Как решать ребусы - правила и секреты. Арифметические ребусы

Математика – довольно непростая наука , однако усвоить ее азы нужно каждому. Без этих навыков и знаний в современном мире никуда.

Элементарные математические приемы и задачи закладываются в память школьников еще в младших классах. А «упустив» более легкий материал, решить сложные задания становится не под силу. Долгие и серьезные уроки математики делают детей особо неусидчивыми, а значит подавать информацию нужно в игровой форме, например, с помощью ребусов . Такие задания не нужно заставлять решать из-под палки, детки сами охотно будут браться за их разгадывание.

Главное в статье

Польза ребусов на математическую тему для развития ребенка

Ребусы на математическую тему – это те же загадки и головоломки, в которых используются рисунки и графика. Они бывают разные по уровню сложности в зависимости от возрастной категории школьников.


Правила составления математических ребусов для детей

  1. Если вы видите перед словом или картинкой запятую , то нужно убрать первую букву с этого названия . То же самое нужно сделать, если запятая стоит в конце слова. Когда около картинки две запятых, то убирается две буквы соответственно. Например, на первой картинке изображен сок — нужно убрать первую букву «С», рука — уберите слог «ка», буква «ж» так и остается, нос — слово остается целиком, пять — уберите две первые буквы. Зашифрованное слово — «окружность» .
  2. Если цифры , обозначающие последовательность букв в слове зачеркнуты, то их необходимо выбросить из него . Тоже самое касается и букв. На втором рисунке изображен цирк — уберите последнюю букву, из слова «акула» нужно убрать букву «А», готовый ответ: «циркуль».
  3. Когда рядом с картинкой стоят цифры, поменянные местами , то и в названии самого предмета нужно поменять местами буквы, которые стоят в последовательности с указанными цифрами.
  4. Если картинка изображена вверх тормашками , то отгадку нужно читать в обратном порядке: справа-налево.
  5. Для ребусов используется только именительный падеж в словах .
  6. Указатель в виде стрелки или математический знак «равно» обозначает, что нужно заменить буквы одну другой.
  7. В ребусах одно значение может быть расположено внутри другой картинки , за ней или под ней. Тогда применяйте слова: В, НА, НАД, ПОД, ЗА.
  8. Цифры, стоящие в ряд около изображения , обозначают, что нужно использовать из этого значения буквы в указанной последовательности цифр.

Вот несколько примеров математических ребусов, соответствующих приведенным правилам:

Под третьим рисунком зашифровано слово «вектор» , под четвертым — «степень» , под пятым — «два» , под шестым — «доказательство» .

Как придумать математический ребус?

Следуя общим правилам составления ребусов, попробуйте придумать для начала несложные математические задачки, используя цифры и математические термины. А затем, немного освоив простые задания, переходите к более усложненным. Вот несколько образцов ребусов по математике с ответами, которые вдохновят вас и покажут, как их нужно составлять:

Ответы: первый ребус — «диаметр» , второй — «пять» , третий — «конус» , четвертый — «задача» .


Пятая картинка — «алгебра» , шестая — «геометрия» , седьмая — «линейка» , восьмая — «уравнение» .


Девятая загадка — «диаметр» , десятая — «циркуль» , одиннадцатая — «транспортир» , двенадцатая — «конус» .



Особенности математических ребусов для начальной школы

Лучше всего приобщать ребенка к разгадыванию математических ребусов еще в детском саду, в выпускной группе. Это послужит отличной разминкой перед школой, освежит у малыша весь пройденный материал с педагогом.

Только нужно учитывать, что такие ребусы должны быть довольно легкими, и включать только те знания, которые ребенок уже усвоил и знает. Это может быть головоломка из двух-трех составляющих, ответ которой таит в себе простое математическое значение.

Эти же ребусы пригодятся для «разогрева» первоклашек. Поступление в школу – и так огромная эмоциональная нагрузка для ребенка, поэтому не стоит удручать обучение математике столь сложными ребусами. Подойдут следующие примеры:


Математические ребусы для 1 класса с ответами

Первоклассники уже хорошо знают цифры и простые математические действия, которые можно включить в ребусы. Причем для таких ребусов характерно то, что математическое значение может присутствовать как в самой загадке, так и в ее значении. А может случиться такое, что ответ совершенно не будет связан с этой точной наукой. Предложите ребенку следующие математические ребусы:

Математические ребусы для 2 класса с ответами

Для того, чтобы составить математический ребус второкласснику, нужно ориентироваться в его знаниях, то есть предлагаемая задача должна быть ему посильной. Вот что должен знать и уметь учащийся во втором классе:

  1. При решении заданий использовать в правильном порядке числа от 1 до 100, правильно озвучивая их.
  2. Решать примеры сложения и вычитания чисел, которые не превышают цифру 20.
  3. В ряде случаев применять математические действия умножения и деления.
  4. Четко знать правила использования скобок в примерах и решать их.
  5. Применять в своей лексике единицы измерения длины и объема.
  6. Вести сравнения больше-меньше цифр в пределах 100.
  7. Уметь устно прибавлять и отнимать числа в пределах 100.
  8. Решать несложные задачи с четырьмя основными арифметическими действиями, уметь увеличивать (уменьшать) число на (в) раз (единиц).
  9. С помощью линейки чертить и мерить длину отрезка.
  10. Распознавать плоские углы.
  11. Узнавать и озвучивать плоские геометрические фигуры.
  12. Уметь вычислять периметр многоугольников.






Математические ребусы для 3 класса с ответами

Чтобы разгадать посильные математические ребусы, третьеклассник на уроке математики должен:

  1. Считать и называть числа до тысячи.
  2. Выполняя основные четыре арифметические действия, называть каждую составляющую примера своим названием.
  3. Владеть таблицей умножения и оговаривать результат действия деления.
  4. Уметь решать примеры со скобками и без них.
  5. Знать единицы измерения величин и выражать их в разной интерпретации.
  6. Устно решать математические действия до значения 100.
  7. Делить многозначное число на однозначное, руководствуясь таблицей умножения.
  8. Проверять правильность расчета примеров.
  9. Выполнять задачи на одно-два действия.
  10. Придумывать задачи, обратные исходной.
  11. Уметь кратко записать задачу.
  12. Вычислять уравнения и неравенства.
  13. Чертить простые геометрические фигуры, согласно исходным данным задания, вычислять их периметр и площадь.
  14. Уметь пользоваться циркулем, чертя окружности заданных радиусов.





Математические ребусы для 4 класса с ответами

На уроках математики четвероклассник должен:

  1. Уметь решать задачи рациональным и нерациональным способом.
  2. Решать задачи, записывая ход их решения.
  3. Иметь представление вычисления объема и площади геометрических фигур, исходя из выученных формул.
  4. Чертить геометрические фигуры, обозначать их компоненты латинскими буквами.
  5. Строить и мерить углы транспортиром.
  6. Знать свойства равенства.
  7. Решать задания с количеством арифметических действий от одного до четырех.
  8. Знать свойства сторон, углов, радиусов геометрических фигур.
  9. Вычитать и прибавлять многозначные числа.
  10. Делить многозначное число на однозначное и многозначное.
  11. Иметь понятие натурального ряда.
  12. Умножать дробь на натуральное число.
  13. Правильно называть и писать дроби: числитель и знаменатель.
  14. Сравнивать дроби.




Математические ребусы для 5 класса с ответами

Программа по математике для пятиклассника схожа с предыдущим годом, только имеет более обширный характер. Недаром ведь в некоторых школах четвертый класс пропускается, а вся школьная программа за пропущенный год изучается в пятом классе.





Математические ребусы для 6 класса с ответами

  1. В шестом классе активно изучается геометрия, в частности ее теоремы.
  2. Ребенок знакомится с известными учеными в области математики и других точных наук.
  3. Школьник имеет дело с изучением геометрических фигур на плоскости, учится вычислять их объем и площадь по изученным формулам.
  4. По алгебре в ход идет решение уравнений с двумя неизвестными, неравенств.




Математические ребусы с цифрами с ответами

Цифры, изображенные в математических ребусах, могут быть двух видов:

  • Те, название или часть названия которых используется для ответа.
  • Те, которые стоят около изображения, и указывают на то, что из названия этого изображения нужно позаимствовать буквы, соответствующие последовательности стоящих цифр в ряду.


Математические загадки, ребусы, кроссворды

Хорошо тренируют умственную активность не только ребусы по математике, но еще и логические, арифметические загадки, кроссворды. Они развивают любознательность и сообразительность у детей. А игровая форма заданий помогает достигнуть высокой скорости мышления и догадки.

Для самых маленьких подойдут такие задачки:


Решите еще такие кроссворды и задания:

  • Решите примеры, линиями соедините ответ и группу детишек, соответствующую ему (первое задание).
  • Решите примеры на веслах, а затем линиями соедините каждое из них с лодками, имеющими правильный ответ (второе задание).

  • Заполните пропущенные клеточки цифрами таким образом, чтобы по горизонтали и по вертикали всегда ответ получался 15 (третье задание).
  • Заполните пропуски и решите примеры (четвертое задание).

Разгадайте кроссворды:

Вот более сложные ребусы:



Как решать математические ребусы с буквами?

Решение математических ребусов с буквами

Все слова состоят из букв, поэтому множество ребусов содержат в своей структуре буквы. Руководствуясь основными принципами решения ребусов, вы с легкостью осилите математические ребусы с буквами.




Математические ребусы и головоломки

Такие загадки и головоломки будут интересны не только школьникам, но и их родителям:




Самые легкие математические ребусы

Пусть школьник потренируется для начала на простых математических ребусах. К примеру, на таких:


Сложные математические ребусы

Попробуйте предоставить вашему сорванцу вот такие головоломки, которые позволят сконцентрировать смекалку и потренировать интеллект. Это задание предположительно для учеников пятых классов.

В нашей статье приведены примеры математических ребусов с ответами разных уровней сложности, зависящих от возраста школьника. Изучив основные правила разгадывания ребусов, попробуйте составить интересные задания своим деткам. Такого рода занятия помогут ребенку активизировать свои интеллектуальные способности, выработают усидчивость и концентрацию внимания, а также закрепят пройденный материал по математике. Это увлекательное занятие поможет сплотить родных (товарищей), и создать дружескую атмосферу в семье и школьном коллективе.

Инструкция

Прежде чем приступить к разгадыванию сложных задач, потренируйтесь на простом примере: ВАГОН+ВАГОН=СОСТАВ. Запишите его в столбик, так будет удобнее решать. Вы имеете два неизвестных пятизначных числа, сумма которых шестизначное число, значит В+В больше 10-ти и С равно 1. Замените символы С на 1.

Сумма А+А – однозначное или двухзначное число с единицей на конце, это возможно в том случае, если сумма Г+Г больше 10 и А равно либо 0, либо 5. Попробуйте предположить, что А равно 0, тогда О равно 5-ти, что не удовлетворяет условиям задачи, т.к. в этом случае В+В=2В не может равняться 15-ти. Следовательно, А=5. Замените все символы А на 5.

Сумма О+О=2О – четное число, может быть равна 5 или 15 лишь в том случае, если сумма Н+Н – двухзначное число, т.е. Н больше 6-ти. Если О+О=5, то О=2. Это решение неверно, т.к. В+В=2В+1, т.е. О должно быть число нечетное. Значит, О равно 7-ми. Замените все О на 7.

Легко заметить, что В равно 8-ми, тогда Н=9. Замените все буквы на найденные числовые значения.

Замените в примере оставшиеся буквы на числа: Г=6 и Т=3. Вы получили верное равенство: 85679+85679=171358. Ребус отгадан.

При вычитании также начните действия с единиц. Если число того или иного разряда уменьшаемого меньше числа вычитаемого, то займите у следующего разряда 1 десяток или сотню и т.д. и произведите вычисления. Поставьте точку над числом, у которого занимали, чтобы не забыть. При выполнении действий с этим разрядом вычитайте уже из уменьшенного числа. Результат запишите под горизонтальной чертой.

Проверите правильность вычислений. Если вы складывали, тогда из полученной суммы вычтите одно из слагаемых, у вас должно получиться . Если же вы вычитали, тогда сложите полученную разность с вычитаемым, должно получиться уменьшаемое.

Обратите внимание

Обязательно разряды чисел должны находиться друг под другом.

В линейной алгебре и в геометрии понятие вектор определяется по разному. В алгебре вектор ом называется элемент вектор ного пространства. В геометрии же вектор ом называют упорядоченную пару точек евклидового пространства - направленный отрезок. Над вектор ами определены линейные операции – сложение вектор ов и умножение вектор а на некоторое число.

Инструкция

Произведением вектор а a на число? называется число?a , что |?a| = |?| * |a|. Полученный при умножении на число вектор параллелен исходному вектор у или лежит с ним на одной прямой. Если?>0, то вектор ы a и?a однонаправленными, если?<0, то вектор ы a и?a направлены в разные .

Видео по теме

Ребус – это особенная загадка, в которой искомое слово заключено в рисунках, содержащих различные буквы и цифры. На картинках вы можете встретить также и другие знаки, которые помогут прочитать слово правильно. Решение ребусов – это весьма увлекательное занятие, которое поможет вам размяться перед сложной работой. Чтобы , вы должны помнить ряд простых правил.

Инструкция

Названия любых предметов, изображенных на рисунке, читаются только в именительном падеже.

Иногда рисунок может иметь несколько названий (например, лапа или нога). А также предмет может иметь, как конкретное, так и общее название. Например, цветок является общим названием, а конкретное – или роза. Поэтому, если вы сможете правильно угадать объект, изображенный на картинке, то считайте, что самая сложная часть позади. Самый простой и популярный метод решения ребусов – рисунков по частям. То есть сначала нужно записать все названия предметов по порядку, а затем сложить из них текст.

Справа от предмета могут быть нарисованы одна или несколько перевернутых запятых - это значит, что нужно убрать одну или несколько букв в начале или конце слова соответственно.

В том случае, если над картинкой есть цифры, буквы в слове необходимо читать в определенном порядке - именно в том, в котором стоят цифры.

Симонова Наталья

Работа к окружной научно-практической конференции учащихся

Скачать:

Предварительный просмотр:

Введение………………………………………………………………………………………………2

1. Типы математических ребусов…………………………………………………………………….3

2. Примеры математических ребусов

2.1.Сложение ………………………………………………………………………………………5

2.2.Вычитание……………………………………………………………………………………..6

2.3.Умножение ……………………………………………………………………………………6

3. Ребусы в стихах……………………………………………………………………………………6

4. Ребусы с ключевыми словами ……………………………………………………………………7

5. Способы решения некоторых ребусов. ………………………………………………………….9

6. Ребусы различных видов ………………………………………………………………………...11

7. Комплекс математических ребусов для учащихся……………………………………………..12

8. Заключение ……………………………………………………………………………………….14

9.Список литературы ……………………………………………………………………………….15

Введение

В древности одним из важнейших достоинств человека считали владение математическими знаниями. В Индии, например, только тот юноша считался подготовленным к жизни, кто овладел искусством решения задач, физических упражнений и стихосложения.

Непрерывно возрастают роль и значение математики в современной жизни. В условиях научно-технического прогресса труд приобретает все более творческий характер и к этому надо себя готовить за школьной партой.

Понятие арифметических действий в разные времена у разных пародов было различным. Древние египтяне к арифметическим действиям относили сложение, удвоение и деление пополам. Позже некоторые европейские ученые (XIII в.) насчитывали 9 арифметических действий, в том числе и нумерацию. В первом учебнике по математике для «российского юношества» «Арифметике» - Л. Ф. Магницкого (1703) нумерация чисел тоже относилась к арифметическим действиям.

Для обозначения арифметических действий сначала употреблялись слова, затем - буквы. Знаки «+», « - » и точка как знак умножения впервые употреблены в учебниках по арифметике в XV в., а знак деления (две т очки) - в XVII в., но окончательно все эти знаки утвердились в работах выдающегося немецкого ученого Г. В. Лейбница (XVII в.).

При разгадке математических ребусов надо не только уметь хорошо вычислять, используя знания об арифметических действиях их свойствах, но и проявить смекалку, терпение, выдержку и настойчивость.

Объект исследования : математические ребусы различных видов.

Цели и задачи работы:

- найти занимательные математические ребусы различных видов;

Исследовать возможные пути решения ребусов;

Актуальность.

Необходимость выполнять арифметические действия (вычислять) так же, как и считать, диктуется практикой, самой жизнью.

Эффективное развитие математических способностей учащихся невозможно без использования в учебном процессе задач на сообразительность, задач-шуток, математических ребусов и головоломок, что вызывает естественный интерес к изучаемой теме, осознание необходимости её изучения и соответствующий настрой к преодолению предстоящих на пути приобретения новых знаний трудностей. Я считаю, что моя работа будет способствовать развитию математического мышления и творческой активности школьников 5-8 классов .

Методы исследования :

Для выполнения поставленной задачи я провела анализ материалов, в которых рассмотрено огромное разнообразие математических ребусов.

Типы математических ребусов.

Математические ребусы одновременно относят к нестандартным и занимательным задачам. Ребусы можно отнести к задачам с неполным составом условия и к задачам с несколькими решениями.

Математический (числовой) ребус – задание на восстановление записей вычислений. Математические ребусы обычно используются для развития логического мышления у школьников, поскольку их решение построено на логических рассуждениях. Кроме того, происходит совершенствование вычислительных навыков. Существует два типа математических ребусов.

Ребусы первого типа – это задачи, удовлетворяющие следующим требованиям:

  • в тексте задачи приведена буквенная запись;
  • в вопросе задачи требуется определить цифры, при подстановке которых в эту запись вместо букв выполняется условие, сформулированное в тексте задачи.

При решении ребусов этого типа следует помнить, что разные буквы заменяются разными цифрами, а одинаковые буквы – одинаковыми цифрами.

Ребусы второго типа – это задачи, удовлетворяющие следующим требованиям:

  • дана запись, в которой встречаются звездочки;
  • в вопросе задачи требуется определить набор цифр, при подстановке которых вместо звездочек выполнится условие, сформулированное в тексте задачи. При этом звездочку можно заменять любой цифрой, независимо от того, использована ли она в другом месте.

Решить ребус означает найти все возможные наборы цифр, удовлетворяющие условию задачи. Очевидно, что решение даже самого простого ребуса методом полного перебора приведет к большим временным затратам. Основная причина – большое количество неизвестных, каждая из которых может принимать до десяти значений.

Для того чтобы найти свойство, позволяющее упростить процедуру полного перебора, рассмотрим отдельно ребусы первого и второго типов. В ребусах первого типа каждая буква заменяет свою цифру. Следовательно, выполнено следующее утверждение:

Утверждение 1. Если в записи используется 10 различных букв, значит, в числовом выражении использованы все 10 цифр; если используется более 10 букв, то ребус не имеет решения.

Это утверждение позволяет ограничить варианты перебора по количеству переменных. Отметим, что для ребусов второго типа это ограничение неприменимо, так как звездочки в разных местах можно заменять одной и той же цифрой.

Перечислим несколько простых утверждений, позволяющих ограничить перечень значений, которые может принимать каждая из переменных. Эти утверждения используют расположение буквы или звездочки в записи.

Утверждение 2. Если в записи числа буква расположена в старшем разряде, то ее значение не может равняться нулю.

Утверждение 3. Если А и В – количество единиц в некотором разряде в слагаемых, а С – количество единиц в сумме, то возможны следующие варианты:

  • А+В=С, в этом разряде нет переноса; из этого разряда нет переноса;
  • А+В+1=С, в этот разряд есть перенос; из этого разряда нет переноса;
  • А+В=С+10, в этот разряд нет переноса; из этого разряда есть перенос;
  • А+В+1=С+10, в этот разряд есть перенос; из этого разряда есть перенос.

Это утверждение удобно применять, если известно, есть ли перенос в рассматриваемый разряд или известно есть ли перенос из рассматриваемого разряда.

Утверждение 4. Если количество разрядов в сумме больше количества разрядов в каждом из двух слагаемых, то старший разряд в сумме содержит 1 единицу.

Утверждение 5. Если буква в каком-то разряде суммы совпадает с буквой в том же разряде одного из слагаемых, то в этом разряде второго слагаемого 0 или 9 единиц. Если этот разряд единиц, то в разряде единиц второго слагаемого 0 единиц.

Утверждение 6. Если количество разрядов в сумме больше числа разрядов в одном из слагаемых и на 2 больше числа разрядов в другом слагаемом, то:

  • Вторая слева цифра суммы равна 0;
  • У большего слагаемого в старшем разряде 9 единиц.

Утверждение 7. Если в одном из слагаемых, получаемых при умножении, все буквы совпадают с буквами в множимом, то соответствующий разряд множителя содержит 1 единицу.

Утверждение 8. Если отсутствует одно из слагаемых, получаемых при умножении, то соответствующий разряд множителя содержит 0 единиц.

Пример 1. Решите ребус: WIND * OF=CHANGE.

Решение. Заметим, что в записи ребуса использовано 11 различных букв. Следовательно, заменить их различными цифрами невозможно.

Ответ. Нет решений.

Пример 2. решите ребус: СОРОК + ОДИН = ТРИСТА

Решение. По утверждению 4, Т=1, а по утверждению 6, Р=0, С=9. поставим полученные значения в ребус: 9О0ОК +ОДИН=10И91А. применим утверждение 3 к разряду сотен. Варианты 0+Д=10+9 и 0+Д+1=10+9 невозможны, так как в этих случаях Д>9. Остаются варианты 0+Д=9 и 0+Д+1=9. Первый из них невозможен, так как в этом случае Д=9=С. Итак, Д=8.

Применим теперь утверждение 3 к разряду тысяч. При этом учтем, что из разряда сотен в разряд тысяч переноса нет, а из разряда тысяч в разряд десятков тысяч – есть. Следовательно, О+О=10+И, откуда О≥5. поскольку цифры 8 и9 уже использованы, О=5 или О=6, или О=7.

  1. О=5. Тогда И=О+О-10=0=Р, что невозможно.
  2. О=6. Тогда И=О+О-10=2, и ребус примет вид: 96606К+682Н=10291А. Заметим, что в разряде десятков не выполнено ни одного из соотношений утверждения 3. Следовательно, этот случай невозможен.
  3. О=7. Тогда И=О+О-10=4, и ребус примет вид: 9707К+784Н=10491А. Неиспользованными остались цифры 2, 3, 5 и 6. Буквы К, Н и А надо заманить на какие-то из этих цифр так, чтобы выполнялось равенство К+Н=А. Очевидно, это возможно сделать двумя способами 2+3=5 и 3+2=5. Итак, получаем два решения ребуса: 97072+7843=104915 и 97073+7842=104916.

Ответ. 97072+7843=104915 и 97073+7842=104916.

Примеры математических ребусов

Рассмотрим задачи, где требуется восстановить первоначальный вид арифметического примера. Расшифровать ребус - это значит восстановить первоначальную запись примера.

При решении, задач такого типа требуется внимательность к очевидным арифметическим действиям и умение вести нить логических рассуждений.

Сложение

1) А 6 2) СИНИЦА 342457 3) КАФТАН 364768

АБ + 67 + СИНИЦА + 342457 + КАФТАН + 364768

АБВ 674 ПТИЧКИ 684914 ТРИШКА 729536

БВБ 747

4) ОХОХО 90909 5) ТРИ 769 6) БУЛОК 87130

АХАХА + 10101 + ДВА + 504 + БЫЛО + 8213

АХАХАХ 101010 ПЯТЬ 1273 МНОГО 95343

7) ХОД + ХОД + ХОД + ХОД + ХОД = МАТ

имеет много решений, например:

123 + 123 + 123 + 123 + 123 = 615

146 + 146 + 146 + 146 + 146 = 730

152 + 152 + 152 + 152 + 152 = 760

8) Б 2 9) АБВГ 1085 10) АБВГ 9541

АААА 9999 + ФГЕТ + 9567 + ВБВА + 4549

АААА + 9999 АБЕГР 10652 ГВДАД 14090

АААА 9999

БАААА 29999

Вычитание

1) ТРИ 769 2) ПОДАЙ 10652 3) ПЯТЬ 1273

ДВА - 504 - ВОДЫ - 9067 - ТРИ - 769

ЯРД 265 ПАША 1585 ДВА 504

Умножение

1) ДВА 209 2) ТРИ 153 3) ГГГГ 2222

* ДВА * 209 * ТРИ * 153 * ГГГ * 222

ОЛЛО 1881 СРО 459 АААА 4444

ЧОЯ + 418__ + ПАР + 765 + АААА + 4444

ЧИСЛО 43681 ТРИ___ 153__ АААА 4444

ЧИСЛО 23409 АБВВГДА 493284

Ребусы в стихах

Задание 1 . Веселый клоун Нибумбум

Сегодня мрачен и угрюм.

Что огорчает Нибумбума?

Пример решал он восемь раз,

И каждый раз другая сумма!

Печальный случай! (А у вас?)

При решенье не забудьте

(В том-то вся и четкость смысла!)

Одинаковые буквы - одинаковые цифры !

КОШКА

КОШКА

КОШКА

СОБАКА

Обратив внимание на то, что последние две буквы (цифры) слагаемых и суммы одинаковы, постараемся их расшифровать. Понятно, что одна из этих букв (или А, или К) означает 0, а другая-5. Может ли А = 5, чтобы К = 0? Остальные буквы рассматриваемые справа налево, расшифровываются в зависимости от этих двух.

Сумма трёх А оканчивается на А, поэтому А= 0 или а = 5. Но, если А = 5, тогда (К + К + К + 1) не может оканчиваться на К. Следовательно А = 0, К = 5. Так как (Ш + Ш + Ш + 1) оканчивается на А = 0, то Ш = 3. Так как К + К + К = 15, то С = 1. Имеем

5*350 56350 57350

5*350 + 56350 + 57350

5*350 56350 или 57350

1**050 169050 172050

Задание 2.

ЗАДАЧА ОЧЕНЬ НЕПРОСТА –

НАЙТИ НЕ КАЖДЫЙ СМОЖЕТ:

ЧЕМУ РАВНЯЕТСЯ ЗВЕЗДА,

ВЕЛОСИПЕД И ЁЖИК?

Данный ребус интересен тем, что слова обозначают только 1 цифру.

ВЕЛОСИПЕД ЕЖИК 7

ЗВЕЗДА ЕЖИК 4

6 ВЕЛОСИПЕД ЕЖИК

1 ВЕЛОСИПЕД 0 ЗВЕЗДА

Расшифровку ребусов попробуем начать с рассмотрения средней колонки слагаемых и их суммы. При сложении двух одинаковых чисел и третьего, отличного от них, при условии передачи единицы из низшего разряда получаем число, оканчивающееся цифрой 0. Какой же может быть сумма

ЕЖИК + ЕЖИК + ВЕЛОСИПЕД?

Из двух значений удовлетворяет лишь одно. Имея сумму трёх слагаемых (ЕЖИК, ЕЖИК, ВЕЛОСИПЕД), устанавливаем, какие слагаемые удовлетворяют условию задачи. Получив «ключ» легко откроем «замок».

(ЕЖИК + ЕЖИК + ВЕЛОСИПЕД + 1) оканчивается цифрой 0. Значит, (ЕЖИК + ЕЖИК + ВЕЛОСИПЕД) = 9 (или 19). Равенство ЕЖИК + ЕЖИК + ВЕЛОСИПЕД = 19 невозможно. Значит, возможна сумма 9, тогда из случаев 1 + 1 + 7 = 9, 2 + 2 + 5 = 9, 3 + 3 + 3 = 9, 4 + 4 + 1 = 9 подходит только 2 + 2 + 5 = 9. В результате ЕЖИК = 2, ЗВЕЗДА = 3, ВЕЛОСИПЕД = 5:

Ответ: 527 + 324+ 652 =1503

Ребусы с ключевыми словами

Ниже представлены ребусы, в которых цифры зашифрованы буквами, причем разным цифрам соответствуют и разные буквы. Между зашифрованными числами поставлены математические знаки, показывающие действия по горизонталям и по вертикалям. Путем рассуждений нужно восстановить числовые значения букв так, чтобы выполнить указанные действия.

Расставив буквы соответственно их числовому значению (от 1 до 9 включая 0), получаем ключевое слово.

1) ТА+ ИТ = ЛЕТ 2) КРА + ОЛИ = ИАЯ

X - + X: -

ЕС х СН = ЛЛАС Л х АР= КЯИ

ЛЕАА + ЕЦ = ЛЕЕЦ ОИИ + АЛ = РКА

3) СТУН + САРН + ЕАТД = ДНЕЕ

- - + -

ЛОЕН-ЛЕУН +САРН = СЕТН

ЕЛОА - ЛДСА + ТЛТТ = ТОУТ

4) УЕИ - ЕАС = СЕУ 5) ИЦГ-УАЕ = ЕИН

: + - : + -

БЕ х Т = НЕ ИГ х Е = СЕЕ

ПП+ЕАЦ=ЕУС ГГ + УГА = УУГ

6) ВЕОЬ: МЕ = ОК 7) МЕЛ: СЛ -= СП

Х + - х +

СВС + В Р = ССА ЕФФ + ЛС = ЕРА

ВСВВ-КМО = СМК РАО - ОАС=САЛ

8) АЕО - КЦЦ = ИСЕ

: - -

Л X КОН = ЛИЦ

ЛКЕ + НО = ЛИН

Ответы: 1) Лестница; 2) Калория; 3) Лесотундра; 4) Беспутница; 5) Гусеница;

6) Восьмерка; 7) Лесоферма; 8) Колесница.

Существуют числовые ребусы в виде примеров деления. Делимое и делитель выглядят как обычные слова. Частное и промежуточные выкладки представляют неосмысленные сочетания букв. Решив ребус, расположите буквы в порядке их цифровых значений (от 1 до 9 и включая 0) -получится третье слово, которое является ответом и называется ключом ребуса.

Загадывающий задумывает слово, состоящее из 10 неповторяющихся букв, например «трудолюбие», «специально», «просвещать». Приняв буквы задуманного слова за цифры, загадывающий изображает посредством этих букв какой-нибудь случай деления. Если задумано слово просвещать , то можно взять такой пример деления:

просвещать 123564 3548 провес овса

12345657809 10644 34 пьесс ос

17124 пщпрс

17192 пспрс

2932 ртор

Делимое – провес, 123564

Делитель – овса, 3548

Можно взять и другие слова:

восстать свет

свет ппета

Щщвт

свет

Оптьа

рщспс

Сстст

сппрт

оараь

оеввр

Пщра

делимое – восстать 53449890

делитель – свет 4569

трудолюбие блюдо труд

1234567890 блуб юе

Уло

делимое – блюдо, 86745

делитель – труд, 1234

Способы решения некоторых ребусов

Среди математических задач и развлечений часто встречаются числовые ребусы или криптарифмы. Вот несколько из них. В этих примерах все цифры заменены буквами.

Одинаковыми буквами обозначены одинаковые цифры, а разными буквами - неодинаковые цифры. Требуется восстановить первоначальный вид примера.

Задание 1

УРАН

УРАН

НАУКА

Решение подобных задач достигается не механическим перебором вариантов, а строго логически. Можно рассуждать, например, так:

сумма двух четырехзначных чисел равна пятизначному. Это возможно, если буква Н обозначает 1: УР21

Значит, буква А обозначает цифру 2: + УР2 1

12УК2

126К2

Таким образом, буква Р обозначает цифру 3, буква К- цифру 4.

Окончательно:

6321

6321

12642

Решение единственное. Задание 2. Восстановить цифры в примере (число СТО делится на 139).

ВОРОН

СТАЯ

ЛЕТЕЛА

Решение. Заметим, что сумма пятизначного и четырехзначного чисел может быть шестизначной только когда первая цифра суммы 1, вторая цифра 0, а первая цифра пятизначного числа 9.

9ОРОН

Поэтому данный пример принимает вид + СТАЯ

10Т01А

Так как СТО делится на 139, то оно является одним из следующих чисел: 139, 278, 417, 556, 695, 834, 973, и поскольку разные буквы обозначают разные числа, то надо рассмотреть только два случая: СТО = 278 и СТО = 834.

В первом случае в разряде тысяч «сверху вниз» стоят цифры 8, 2, 7, но при сложении 8 + 2 даже при переносе единицы из разряда сотен не может получиться цифра 7, и, следовательно, этот случай невозможен, т.е. = 834.

Теперь пример принимает вид:

94Р4Н

83АЯ .

10301А

Ясно, что при сложении в разряде десятков переносится единица, и по этому Р = 6, и из того же разряда десятков видно, что А = 7. Для букв Н и Я остаются две возможности: одна из них 2 другая 5.

Таким образом, данный пример расшифровывается двумя способами:

103017 103017

8375 - 8372

94642 94645

Задание 3 . ДВА

* ДВА

****

+ ***В

Е***

ЧЕТЫРЕ

Решение: буква А обозначает не единицу, не пятёрку и не шестёрку, так как последние цифры множителей и произведения разные. Значит, второе частное произведение

ДВА * В = ***В

Может оканчиваться буквой В, только если она обозначает пятёрку, а буква А- какую-то нечётную цифру.

Из столбца шестого разряда видно, что Е меньше Ч. Следовательно, Е не может обозначать девятку, поэтому А не может быть тройкой или семёркой. Отсюда А = 9, Е = 1. После этого несложно найти, что Ч = 2, Д = 4.

Окончательно, 459

* 459

4131

2295

1836

210681

Решение единственное.

Ребусы различных видов

Задание 1. Расшифруйте числовой ребус

СЛОВ,О + СЛОВ,О = ПЕСНЯ

Обратив внимание на то, что при сложении двух одинаковых дробей получаем целое число, определяем цифру, обозначенную буквой О. Определяется также сразу цифра, обозначенная буквой П, так как в целой части каждого слагаемого по 4 цифры, а в полученном результате 5. Так как Н = 1 то для Н остаётся одно значение. Какое? Методом проб определяем остальные цифры.

Запишем выражение в столбик

СЛОВ,О

СЛОВ,О

ПЕСНЯ

Так как в результате получим целое число, то О = 5. Буква П может обозначать только цифру 1, тогда Н = 0. Так как С 5, то методом проб находим С = 9, Л = 4 и тд.

Получаем 9453,5 + 9453,5 = 18907.

Задание 2 . Расшифруйте ребус возведения числа в степень.

(АР) М =МИР (16) 2 =256

Комплекс математических ребусов для учащихся.

Задания для учащихся 4 -7классов.

  1. ра + ра + ра = ура
  2. КТО * 2 = ТОК
  3. КО х КО х КО = ТРИКО

Заключение

Выводы

Математический ребус – задание на восстановление записей вычислений.

Математические ребусы обычно используются для развития логического мышления у школьников, поскольку их решение построено на логических рассуждениях. С детского возраста нужно решать ребусы, это поможет развить математические способности

Задачи, представленные в занимательной форме, очень интересны. Их хочется решать, они увлекают своей необычностью, неочевидностью ответа. Появляется желание совершить пусть даже нелёгкий путь поиска решения. Занимательность и строгость вполне совместимы. Каждое самостоятельно решенное задание – это возможно, небольшая, но всё же победа.

Практическое применение работы:

Материал данной работы может быть использован на уроках, на занятиях математического кружка и для подготовки к олимпиадам.

Список литературы

  1. Кудряшова Т.Г. Методы решения математических задач, 2008.
  2. Коваленко В.Г. Дидактические игры на уроках математики – М.: Просвещение, 1990.
  3. Нагибин Ф.Ф., Канин Е.С. Математическая шкатулка: пособие для учащихся. – 4-е изд., перераб. и доп. – М.: Просвещение,1984.
  4. Шейнина О.С., Соловьёва Г.М. Математика. Занятия школьного кружка. 5 – 6 кл. – М.: Изд-во НЦ ЭНАС, 2005.
  5. Клименченко Д.В. Задачи по математике для любознательных. - ср. шк. – М.: Просвещение, 1992.
  6. Перельман Я.И. Занимательная арифметика. Загадки и диковинки в мире чисел. Издательство Русанова, состав. 1994
  7. Терентьева Л.П. Решение нестандартных задач учебное пособие. М.: 2002
  8. Фарков. Математические олипиады.5-6 классы: учебно-методическое пособие для учителей математики общеобразовательных школ.-5 изд, перераб. и доп.- М: Издательство «Экзамен», 2011.

Ребусы для школьников с решением и ответами.

Математические задачи бывают самыми разнообразными по сложности, соответственно начинайте с ребенком разгадывать еще с детского садика. Математические ребусы почти всегда нравятся ребятам, поэтому Вам не нужно будет заставлять своего малыша заниматься. Мы постараемся Вам рассказать о том, какую пользу приносят математические ребусы детям, и какие именно головоломки можно предложить разгадывать школьникам определенного возраста.

Для чего нужны математические ребусы для детей?

Математика считается самой сложной наукой, которая способна доставить школьнику очень много проблем во время учения. Но ведь без обыкновенных навыков устного счета и разнообразных математических приемов невозможно просто в будущем нормально жить.

Продолжительные и достаточно сложные математические занятия, особенно с 1-го по 4-й классы, утомляют деток и не дают им возможности нормально усваивать услышанную информацию. Если Вы хотите, чтобы с Вашим ребенком такое не случилось, предложите ему изучать математику в игровой форме, к примеру, в виде математических головоломок или ребусов.

Многие школьники современного времени обожают в собственный досуг развлекаться за счет компьютерных игр либо общаться в социальных сетях с одноклассниками. Однако сегодня есть и те дети, которые не тратят собственного времени на такие игрушки, а отдают предпочтение развитию логики и сообразительности.

В настоящее время сеть Интернет заполнена разнообразными сайтами, где можно без проблем отыскать логические загадки и головоломки. Они предназначены не только для того, чтобы потратить собственное время, но еще чтобы полезно, а самое главное занимательно развлечься. Многие родители уже смогли по достоинству оценить преимущество математических головоломок, шарад, задачек, ребусов, так как их дети благодаря им смогли намного быстрее развиваться.

Благодаря математическим ребусам и задачам ребенок намного быстрее начинает правильнее рассуждать. У него формируется ум и логика.

Преимущество математических ребусов в том, что они не считаются обыкновенными математическими задачками. Они с первого знакомства заинтересовывают деток своим оригинальным изложением, возбуждают у детей желание быстрее найти разгадку на ту или иную головоломку.

Если Вы начнете с Вашим чадом регулярно находить решения к математическим ребусам, Ваш малыш уже очень скоро начнет без проблем решать более сложные задачки, которые до этого он не мог разгадать. Заинтересуйте собственного ребенка обычной математикой, и в этом Вам помогут математические ребусы.

Математические ребусы и головоломки – это загадки, имеющие различную степень сложности, составленные с применением графических элементов. Разгадывать подобные задачки – это очень увлекательно. Помимо этого, ребята более старшего возраста с огромным удовольствием самостоятельно могут составлять математические головоломки для друзей и одноклассников, что позволит им лучше тренировать собственный ум и интеллект, плюс развивать логику.

Если ребусы представлены в виде сложных загадок, детям приходится «поломать» немного голову, дабы отыскать верное решение. Во время данного увлекательного и познавательного занятия у Вашего ребенка будет формироваться нестандартные решения. В будущем такой навык пригодится Вашему чаду для того, чтобы находить возможные выходы из разнообразных ситуаций.

И самое главное, математические задачки и ребусы подарят Вашему ребенку массу положительного настроения. Если же он будет разгадывать такие головоломки с друзьями или с Вами, сможет дополнительно социализироваться и укрепить отношения.

Теперь давайте разберемся с тем, как правильно решать математические ребусы. Красочные картинки с изображением каких-то определенных предметов, цифр, знаков и букв, постоянно вызывают у детей «бешеный» интерес. Но такие картинки, как правило, кажутся им сущим хаосом. И все потому, что дети не знают, как правильно решить ребусы.



Соответственно им кажется, что такие картинки не имеют смысла. Но ведь это можно легко исправить, если внимательно изучить главные правила решения этих головоломок:

  • Названия картинок, которые зашифрованы, представлены только именительного падежа. Когда Вы будете смотреть на картинку с предметом, думайте о том, какое именно название может быть у этого изображения. Соответственно, если Вы увидите на картинке глаз, то может быть на картинке будет зашифровано «око». Никогда не останавливайтесь на одном ответе.
  • Если на картинке изображена запятая, значит у данного слова необходимо убрать какую-то определенную букву или одновременно несколько. Все будет зависеть от того, где находится запятая: перед изображением или же после него.
  • Зачастую в головоломках подобного рода встречаются буквы, которые подчеркнуты. Это решить очень легко. Вы отгадываете слово на картинке, а после этого убираете те буквы, которые подчеркнуты. Если на картинке изображены подчеркнутые числа, тогда Вам нужно убрать буквы, которые соответствуют порядковому номеру. Если стоят числа и буквы около не подчеркнутого изображения, тогда Вам необходимо оставить лишь данные буквы.
  • Если на картинке стоит значение Б = Р, тогда Вам нужно буквы «Б» заменить на букву «Р». Если Вы увидите вот такое равенство 2 = О, тогда в слове замените вторую букву на «О». Также на картинке может присутствовать стрелочка, к примеру, от первой буквы к третьей, тогда их просто нужно заменить друг дружкой.
  • Есть такие картинки, которые изображены в перевернутом состоянии. Тогда прочитайте слово с конца.
  • Встречаются математические ребусы, в которых есть дробь . Они легко расшифровываются: нужно вставить предлог «на». Если в знаменателе есть «2» — это означает «пол». В некоторых случаях Вы можете заметить, что во внутренней части буквы находится слог либо буква. Трактуется это так: например, если внутри буквы «О» находится «Да», тогда эта картинка означает «Вода».

Есть и другие правила, которые помогут Вам научиться разгадывать сложные головоломки либо числовые ребусы. Но с ними ребенок должен познакомиться после того, как научится разгадывать простые задачи.



Почаще проводите свое свободное время с детьми. Разгадывайте с ними ребусы, научите их находить решения к этим ребусам, так как это оказывает положительное воздействие на мозговую деятельность развивающего организма.

Математические ребусы с ответами для детей 1 класса: фото, решение, описание

Если Ваш ребенок начнет решать логические задачи с 1-го класса, у него быстрее будет развиваться сообразительность, мышление, умение делать правильные выводы и выполнять анализ. Именно подобный подход к увеличению математических возможностей имеет самую большую положительную сторону для формирования правильного мышления у деток.

Все мы знаем, что программа, составленная для школы, предполагает, как правило, лишь обучению деток решать определенные виды задач. Ученые утверждают, что важнее, чтобы первоклассник с самых первых школьных шагов смог обучаться отлично мыслить и правильно рассуждать. Они также подтвердили, что нестандартные задачки, которые необходимо решать, включив смекалку и немного мышления, очень часто ставят в затруднительную ситуацию и тех ребят, которые в школе учатся только на отлично.

Мы предлагаем Вам большое число математических ребусов для школьников. Решайте их вместе с детьми, находите совместно правильные решения, отдыхайте так, чтобы ребенку было интересно.

Цифры, которые одинаковые, обозначены на картинке одинаковыми элементами. Различные числа – разными.



Первый ребус (первоисточник смотрите )

Подумайте вместе, какое именно число фокусник решил превратить в змею?

Решение:

В первом примере змея и черепаха могут скрывать такие пары чисел: 0 – 4 либо 1 – 3. Теперь сложите эти числа. В первом случае у Вас получится 4, во втором – тоже 4.

Во втором примере ребуса подходит лишь второе сочетание чисел, так как если от 3 отнять 2 получится 1.

Ответ: за змейкой спрятана единица.



Решение:

В слове «кость» вместо «О» поставьте «И», а последнюю букву вообще уберите. Во втором слове вместо «И» поставьте «А».

Соедините эти два слова.

Ответ:

Кисточка.



Решение:

На картинке изображена лейка. Перед этим словом поставьте «К», а две последние «К» и «А» уберите.

Ответ:

Четвертый ребус:



Решение:

На картинке изображена тучка. Впереди этого слова поставьте «Р», а первую букву «Т» уберите.

Ответ:

Математические ребусы с ответами для детей 2 класса: фото, решение, описание

Во 2-ом классе программа сложнее, чем в 1-ом. Процесс обучения становится более трудоемким, соответственно Вам нужно своему чаду помочь.

Конечно же, учеба нужна, но нельзя сильно перегружать школьника. Программы, которая дается в школе, и домашнего задания, будет достаточно. Есть такие школьники, которые в школе учатся замечательно, а когда они приходят домой, начинают отказываться делать уроки.

Но Вы знаете, что детям обязательно необходимо повторять пройденный материал в школе, изучать что-то новое, улавливать новые для них слова, развивать собственное мышление и так далее. Возможно, Вы думаете, что ребенок во 2-ом классе уже стал взрослее, начинаете подавать ему много новой информации в виде дополнительных уроков, а потом удивляетесь, почему Ваши старания не дают положительных результатов.

Дело в том, что Ваш малыш устает в школе, он хочет немного поиграть и хорошенько отдохнуть. Поможет ему в этом игра, к примеру, математические ребусы. Существует большое количество таких головоломок. Но есть родители, которые ошибаются, подбирая развлекательную головоломку не по возрасту.

Не делайте и Вы этого. Внимательно изучите те варианты математических ребусов, которые предлагаем Вам мы. Они предназначены именно для школьников 2-го класса.

Решение:

На картинке изображен ключ. В этом слове уберите последние две буквы. А в конце самого слова поставьте «ЫК».



Ответ:



Решение:

На картинке изображен зонт. Уберите в слове две последние буквы. Перед словом поставьте «У» и в конце поставьте «Р».

Ответ:



Решение:

На картинке изображен лист. Вместо буквы «Л» поставьте букву «А».

Ответ:

Математические ребусы с ответами для детей 3 класса: фото, решение, описание

Ребусы, которые предназначаются для школьников 3-го класса, могут разделятся на некоторые виды. Все зависит от дисциплины в школе, к которой эти головоломки относятся. Также они могут разделяться по уровню сложности.

Учителя уже неоднократно доказывали то, что математические ребусы помогают ученику эффективнее усваивать процесс обучения. Они утверждают, что благодаря таким ребусам ребенок начинает хорошо мыслить и развивает в себе творческую способность. А еще математические ребусы помогают улучшить настроение для того, чтобы изучать новые предметы.

Очень трудно выделить те ребусы, которые подходят для ученика 3-го класса. Мы Вам хотим предложить некоторые варианты, которые Вы сможете разгадать со своим ребенком.



Решение:

На картинке изображен ромб. Уберите последние две буквы «М» и «Б». спереди слова поставьте «К», а в конце «Т».

Ответ:



Решение:

На картинке изображен дом. Уберите первую букву «Д». Впереди слова поставьте букву «Л».

Ответ:

Решение:



На картинке изображен перевернутый дом. Это означает, что слово нужно прочитать с конца. Добавьте еще в конце слова букву «А».

Ответ:

Четвертый ребус:



Четвертый ребус

Решение:

В этом варианте математического ребуса изображены буквы и цифры. Вам нужно поступить следующим образом: вместо цифры 100 напишите буквами, а потом соедините все буквы.

Ответ:

Математические ребусы с ответами для детей 4 класса: фото, решение, описание

Школьники в 4-ом классе уже начинают знакомиться с пространственным представлением. Дети изучают поверхностно геометрические фигуры и их простые свойства, начинают постепенно выполнять легкие чертежи, применяя при этом примитивные приборы для измерения. Именно в этот период времени у детей начинает формироваться основа для будущего обучения.

Школьники переходят к более сложной науке, которая очень скоро поделится на пару курсов: первый курс – это алгебра, второй – это геометрия. Зачастую, чтобы ученики немного отдохнули от тяжелого урока, учителя применяют дополнительные задания, например, математические головоломки и ребусы. Предлагаем Вам некоторые из них, которые, возможно, Вы разгадаете со своим ребенком.



Решение:

На картинке Вы видите слово и изображение предмета «нож». Вместо цифры 100 напишите слово «сто». Спереди слова «нож» уберите первую букву. Соедините все буквы.

Ответ:



Решение:

На картинке изображен гриб. Уберите спереди слова первую букву. Вместо буквы «И» поставьте букву «Ы». В конце слова поставьте «КА».

Ответ:



Решение:

На картинке изображен лист и гусь. В первом слове поменяйте местами буквы, как указано на картинке. Во втором слове уберите три первые буквы. Потом попробуйте прочитать то, что у Вас получилось.

Ответ:

Математические ребусы с ответами для детей 5 класса: фото, решение, описание

Для учеников, которые уже перешли в 5-ый класс и выше, существуют свои усложненные математические ребусы. Над ними дети должны серьезно поработать, чтобы отыскать правильный ответ. Если такого не произойдет, задачки просто не заинтересуют ребят и тогда они не принесут пользы.

Для пятиклассников предлагаем Вам вот такие ребусы:



Решение:

На картинке изображена оса и дробь. Так как у нас тут присутствует дробь, значит решение такое: под буквой «Н» находится оса. От слова «оса» отнимите последнюю букву. А далее сложите под + н + ос (последняя буква уже отсутствует).

Ответ:



Решение:

Сочетание «ЗА» находится в букве «А». Решение такое: в + а + за.

Ответ:

Математические ребусы с ответами для детей 6 класса: фото, решение, описание

В 6-ом классе детки уже становятся совсем взрослыми. Это означает, что и математические головоломки должны быть посложнее.



Решение:

На картинке изображен перевернутый гриб и оса. Поступите следующим образом: слово «гриб» прочитайте наоборот. В этом же слове вместо буквы «Г» поставьте букву «К». От слова «оса» отнимите первые две буквы. Сложите оставшиеся буквы.

Ответ:



Решение:

Здесь чтобы отыскать решение, ребенку придется немного подумать. Не говорите ему сразу ответ. Пусть Ваш школьник подумает над ответом сам, а Вы послушайте, какое именно решение он предложит Вам.

Ответ:

Математические ребусы с ответами для детей 7 класса: фото, решение, описание

Как правило, в 7-ом классе у детей начинается алгебра и геометрия. Они уже знакомы со многими геометрическими фигурами, у них лучше развито мышление, чем у школьников начальных классов. Это означает, что для таких детей нужны математические ребусы с высокой степенью сложности.



На картинке изображено сочетание букв и цифр. Вместо цифры 100 напишите слово «сто». Теперь соедините все буквы. Правда придется немного подумать.



На картинке изображена цифра 7, буква «К» и рот. «7» напишите словом «семь» и отнимите от него две последние буквы. Рот изображен перевернутым. Значит Вам нужно его прочитать наоборот с конца.



На картинке изображено перо с метром. Запятая говорит о том, что Вам нужно убрать последнюю букву от слова «перо». Все очень просто. Соедините те буквы, которые остались от слова «перо» с буквой «И» и словом «метр».

Видео: Ребус с ответами для школьников


Математические ребусы - прекрасная зарядка для ума. Вот лишь некоторые основные правила решения этих увлекательных математических загадок:

  • В буквенных ребусах каждой буквой зашифрована одна определенная цифра: одинаковые цифры шифруются одной и той же буквой, а разным цифрам соответствуют различные буквы.
  • В ребусах зашифрованных, например, звездочками, каждый символ может обозначать любую цифру от 0 до 9. Причём, некоторые цифры могут повторяться несколько раз, а другие не использоваться вовсе.
  • Перед началом решения математического буквенного ребуса (например, криптарифма), убедитесь, что в нём использовано не более 10 различных букв. В противном случае, такой ребус не будет иметь решений.
  • Начните решение ребуса с правила, согласно которому ноль не может быть крайней левой цифрой в числе. Таким образом, все буквы и знаки, с которых начинается число в ребусе, уже не могут обозначать ноль. Круг поиска нужных цифр сузится.
  • В ходе решения отталкивайтесь от основных математических правил. Например, умножение на ноль всегда дает ноль, а при умножении любого числа на единицу, мы получим в результате исходное число.
  • Очень часто математические ребусы представляют собой примеры сложения двух чисел. Если при сложении сумма имеет больше знаков нежели слагаемые, значит сумма начинается с "1"
  • Обращайте внимание на последовательность арифметических действий. Если числовой ребус состоит из нескольких рядов знаков, он может решаться как по вертикали, так и по горизонтали.
  • Не бойтесь совершать ошибки. Возможно, они подскажут вам верный ход решения. Не пренебрегайте методом перебора. Некоторые ребусы потребуют длительного поэтапного решения, но в итоге вы будете вознаграждены верным ответом и отличной разминкой для вашей сообразительности.
А теперь, давайте на примере самого известного математического ребуса - криптарифма рассмотрим цепочку логических рассуждений приводящих к его решению.


Как решить известный математический ребус - криптарифм SEND+MORE=MONEY

Прежде всего, классифицируем этот ребус как "буквенный математический ребус - криптарифм" в котором использовано 8 различных букв (допустимо не более 10). Для удобства дополним ребус строкой сверху, в которой будем отмечать перенос из младших разрядов ("в уме"). Зелёным цветом будем отмечать значения установленные окончательно. Жёлтым цветом будем отмечать предположения. Красным - ошибки.


0
S E N D
+ M O R E
M O N E Y

В разряде единиц отметим сразу отсутствие переноса ("0").

1 0
S E N D
+ 1 O R E
1 O N E Y

М=1, поскольку сумма двух слагаемых всегда начинается с 1 если знаков суммы (5) больше чем знаков слагаемых (по 4). Также отмечаем перенос 1 из разряда тысяч (S+M=O) в разряд десятков тысяч (M).

1 0
S E N D
+ 1 0 R E
1 0 N E Y

В разряде тысяч S+1(М)=O, причём эта сумма больше 9 т.к. даёт перенос (1 "в уме") в разряд десятков тысяч благодаря которому М=1. В данном случае единственным возможным значением для О=0, поскольку перенос 1 из разряда тысяч в разряд десятков тысяч возможет при S=9 либо S=8 и перенос 1 с разряда сотен. (При S=9 и переносе 1 из разряда сотен О=1, что не допустимо т.к. "1" уже занята "М").

1 1 0
8 E N D
+ 1 0 R E
1 0 N E Y

Мы выяснили, что S=9 либо S=8 и перенос 1 с разряда сотен (E+O=N > 9). Предположим, что S=8, в таком случае в разряде тысяч получаем: 1(перенос из разряда сотен) + 8(S) + 1(M) = 0(O) + перенос 1 в разряд десятков тысяч.

1 1 1 0
8 9 N D
+ 1 0 R 9
1 0 0 9 Y

Взглянем на разряд сотен (E+0(O)=N). Данная сумма должна быть больше 9, для обеспечения переноса 1 в разряд тысяч. Это возможно только в единственном случае - когда E=9 и существует перенос 1 из разряда десятков (N+R=E). В таком случае получаем 1(перенос из разряда десятков)+9(Е)+0(О)= 0(O)+перенос 1 в разряд тысяч. Таким образом N=0, что не возможно т.к. ранее мы предположили, что О=0.

1 0 0
9 E N D
+ 1 0 R E
1 0 N E Y

Поскольку S не может равняться 8, получаем S=9. Переноса из разряда сотен (E+O=N) нет, поскольку в таком случае в разряде тысяч получим: 1(перенос из разряда сотен)+9(S)+1(М)=1+1 перенос в рязряд десятков тысяч. Т.е. получичли О=1, что не верно т.к. ранее мы выяснили, что М=1.

1 0 1 0
9 E N D
+ 1 0 R E
1 0 N E Y

Рассмотрим разряд сотен: E+0(О)=N. Очевидно, что это возможно, если "1" переносится из разряда десятков. Причём сама сумма E+0=N меньше 10 т.к. ранее мы выяснили, что переноса в разряд тысяч нет.

1 0 1 0
9 2 3 D
+ 1 0 R 2
1 0 3 2 Y

В разряде сотен получаем: 1(перенос из разряда десятков)+Е+0(О)=N. Поскольку ранее мы выяснили, что N 2 (т.к. Е>1). Предположим, что N=3 и соответственно Е=2

1 0 1 0 0
9 2 3 D
+ 1 0 9 2
1 0 3 2 Y

Если мы посмотрим на разряд единиц (D+E=Y), то очевидно, что он не даёт переноса в разряд десятков, т.к. максимально возможное значение D=6 (7+2=9-занята, 8+2-10-ноль занят, 9 занята). В разряде десятков получаем R=9, что не верно, т.к. "9" занята

1 0 1 0
9 3 4 D
+ 1 0 R 3
1 0 4 3 Y

Вернёмся назад и теперь предположим, что N=4 и соответственно Е=3

1 0 1 1 0
9 3 4 D
+ 1 0 8 3
1 0 4 3 Y
1 0 1 1 0
9 3 4 7
+ 1 0 8 3
1 0 4 3 0

В разряде единиц получаем равенство, удовлетворить которое "свободными" цифрами невозможно. Наибольшая "свободная" цифра - 7. Если D=7, то Y=10, но "0" занят

1 0 1 0
9 4 5 D
+ 1 0 R 4
1 0 5 4 Y

Вернёмся назад и теперь предположим, что N=5 и соответственно Е=4

1 0 1 1 0
9 4 5 D
+ 1 0 8 4
1 0 5 4 Y

Если мы посмотрим на разряд десятков (N+R=E), то единственное возможное значения для R=8 и перенос из разряда единиц

1 0 1 1 0
9 4 5 7
+ 1 0 8 4
1 0 5 4 1

В разряде единиц получаем равенство, удовлетворить которое "свободными" цифрами невозможно. Наибольшая "свободная" цифра - 7. Если D=7, то Y=11, но "1" занят. Если D=6, то Y=10, но "0" занят.

1 0 1 0
9 5 6 D
+ 1 0 R 5
1 0 6 5 Y

Вернёмся назад и теперь предположим, что N=6 и соответственно Е=5