждый В-лимфоцит становится носителем индивидуального гена, способного синтезировать отдельные антитела против одного антигена. И поскольку В-популяция состоит из множества отдельных клонов (потомства этих антителопродуцентов), то в совокупности они способны распознать и уничтожить весь набор возможных антигенов. После того как гены сформировались и молекулы антител появились на клеточной поверхности в виде рецепторов, В-лимфоциты покидают костный мозг. Короткое время они циркулируют в кровяном русле, а затем внедряются в периферические органы, как бы торопясь выполнить свое жизненное предназначение, поскольку срок жизни этих лимфоцитов невелик, всего 7-10 дней.
Т-лимфоциты в период развития в тимусе именуются тимоцитами . Тимус расположен в грудной полости непосредственно за грудиной и состоит из трех отделов. В них тимоциты проходят три стадии развития и обучения на и м м у н о к о м п е т е н т н о с т ь (рис. 5). В наружном слое (субкапсулярной зоне) пришельцы из костного мозга содержатся как предшественники , проходят здесь как бы адаптацию и еще лишены рецепторов для распознания антигенов. Во втором отделе (корковом слое) они под действием тимусных (ростовых и дифференцирующих) факторов приобретают необходимые Т-клеточной популяции рецепторы для антигенов. После перехода в третий отдел тимуса (мозговой слой) тимоциты дифференцируются по функциональному признаку и становятся зрелыми Т-клетками (рис. 6).
Приобретенные рецепторы, в зависимости от биохимической структуры белковых макромолекул, определяют их функциональный статус. Большая часть Т-лимфоцитов становится эффекторными клетками, которые называются Т-киллерами (от англ. killer - убийца). Меньшая часть выполняет регуляторную функцию: Т-хелперы (от англ. helper - помощники) усиливают иммунологическую реактивность, а Т-супрессоры , напротив, ослабляют ее. В отличие от В-лимфоцитов, Т-лимфоциты (преимущественно Т-хелперы) с помощью своих рецепторов способны распознавать не просто чужое, а измененное “свое”, т.е. чужеродный антиген должен быть представлен (обычно макрофагами) в комплексе с собственными белками организма. После завершения развития в тимусе часть зрелых Т-лимфоцитов остается в мозговом слое, а большая часть покидает его и расселяется в селезенку и лимфоузлы.
Долгое время оставалось непонятным, почему в тимусе гибнут более 90% поступающих из костного мозга ранних предшественников Т-клеток. Известный австралийский иммунолог Ф. Бернет предполагает, что в тимусе происходит гибель тех лимфоцитов, которые способны к аутоиммунной агрессии. Основная причина столь массовой гибели связана с отбором клеток, которые способны реагировать со своими собственными антигенами. Все лимфоциты, не прошедшие контроля на специфичность, погибают.

4.1. Механизмы иммунологической защиты организма
Таким образом, даже краткий экскурс в историю развития иммунологии позволяет оценить роль этой науки в решении ряда медицинских и биологических проблем. Инфекционная иммунология - прародительница общей иммунологии - стала в настоящее время только ее ветвью.
Стало очевидным, что организм очень точно различает ”свое” и “чужое”, а в основе реакций, возникающих в нем в ответ на введение чужеродных агентов (вне зависимости от их природы), лежат одни и те же механизмы. Изучение совокупности процессов и механизмов, направленных на сохранение постоянства внутренней среды организма от инфекций и других чужеродных агентов - иммунитета, лежит в основе иммунологической науки (В. Д. Тимаков, 1973 г.).
Вторая половина ХХ века ознаменовалась бурным развитием иммунологии. Именно в эти годы была создана селекционно-клональная теория иммунитета, вскрыты закономерности функционирования различных звеньев лимфоидной системы как единой и целостной системы иммунитета. Одним из важнейших достижений последних лет явилось открытие двух независимых эффекторных механизмов в специфическом иммунном ответе. Один из них связан с так называемыми В-лимфоцитами, осуществляющими гуморальный ответ (синтез иммуноглобулинов), другой - с системой Т-лимфоцитов (тимусзависимых клеток), следствием деятельности которых является клеточный ответ (накопление сенсибилизированных лимфоцитов). Особенно важным является получение доказательств существования взаимодействия этих двух видов лимфоцитов в иммунном ответе.
Результаты исследований позволяют утверждать, что иммунологическая система - важное звено в сложном механизме адаптации человеческого организма, а его действие в первую очередь направленно на сохранение антигенного гомеостаза, нарушение которого может быть обусловленно проникновение в организм чужеродных антигенов (инфекция, трансплантация) или спонтанной мутации.
Nezelof представил себе схему механизмов, осуществляющих иммунологическую защиту следующим образом:

Но, как показали исследования последних лет, деление иммунитета на гумморальный и клеточный весьма условно. Дейтсвительно, влияние антигена на лимфоцит и ретикулярную клетку осуществляется с помощью микро- и макрофагов, перерабатывающих иммунологическую информацию. В то же время реакция фагоцитоза, как правило, участвуют гуморальные факторы, а основу гуморального иммунитета составляют клетки, продуцирующие специфические иммуноглобулины. Механизмы, направленные на элиминацию чужеродного агента, чрезвычайно разнообразны. При этом можно выделить два понятия - “иммунологическая реактивность” и “неспецифические факторы защиты”. Под первым понимаются специфические реакции на антигены, обусловленные высокоспецифической способностью организма реагировать на чужеродные молекулы. Однако защищенность организма от инфекций зависит еще и от степени проницаемости для патогенных микроорганизмов кожных и слизистых покровов, и наличия в их секретах бактерицидных субстанций, кислотности желудочного содержимого, присутствия в биологических жидкостях организма таких ферментных систем, как лизоцим. Все эти механизмы относятся к неспецифическим факторам защиты, так как нет никакого специального реагирования и все они существуют вне зависимости от присутствия или отсутствия возбудителя. Некоторое особое положение занимают фагоциты и система комплемента. Это обусловлено тем, что, несмотря на неспецифичность фагоцитоза, макрофаги участвуют в переработке антигена и в кооперации Т- и В-лимфоцитов при иммуном ответе, то есть участвуют в специфических формах реагирования на чужеродные субстанции. Аналогично выработка комплемента не является специфической реакцией на антиген, но сама система комплемента участвует в специфических реакциях антиген-антител.

5. Воспаление как механизм неспецифического иммунитета
Воспаление - реакция организма на чужеродные микроорганизмы и продукты тканевого распада. Это основной механизм е с т е с т в е н н о г о (врожденного , или неспецифического ) иммунитета, равно как начальный и заключительный этапы иммунитета п р и о б р е т е н н о г о. Как и всякая защитная реакция, оно должно сочетать способность распознавать чужеродную для организма частицу с действенным способом ее обезвреживания и удаления из организма. Классический пример - воспаление, вызванное занозой, прошедшей под кожу и загрязненной бактериями.
В норме стенки кровеносных сосудов непроницаемы для компонентов крови - плазмы и форменных элементов (эритроцитов и лейкоцитов). Повышенная проницаемость для плазмы крови -следствие изменения стенки сосудов, образования "щелей" между плотно прилегающими друг к другу клетками эндотелия. В районе занозы наблюдается торможение движения эритроцитов и лейкоцитов (клеток белой крови), которые начинают как бы липнуть к стенкам капилляров, образуя “пробки”. Два типа лейкоцитов - моноциты и нейтрофилы - начинают активно “протискиваться” из крови в окружающую ткань между клетками эндотелия в районе формирующегося воспаления.
Моноциты и нейтрофилы предназначены для фагоцитоза - поглощения и разрушения посторонних частиц. Целенаправленное активное движение к очагу воспаления носит название х е м о т а к с и с а. Придя к месту воспаления, моноциты превращаются в макрофаги. Это клетки с тканевой локализацией, активно фагоцитирующие, с “липкой” поверхностью, подвижные, как бы ощупывающие все, что находится в ближайшем окружении. Нейтрофилы также приходят в очаг воспаления, и их фагоцитирующая активность возрастает. Фагоцитирующие клетки накапливаются, активно поглощают и разрушают (внутриклеточно) бактерии и обломки клеток.
Активизация трех главных систем, участвующих в воспалении, определяет состав и динамику “действующих лиц”. Они включают систему образования кининов, систему комплемента и систему активированных фагоцитирующих клеток.

6. Роль Т - лимфоцитов в иммунном ответе

7. Фагоцитоз
Громадная роль фагоцитоза не только во врожденном, но и в приобретенном иммунитете становится все более очевидной благодаря работам последнего десятилетия. Фагоцитоз начинается с накопления фагоцитов в очаге воспаления. Главную роль в этом процессе играют моноциты и нейтрофилы. Моноциты, придя в очаг воспаления, превращаются в макрофаги - тканевые фагоцитирующие клетки. Фагоциты, взаимодействуя с бактериями, активируются, их мембрана становится “липкой”, в цитоплазме накапливаются гранулы, наполненные мощными протеазами. Возрастают поглощение кислорода и генерация активных форм кислорода (кислородный взрыв), включая перекиси водорода и гипохлорита, а также
и т.д.................

В начале 1880-х годов Мечников в Мессине, Италия, отправив семью смотреть цирковое представление, спокойно рассматривал под микроскопом прозрачную личинку морской звезды. Он увидел, как подвижные клетки окружают инородную частицу, попавшую в тело личинки. Явление поглощения наблюдали и до Мечникова, но было принято считать, что это - просто подготовка к транспорту частиц кровью. Неожиданно у Мечникова возникло предположение: а что если это - механизм не транспорта, а защиты? Мечников тотчас же ввел в тело личинки кусочки шипов мандаринового дерева, которое он приготовил вместо новогодней елки для своих детей. Подвижные клетки вновь окружили чужеродные тела и поглотили их.

Если подвижные клетки личинки, думал он, защищают организм, они должны поглощать и бактерии. И это предположение подтвердилось. Мечников прежде не раз наблюдал, как белые клетки крови - лейкоциты, так же собираются вокруг проникшей в организм инородной частицы, формируя очаг воспаления. Кроме того, после многих лет работы в области сравнительной эмбриологии он знал, что эти подвижные клетки в теле личинки и лейкоциты человека происходят из одного зародышевого листка - мезодермы. Получалось, что у всех организмов обладающих кровью или ее предшественником - гемолимфой, есть единый механизм зашиты - поглощение инородных частиц клетками крови. Так был открыт фундаментальный механизм, с помощью которого организм защищает себя от проникновения в него чужеродных веществ и микробов. По предложению профессора Клауса из Вены, которому Мечников рассказал о своем открытии, клетки-защитники были названы фагоцитами, а само явление - фагоцитозом. Механизм фагоцитоза был подтвержден в организме человека и высших животных. Лейкоциты человека окружают проникшие в организм микробы и, подобно амебам, образуют выпячивания, охватывают со всех сторон инородную частицу и переваривают ее.

Пауль Эрлих

Ярким представителем немецкой школы микробиологов был Пауль Эрлих (1854-1915). С 1891 Эрлих занимался поисками химических соединений, способных подавлять жизнидеятельность возбудителей заболеваний. Ввел в практику лечение четырехдневной малярии красителем метиленовым синим, лечение сифилиса мышьяком.



Начав с работы с дифтерийным токсином в Институте инфекционных болезней. Эрлих создал теорию гуморального иммунитета (по его терминологии - теорию боковых цепей). Согласно ей, микробы или токсины содержат в себе структурные единицы - антигены, которые вызывают в организме образование аптител - особых белков класса глобулинов. Антитела обладают стереоспецифичностью, то есть конформацией, позволяющей им связывать только те антигены, в ответ на проникновение которых они возникли. Так Эрлих подчинил взаимодействие аптиген-антитело законам стереохимии. Вначале антитела существуют в виде особых химических групп (боковых цепей) на поверхности клеток (фиксированные рецепторы), затем часть их отделяется от поверхности клетки и начинает циркулировать с кровью (свободно перерешающиеся рецепторы). Встречаясь с микробами или токсинами, антитела связываются с ними, обездвиживают их и предупреждают их действие на организм. Эрлих показал, что отравляющее действие токсина и его способность связываться с антитоксином - это разные функции и на них можно воздействовать раздельно. Повысить концентрацию антител можно было повторными введениями антигена - так Эрлих решил беспокоившую Беринга проблему получения высокоэффективных сывороток. Эрлих ввел различие между пассивным иммунитетом (введение готовых антител) и активным иммунитетом (введение антигенов для стимуляции собственного антителообразования). Исследуя растительный яд рицин, Эрлих показал, что антитела появляются не сразу после введения в кровь антигена. Он первым изучал передачу части иммунных свойств от матери к плоду через плаценту и к младенцу - с молоком.

Между Мечниковым и Эрлихом возникла долгая и упорная дискуссия в печати об «истинной теории иммунитета». В итоге фагоцитоз получил название клеточного, а антителообразование - гуморального иммунитета. Мечников и Эрлих разделили в 1908 году Нобелевскую премию.

Беринг занимался созданием сывороток путем подбора бактериальных культур и токсинов, которые он впрыскивал животным. Одним из крупнейших его достижений является создание в 1890 г. противостолбнячной сыворотки, которая оказалась очень эффективной при профилактике столбняка при ранениях, хотя и малоэффективной в более поздний период, при уже развившейся болезни.

«Беринг хотел, чтобы честь открытия противодифтерийной сыворотки принадлежала германским, а не французским ученым. В поисках прививки зараженным дифтерией животным Беринг делал сыворотки из разных веществ, но животные погибали. Однажды для прививки он использовал трихлорид йода. Правда, и на этот раз морские свинки тяжело заболели, но ни одна из них не погибла. Воодушевленный первой удачей, Беринг, дождавшись выздоровления подопытных свинок, сделал им прививку из отцеженного по способу Ру бульона с дифтерийным токсином, в котором ранее выращивались дифтерийные палочки. Животные превосходно выдержали прививку, несмотря на то, что получили огромную дозу токсина. Значит, они приобрели иммунитет против дифтерии, им не страшны ни бактерии, ни выделяемый ими яд. Беринг решил усовершенствовать свой метод. Он смешал кровь выздоровевших морских свинок с отцеженной жидкостью, содержащей дифтерийный токсин, и сделал инъекцию этой смеси здоровым морским свинкам - ни одна из них не заболела. Значит, решил Беринг, сыворотка крови животных, приобретших иммунитет, содержит в себе противоядие от дифтерийного яда, какой-то „антитоксин“.

Делая прививки сыворотки, полученной от переболевших животных, здоровым, Беринг убедился, что морские свинки получают иммунитет не только при заражении бактериями, но и при действии на них токсина. Позже он убедился, что эта сыворотка дает также лечебный эффект, то есть, если сделать прививку больным животным, те выздоравливают. В клинике детских болезней в Берлине, 26 декабря 1891 года, ребенку, умиравшему от дифтерии, сделали прививку из сыворотки переболевшей свинки, и ребенок выздоровел. Эмиль Беринг и его шеф - Роберт Кох одержали триумфальную победу над грозной болезнью. Теперь за дело вторично взялся Эмиль Ру. Делая прививки дифтерийного токсина лошадям в коротких интервалах времени, он постепенно добивался полной иммунизации животных. Потом он брал у лошадей по несколько литров крови, выделял из нее сыворотку, из которой стал делать прививки больным детям. Уже первые результаты превзошли все ожидания: смертность, достигавшая прежде при дифтерии от 60 до 70 %, упала до 1–2 %.

В 1901 году Беринг получил Нобелевскую премию по физиологии и медицине – за работу по сывороточной терапии.

Иммунология - это наука о защитных реакциях организма, направленных на сохранение его структурной и функциональной целостности и биологической индивидуальности. Она самым тесным образом связана с микробиологией.

Во все времена находились люди, которых не поражали самые страшные болезни, уносившие сотни и тысячи жизней. Кроме того, еще в Средние века было замечено, что человек, который перенес инфекционное заболевание, становится к нему невосприимчивым: именно поэтому людей, выздоровевших от чумы и холеры, привлекали к уходу за больными и к захоронению умерших. Механизмом устойчивости человеческого организма к различным инфекциям медики заинтересовались очень давно, однако иммунология как наука возникла лишь в XIX веке.

Создание вакцин

Первопроходцем в данной области можно считать англичанина Эдварда Дженнера (1749-1823), сумевшего избавить человечество от оспы. Наблюдая за коровами, он обратил внимание на то, что животные подвержены инфекции, симптомы которой схожи с оспой (в дальнейшем это заболевание крупного рогатого скота получило название «коровья оспа»), а на их вымени образуются пузырьки, сильно напоминающие оспенные. Во время дойки жидкость, содержащаяся в этих пузырьках, часто втиралась в кожу людей, но доярки редко болели оспой. Дженнер не смог дать научное объяснение этому факту, поскольку тогда еще не было известно о существовании патогенных микробов. Как выяснилось впоследствии, мельчайшие микроскопические существа - вирусы, вызывающие оспу коров, несколько отличаются от тех вирусов, которые поражают человека. Однако иммунная система человека реагирует и на них.

В 1796 году Дженнер привил жидкость, взятую из оспинок коров, здоровому восьмилетнему мальчику. У того возникло легкое недомогание, которое вскоре прошло. Полтора месяца спустя врач привил ему человеческую оспу. Но мальчик не заболел, поскольку в организме его после прививки выработались антитела, которые и защитили его от болезни.

Следующий шаг в развитии иммунологии сделал знаменитый французский врач Луи Пастер (1822-1895). Основываясь на работах Дженнера, он высказал идею, что если заразить человек ослабленными микробами, которые вызовут легкое заболевание, то в дальнейшем этим недугом человек уже не заболеет. У него вы работается иммунитет, и его лейкоциты и антитела легко справятся с возбудителями. Таким образом, роль микроорганизмов в инфекционных заболеваниях была доказана.

Пастер разработал научную теорию, которая позволила применять вакцинацию против многих болезней, и, в частности, создал вакцину против бешенства. Это чрезвычайно опасное для человека заболевание вызывается вирусом, поражающим собак, волков, лисиц и многих других животных. При этом страдают клетки нервной системы. У заболевшего развивается водобоязнь - невозможно пить, поскольку от воды возникают судороги глотки и гортани. Вследствие паралича дыхательных мышц или прекращения сердечной деятельности может наступить смерть. Поэтому при укусе собаки или другого животного необходимо срочно провести курс прививок против бешенства. Сыворотка, созданная французским ученым в 1885 году, успешно применяется и по сей день.

Иммунитет против бешенства возникает всего лишь на 1 год, так что при повторных укусах по истечении этого срока следует делать прививки снова.

Клеточный и гуморальный иммунитет

В 1887 году русский ученый Илья Ильич Мечников (1845-1916), долгое время работавший в лаборатории Пастера, открыл феномен фагоцитоза и разработал клеточную теорию иммунитета. Она заключается в том, что чужеродные тела уничтожаются особыми клетками - фагоцитами.

В 1890 году немецкий бактериолог Эмиль фон Беринг (1854-1917) установил, что в ответ на введение микробов и их ядов в организме вырабатываются защитные вещества - антитела. На основе этого открытия немецкий ученый Пауль Эрлих (1854-1915) создал гуморальную теорию иммунитета: чужеродные тела ликвидируются антителами - химическими веществами, доставляемыми кровью. Если фагоциты могут уничтожать любые антигены, то антитела - только те, против которых они были выработаны. В настоящее время реакции антител с антигенами применяют при диагностике различных заболеваний, в том числе аллергических. В 1908 году Эрлиху совместно с Мечниковым была присуждена Нобелевская премия по физиологии и медицине «за работу по теории иммунитета».

Дальнейшее развитие иммунологии

В конце XIX века было установлено, что при переливании крови важно учитывать ее группу, поскольку антигенами для организма являются также нормальные чужие клетки (эритроциты). Особенно остро проблема индивидуальности антигенов встала с появлением и развитием трансплантологии. В 1945 году английский ученый Питер Медавар (1915-1987) доказал, что основной механизм отторжения пересаженных органов - иммунный: иммунная система воспринимает их как чужеродные и бросает на борьбу с ними антитела и лимфоциты. И только в 1953 году, когда было открыто явление, обратное иммунитету, - иммунологическая толерантность (утрата или ослабление способности организма к иммунному ответу на данный антиген), операции по трансплантации стали значительно более успешными.

В течение второй половины XIX века врачами и биологами того времени активно исследовалась роль патогенных микроорганизмов в процессе развития инфекционных болезней, а также возможность формировать искусственную невосприимчивость к ним. Эти исследования привели к изучению фактов о естественной защите организма от инфекций. Пастер предложил научному сообществу идею так называемой "исчерпанной силы". Согласно этой теории, вирусная невосприимчивость является таким состоянием, при котором человеческий организм не является благотворной питательной средой для инфекционных агентов. Однако эта идея не могла объяснить целый ряд практических наблюдений.

Мечников: клеточная теория иммунитета

Эта теория появилась в 1883 году. Создатель клеточной теории иммунитета опирался на учение Чарльза Дарвина и основывался на изучении процессов пищеварения у животных, которые располагаются на различных ступенях эволюционного развития. Автор новоявленной теории обнаружил некое сходство во внутриклеточном переваривании веществ у клеток энтодермы, амеб, тканевых макрофагов и моноцитов. Собственно, иммунитета создал известнейший русский биолог Илья Мечников. Его работы в этой области продолжались достаточно долго. Начало им было положено еще в итальянском городе Мессина, в котором микробиолог наблюдал за поведением и личинок

Патолог обнаружил, что блуждающие клетки наблюдаемых созданий чужеродные тела окружают, а затем поглощают их. Кроме того, они рассасывают и следом уничтожают те ткани, которые не нужны организму более. Он приложил немало усилий для разработки своей концепции. Создатель клеточной теории иммунитета ввел, собственно, понятие «фагоциты», выведенное от греческих слов «фагес» - поедать и «китос» - клетка. То есть новый термин буквально означал процесс поедания клеток. К идее таких фагоцитов ученый пришел несколько ранее, когда изучал внутриклеточное пищеварение в различных клетках соединительной ткани у беспозвоночных: губок, амеб и прочих.

У представителей высшего животного мира самыми типичными фагоцитами могут быть названы белые кровяные тельца, то есть лейкоциты. Позднее создатель клеточной теории иммунитета предложил разделять такие клетки на макрофаги и микрофаги. Правильность такого разделения подтверждали достижения ученого П. Эрлиха, который дифференцировал разные типы лейкоцитов посредством окраски. В своих классических работах, посвященных патологии воспаления, создатель клеточной теории иммунитета сумел доказать роль фагоцитирующих клеток в процессе элиминации патогенов. Уже в 1901 году вышел в мир его фундаментальный труд о невосприимчивости к инфекционным болезням. Кроме самого Ильи Мечникова, значительный вклад в развитие и распространение теории фагоцитарного иммунитета внесли И.Г. Савченко, Ф.Я. Чистович, Л.А. Тарасевич, А.М. Березка, В.И. Исаев и ряд других исследователей.