Корень n ой степени примеры решения уравнений. Примеры вычисления корня n-ой степени

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Давай попробуем разобраться, что это за понятие такое «корень» и «с чем его едят». Для этого рассмотрим примеры, с которыми ты уже сталкивался на уроках (ну, или тебе с этим только предстоит столкнуться).

К примеру, перед нами уравнение. Какое решение у данного уравнения? Какие числа можно возвести в квадрат и получить при этом? Вспомнив таблицу умножения, ты легко дашь ответ: и (ведь при перемножении двух отрицательных чисел получается число положительное)! Для упрощения, математики ввели специальное понятие квадратного корня и присвоили ему специальный символ.

Дадим определение арифметическому квадратному корню.

А почему же число должно быть обязательно неотрицательным? Например, чему равен. Так-так, попробуем подобрать. Может, три? Проверим: , а не. Может, ? Опять же, проверяем: . Ну что же, не подбирается? Это и следовало ожидать - потому что нет таких чисел, которые при возведении в квадрат дают отрицательное число!
Это надо запомнить: число или выражение под знаком корня должно быть неотрицательным!

Однако самые внимательные уже наверняка заметили, что в определении сказано, что решение квадратного корня из «числа называется такое неотрицательное число, квадрат которого равен ». Кто-то из вас скажет, что в самом начале мы разбирали пример, подбирали числа, которые можно возвести в квадрат и получить при этом, ответ было и, а тут говорится про какое-то «неотрицательное число»! Такое замечание вполне уместно. Здесь необходимо просто разграничить понятия квадратных уравнений и арифметического квадратного корня из числа. К примеру, не равносильно выражению.

Из следует, что, то есть или. (Читай тему « »)

А из следует, что.

Конечно, это очень путает, но это необходимо запомнить, что знаки являются результатом решения уравнения, так как при решении уравнения мы должны записать все иксы, которые при подстановке в исходное уравнение дадут верный результат. В наше квадратное уравнение подходит как, так и.

Однако, если просто извлекать квадратный корень из чего-либо, то всегда получаем один неотрицательный результат .

А теперь попробуй решить такое уравнение. Уже все не так просто и гладко, правда? Попробуй перебрать числа, может, что-то и выгорит? Начнем с самого начала - с нуля: - не подходит, двигаемся дальше - меньше трех, тоже отметаем, а что если. Проверим: - тоже не подходит, т.к. это больше трех. С отрицательными числами получится такая же история. И что же теперь делать? Неужели перебор нам ничего не дал? Совсем нет, теперь мы точно знаем, что ответом будет некоторое число между и, а также между и. Кроме того, очевидно, что решения не будут целыми числами. Более того, они не являются рациональными. И что дальше? Давай построим график функции и отметим на нем решения.

Давай попробуем обмануть систему и получить ответ с помощью калькулятора! Извлечем корень из, делов-то! Ой-ой-ой, выходит, что. Такое число никогда не кончается. Как же такое запомнить, ведь на экзамене калькулятора не будет!? Все очень просто, это и не надо запоминать, необходимо помнить (или уметь быстро прикинуть) приблизительное значение. и уже сами по себе ответы. Такие числа называются иррациональными, именно для упрощения записи таких чисел и было введено понятие квадратного корня.

Рассмотрим еще один пример для закрепления. Разберем такую задачку: тебе необходимо пересечь по диагонали квадратное поле со стороной км, сколько км тебе предстоит пройти?

Самое очевидное здесь рассмотреть отдельно треугольник и воспользоваться теоремой Пифагора: . Таким образом, . Так чему же здесь равно искомое расстояние? Очевидно, что расстояние не может быть отрицательным, получаем, что. Корень из двух приблизительно равен, но, как мы заметили раньше, -уже является полноценным ответом.

Чтобы решение примеров с корнями не вызывало проблем, необходимо их видеть и узнавать. Для этого необходимо знать, по меньшей мере, квадраты чисел от до, а также уметь их распознать. К примеру, необходимо знать, что в квадрате равно, а также, наоборот, что - это в квадрате.

Уловил, что такое квадратный корень? Тогда порешай несколько примеров.

Примеры.

Ну как, получилось? Теперь давай посмотрим такие примеры:

Ответы:

Кубический корень

Ну что же, с понятием квадратного корня вроде разобрались, теперь постараемся разобраться, что такое кубический корень и в чем их отличие.

Кубический корень из некоторого числа - это число, куб которого равен. Заметили, тут все гораздо проще? Здесь нет никаких ограничений на возможные значения как значения под знаком кубического корня, так и извлекаемого числа. То есть кубический корень можно извлечь из любого числа: .

Уловили, что такое кубический корень и как его извлекать? Тогда вперед решать примеры.

Примеры.

Ответы:

Корень - ой степени

Ну что ж, мы разобрались с понятиями квадратного и кубического корня. Теперь обобщим полученные знания понятием корень -ой степени .

Корень -ой степени из числа — это число, -ая степень которого равна, т.е.

равносильно.

Если - чётно , то:

  • при отрицательном , выражение не имеет смысла (корни четной -ой степени из отрицательных чисел извлечь нельзя !);
  • при неотрицательном () выражение имеет один неотрицательный корень.

Если - нечётно, то выражение имеет единственный корень при любом.

Не пугайтесь, тут действуют такие же принципы, что и с квадратными и кубическими корнями. То есть принципы, которые мы применяли при рассмотрении квадратных корней, распространяем на все корни четной -ой степени.

А те свойства, которые применяли для кубического корня, распространяются на корни нечетной -ой степени.

Ну что, стало понятней? Давайте разбираться на примерах:

Тут все более ли менее понятно: сначала смотрим - ага, степень - четная, под корнем число положительное, значит наша задача - найти такое число, четвертая степень которого даст нам. Ну, есть предположения? Может, ? Точно, !

Так, степень равна - нечетная, под корнем число отрицательное. Наша задача - найти такое число, при возведении которого в степень получается. Сразу заметить корень довольно затруднительно. Однако можно сразу сузить область поиска, правда? Во-первых, определенно искомое число отрицательно, а во-вторых, можно заметить, что - нечетное, а значит и искомое число - нечетное. Попробуй подобрать корень. Конечно же, и можно смело отметать. Может, ?

Да, это то, что мы искали! Заметь, что для упрощения расчета мы воспользовались свойствами степеней: .

Основные свойства корней

Понятно? Если нет, то рассмотрев примеры, все должно встать на свои места.

Умножение корней

Как умножать корни? На этот вопрос помогает ответить самое простое и базовое свойство:

Начнем с простенького:

Корни из получившихся чисел ровно не извлекаются? Не беда - вот вам такие примеры:

А что, если множителей не два, а больше? То же самое! Формула умножения корней работает с любым количеством множителей:

Что мы можем с ним сделать? Ну конечно, спрятать тройку под корнем, помня при этом, что тройка - корень квадратный из!

Зачем нам это нужно? Да просто, чтобы расширить наши возможности при решении примеров:

Как тебе такое свойство корней? Существенно упрощает жизнь? По мне, так точно! Только надо помнить, что вносить под знак корня четной степени мы можем только положительные числа .

Посмотрим, где это еще может пригодиться. Например, в задаче требуют сравнить два числа:

Что больше:

Сходу и не скажешь. Ну что, воспользуемся разобранным свойством внесения числа под знак корня? Тогда вперед:

Ну и, зная, что чем больше число под знаком корня, тем больше сам корень! Т.е. если, значит, . Отсюда твердо делаем вывод, что. И никто не убедит нас в обратном!

До этого мы вносили множитель под знак корня, а как его вынести? Надо просто разложить его на множители и извлечь то, что извлекается!

Можно было пойти по иному пути и разложить на другие множители:

Неплохо, да? Любой из этих подходов верен, решай как тебе удобно.

Вот, к примеру, такое выражение:

В этом примере степень четная, а если она будет нечетная? Опять же, примени свойства степени и разложи все на множители:

С этим вроде все ясно, а вот как извлечь корень из числа в степени? Вот, к примеру, такое:

Довольно просто, правда? А если степень больше двух? Следуем той же логики, используя свойства степеней:

Ну как, все понятно? Тогда вот такой пример:

Это подводные камни, о них всегда стоит помнить . Это фактически и есть отражение на примерах свойства:

при нечетных:
при четных и:

Понятно? Закрепляй на примерах:

Ага, видим, корень в четной степени, отрицательное число под корнем тоже в четной степени. Ну и то же получается? А вот что:

Вот и все! Теперь вот такие примеры:

Уловил? Тогда вперед решать примеры.

Примеры.

Ответы.

Если получил ответы, то можно со спокойной душой двигаться дальше. Если нет, то давай разберемся в этих примерах:

Посмотрим на два других свойства корней:

Эти свойства обязательно надо разбирать в примерах. Ну что, займемся этим?

Разобрался? Давай закрепим.

Примеры.

Ответы.

КОРНИ И ИХ СВОЙСТВА. СРЕДНИЙ УРОВЕНЬ

Арифметический квадратный корень

Уравнение имеет два решения: и. Это числа, квадрат которых равен.

Рассмотрим уравнение. Решим его графически. Нарисуем график функции и линию на уровне. Точки пересечения этих линий и будут решениями. Видим, что и у этого уравнения два решения - одно положительное, другое отрицательное:

Но в данном случае решения не являются целыми числами. Более того, они не являются рациональными. Для того, чтобы записать эти иррациональные решения, мы вводим специальный символ квадратного корня.

Арифметический квадратный корень — это неотрицательное число, квадрат которого равен. При выражение не определено, т.к. нет такого числа, квадрат которого равен отрицательному числу.

Корень из квадрата: .

Например, . А из следует, что или.

Еще раз обращаю внимание, это очень важно: Квадратный корень - это всегда неотрицательное число: !

Кубический корень из числа — это число, куб которого равен. Кубический корень определен для всех. Его можно извлечь из любого числа: . Как видим, он может принимать и отрицательные значения.

Корень -ой степени из числа — это число, -я степень которого равна, т.е.

Если — чётно, тогда:

  • если, то корень -ой степени из a не определен.
  • если, то неотрицательный корень уравнения называется арифметическим корнем -ой степени из и обозначается.

Если - нечётно, тогда уравнение имеет единственный корень при любом.

Ты заметил, что слева сверху от знака корня мы пишем его степень? Но только не для квадратного корня! Если видишь корень без степени, значит он квадратный (степени).

Примеры.

Основные свойства корней

КОРНИ И ИХ СВОЙСТВА. КОРОТКО О ГЛАВНОМ

Квадратным корнем (арифметическим квадратным корнем) из неотрицательного числа называется такое неотрицательное число, квадрат которого равен

Свойства корней:

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

В этой статье мы введем понятие корня из числа . Будем действовать последовательно: начнем с квадратного корня, от него перейдем к описанию кубического корня, после этого обобщим понятие корня, определив корень n-ой степени. При этом будем вводить определения, обозначения, приводить примеры корней и давать необходимые пояснения и комментарии.

Квадратный корень, арифметический квадратный корень

Чтобы понять определение корня из числа, и квадратного корня в частности, нужно иметь . В этом пункте мы часто будем сталкиваться со второй степенью числа - квадратом числа.

Начнем с определения квадратного корня .

Определение

Квадратный корень из числа a - это число, квадрат которого равен a .

Чтобы привести примеры квадратных корней , возьмем несколько чисел, например, 5 , −0,3 , 0,3 , 0 , и возведем их в квадрат, получим соответственно числа 25 , 0,09 , 0,09 и 0 (5 2 =5·5=25 , (−0,3) 2 =(−0,3)·(−0,3)=0,09 , (0,3) 2 =0,3·0,3=0,09 и 0 2 =0·0=0 ). Тогда по данному выше определению число 5 является квадратным корнем из числа 25 , числа −0,3 и 0,3 есть квадратные корни из 0,09 , а 0 – это квадратный корень из нуля.

Следует отметить, что не для любого числа a существует , квадрат которого равен a . А именно, для любого отрицательного числа a не существует ни одного действительного числа b , квадрат которого равнялся бы a . В самом деле, равенство a=b 2 невозможно для любого отрицательного a , так как b 2 – неотрицательное число при любом b . Таким образом, на множестве действительных чисел не существует квадратного корня из отрицательного числа . Иными словами, на множестве действительных чисел квадратный корень из отрицательного числа не определяется и не имеет смысла.

Отсюда вытекает логичный вопрос: «А для любого ли неотрицательного a существует квадратный корень из a »? Ответ – да. Обоснованием этого факта можно считать конструктивный способ, используемый для нахождения значения квадратного корня .

Тогда встает следующий логичный вопрос: «Каково число всех квадратных корней из данного неотрицательного числа a – один, два, три, или еще больше»? Вот ответ на него: если a равно нулю, то единственным квадратным корнем из нуля является нуль; если же a – некоторое положительное число, то количество квадратных корней из числа a равно двум, причем корни являются . Обоснуем это.

Начнем со случая a=0 . Сначала покажем, что нуль действительно является квадратным корнем из нуля. Это следует из очевидного равенства 0 2 =0·0=0 и определения квадратного корня.

Теперь докажем, что 0 – единственный квадратный корень из нуля. Воспользуемся методом от противного. Предположим, что существует некоторое число b , отличное от нуля, которое является квадратным корнем из нуля. Тогда должно выполняться условие b 2 =0 , что невозможно, так как при любом отличном от нуля b значение выражения b 2 является положительным. Мы пришли к противоречию. Это доказывает, что 0 – единственный квадратный корень из нуля.

Переходим к случаям, когда a – положительное число. Выше мы сказали, что всегда существует квадратный корень из любого неотрицательного числа, пусть квадратным корнем из a является число b . Допустим, что существует число c , которое тоже является квадратным корнем из a . Тогда по определению квадратного корня справедливы равенства b 2 =a и c 2 =a , из них следует, что b 2 −c 2 =a−a=0 , но так как b 2 −c 2 =(b−c)·(b+c) , то (b−c)·(b+c)=0 . Полученное равенство в силу свойств действий с действительными числами возможно лишь тогда, когда b−c=0 или b+c=0 . Таким образом, числа b и c равны или противоположны.

Если же предположить, что существует число d , являющееся еще одним квадратным корнем из числа a , то рассуждениями, аналогичными уже приведенным, доказывается, что d равно числу b или числу c . Итак, число квадратных корней из положительного числа равно двум, причем квадратные корни являются противоположными числами.

Для удобства работы с квадратными корнями отрицательный корень «отделяется» от положительного. С этой целью вводится определение арифметического квадратного корня .

Определение

Арифметический квадратный корень из неотрицательного числа a – это неотрицательное число, квадрат которого равен a .

Для арифметического квадратного корня из числа a принято обозначение . Знак называется знаком арифметического квадратного корня. Его также называют знаком радикала. Поэтому можно часть слышать как «корень», так и «радикал», что означает один и тот же объект.

Число под знаком арифметического квадратного корня называют подкоренным числом , а выражение под знаком корня – подкоренным выражением , при этом термин «подкоренное число» часто заменяют на «подкоренное выражение». Например, в записи число 151 – это подкоренное число, а в записи выражение a является подкоренным выражением.

При чтении слово «арифметический» часто опускается, например, запись читают как «квадратный корень из семи целых двадцати девяти сотых». Слово «арифметический» произносят лишь тогда, когда хотят особо подчеркнуть, что речь идет именно о положительном квадратном корне из числа.

В свете введенного обозначения из определения арифметического квадратного корня следует, что и для любого неотрицательного числа a .

Квадратные корни из положительного числа a с помощью знака арифметического квадратного корня записываются как и . Например, квадратные корни из числа 13 есть и . Арифметический квадратный корень из нуля равен нулю, то есть, . Для отрицательных чисел a записи мы не будем придавать смысла вплоть до изучения комплексных чисел . Например, лишены смысла выражения и .

На базе определения квадратного корня доказываются свойства квадратных корней , которые часто применяются на практике.

В заключение этого пункта заметим, что квадратные корни из числа a являются решениями вида x 2 =a относительно переменной x .

Кубический корень из числа

Определение кубического корня из числа a дается аналогично определению квадратного корня. Только оно базируется на понятии куба числа, а не квадрата.

Определение

Кубическим корнем из числа a называется число, куб которого равен a .

Приведем примеры кубических корней . Для этого возьмем несколько чисел, например, 7 , 0 , −2/3 , и возведем их в куб: 7 3 =7·7·7=343 , 0 3 =0·0·0=0 , . Тогда, основываясь на определении кубического корня, можно утверждать, что число 7 – это кубический корень из 343 , 0 есть кубический корень из нуля, а −2/3 является кубическим корнем из −8/27 .

Можно показать, что кубический корень из числа a , в отличие от квадратного корня, всегда существует, причем не только для неотрицательных a , но и для любого действительного числа a . Для этого можно использовать тот же способ, о котором мы упоминали при изучении квадратного корня.

Более того, существует только единственный кубический корень из данного числа a . Докажем последнее утверждение. Для этого отдельно рассмотрим три случая: a – положительное число, a=0 и a – отрицательное число.

Легко показать, что при положительном a кубический корень из a не может быть ни отрицательным числом, ни нулем. Действительно, пусть b является кубическим корнем из a , тогда по определению мы можем записать равенство b 3 =a . Понятно, что это равенство не может быть верным при отрицательных b и при b=0 , так как в этих случаях b 3 =b·b·b будет отрицательным числом либо нулем соответственно. Итак, кубический корень из положительного числа a является положительным числом.

Теперь предположим, что помимо числа b существует еще один кубический корень из числа a , обозначим его c . Тогда c 3 =a . Следовательно, b 3 −c 3 =a−a=0 , но b 3 −c 3 =(b−c)·(b 2 +b·c+c 2) (это формула сокращенного умножения разность кубов ), откуда (b−c)·(b 2 +b·c+c 2)=0 . Полученное равенство возможно только когда b−c=0 или b 2 +b·c+c 2 =0 . Из первого равенства имеем b=c , а второе равенство не имеет решений, так как левая его часть является положительным числом для любых положительных чисел b и c как сумма трех положительных слагаемых b 2 , b·c и c 2 . Этим доказана единственность кубического корня из положительного числа a .

При a=0 кубическим корнем из числа a является только число нуль. Действительно, если предположить, что существует число b , которое является отличным от нуля кубическим корнем из нуля, то должно выполняться равенство b 3 =0 , которое возможно лишь при b=0 .

Для отрицательных a можно привести рассуждения, аналогичные случаю для положительных a . Во-первых, показываем, что кубический корень из отрицательного числа не может быть равен ни положительному числу, ни нулю. Во-вторых, предполагаем, что существует второй кубический корень из отрицательного числа и показываем, что он обязательно будет совпадать с первым.

Итак, всегда существует кубический корень из любого данного действительного числа a , причем единственный.

Дадим определение арифметического кубического корня .

Определение

Арифметическим кубическим корнем из неотрицательного числа a называется неотрицательное число, куб которого равен a .

Арифметический кубический корень из неотрицательного числа a обозначается как , знак называется знаком арифметического кубического корня, число 3 в этой записи называется показателем корня . Число под знаком корня – это подкоренное число , выражение под знаком корня – это подкоренное выражение .

Хотя арифметический кубический корень определяется лишь для неотрицательных чисел a , но удобно также использовать записи, в которых под знаком арифметического кубического корня находятся отрицательные числа. Понимать их будем так: , где a – положительное число. Например, .

О свойствах кубических корней мы поговорим в общей статье свойства корней .

Вычисление значения кубического корня называется извлечением кубического корня, это действие разобрано в статье извлечение корней: способы, примеры, решения .

В заключение этого пункта скажем, что кубический корень из числа a является решением вида x 3 =a .

Корень n-ой степени, арифметический корень степени n

Обобщим понятие корня из числа – введем определение корня n-ой степени для n .

Определение

Корень n -ой степени из числа a – это число, n -я степень которого равна a .

Из данного определения понятно, что корень первой степени из числа a есть само число a , так как при изучении степени с натуральным показателем мы приняли a 1 =a .

Выше мы рассмотрели частные случаи корня n -ой степени при n=2 и n=3 – квадратный корень и кубический корень. То есть, квадратный корень – это корень второй степени, а кубический корень – корень третьей степени. Для изучения корней n -ой степени при n=4, 5, 6, … их удобно разделить на две группы: первая группа – корни четных степеней (то есть, при n=4, 6, 8, … ), вторая группа – корни нечетных степеней (то есть, при n=5, 7, 9, … ). Это связано с тем, что корни четных степеней аналогичны квадратному корню, а корни нечетных степеней – кубическому. Разберемся с ними по очереди.

Начнем с корней, степенями которых являются четные числа 4, 6, 8, … Как мы уже сказали, они аналогичны квадратному корню из числа a . То есть, корень любой четной степени из числа a существует лишь для неотрицательного a . Причем, если a=0 , то корень из a единственный и равен нулю, а если a>0 , то существует два корня четной степени из числа a , причем они являются противоположными числами.

Обоснуем последнее утверждение. Пусть b – корень четной степени (обозначим ее как 2·m , где m – некоторое натуральное число) из числа a . Предположим, что существует число c – еще один корень степени 2·m из числа a . Тогда b 2·m −c 2·m =a−a=0 . Но мы знаем вида b 2·m −c 2·m = (b−c)·(b+c)· (b 2·m−2 +b 2·m−4 ·c 2 +b 2·m−6 ·c 4 +…+c 2·m−2) , тогда (b−c)·(b+c)· (b 2·m−2 +b 2·m−4 ·c 2 +b 2·m−6 ·c 4 +…+c 2·m−2)=0 . Из этого равенства следует, что b−c=0 , или b+c=0 , или b 2·m−2 +b 2·m−4 ·c 2 +b 2·m−6 ·c 4 +…+c 2·m−2 =0 . Первые два равенства означают, что числа b и c равны или b и c – противоположны. А последнее равенство справедливо лишь при b=c=0 , так как в его левой части находится выражение, которое неотрицательно при любых b и c как сумма неотрицательных чисел.

Что касается корней n -ой степени при нечетных n , то они аналогичны кубическому корню. То есть, корень любой нечетной степени из числа a существует для любого действительного числа a , причем для данного числа a он является единственным.

Единственность корня нечетной степени 2·m+1 из числа a доказывается по аналогии с доказательством единственности кубического корня из a . Только здесь вместо равенства a 3 −b 3 =(a−b)·(a 2 +a·b+c 2) используется равенство вида b 2·m+1 −c 2·m+1 = (b−c)·(b 2·m +b 2·m−1 ·c+b 2·m−2 ·c 2 +… +c 2·m) . Выражение в последней скобке можно переписать как b 2·m +c 2·m +b·c·(b 2·m−2 +c 2·m−2 + b·c·(b 2·m−4 +c 2·m−4 +b·c·(…+(b 2 +c 2 +b·c)))) . Например, при m=2 имеем b 5 −c 5 =(b−c)·(b 4 +b 3 ·c+b 2 ·c 2 +b·c 3 +c 4)= (b−c)·(b 4 +c 4 +b·c·(b 2 +c 2 +b·c)) . Когда a и b оба положительны или оба отрицательны их произведение является положительным числом, тогда выражение b 2 +c 2 +b·c , находящееся в скобках самой высокой степени вложенности, является положительным как сумма положительных чисел. Теперь, продвигаясь последовательно к выражениям в скобках предыдущих степеней вложенности, убеждаемся, что они также положительны как суммы положительных чисел. В итоге получаем, что равенство b 2·m+1 −c 2·m+1 = (b−c)·(b 2·m +b 2·m−1 ·c+b 2·m−2 ·c 2 +… +c 2·m)=0 возможно только тогда, когда b−c=0 , то есть, когда число b равно числу c .

Пришло время разобраться с обозначениями корней n -ой степени. Для этого дается определение арифметического корня n -ой степени .

Определение

Арифметическим корнем n -ой степени из неотрицательного числа a называется неотрицательное число, n -я степень которого равна a .

Данная статья представляет собой совокупность детальной информации, которая касается темы свойства корней. Рассматривая тему, мы начнем со свойств, изучим все формулировки и приведем доказательства. Для закрепления темы мы рассмотрим свойства n -ой степени.

Yandex.RTB R-A-339285-1

Свойства корней

Мы поговорим о свойствах .

  1. Свойство умноженных чисел a и b , которое представляется как равенство a · b = a · b . Его можно представить в виде множителей, положительных или равных нулю a 1 , a 2 , … , a k как a 1 · a 2 · … · a k = a 1 · a 2 · … · a k ;
  2. из частного a: b =   a: b , a ≥ 0 , b > 0 , он также может записываться в таком виде a b = a b ;
  3. Свойство из степени числа a с четным показателем a 2 · m = a m при любом числе a , например, свойство из квадрата числа a 2 = a .

В любом из представленных уравнений можно поменять части до и после знака тире местами, например, равенство a · b = a · b трансформируется как a · b = a · b . Свойства для равенства часто используются для упрощения сложных уравнений.

Доказательство первых свойств основано на определении квадратного корня и свойствах степеней с натуральным показателем. Чтобы обосновать третье свойство, необходимо обратиться к определению модуля числа.

Первым делом, необходимо доказать свойства квадратного корня a · b = a · b . Согласно определению, необходимо рассмотреть, что a · b - число, положительное или равное нулю, которое будет равно a · b при возведении в квадрат. Значение выражения a · b положительно или равно нулю как произведение неотрицательных чисел. Свойство степени умноженных чисел позволяет представить равенство в виде (a · b) 2 = a 2 · b 2 . По определению квадратного корня a 2 = a и b 2 = b , то a · b = a 2 · b 2 = a · b .

Аналогичным способом можно доказать, что из произведения k множителей a 1 , a 2 , … , a k будет равняться произведению квадратных корней из этих множителей. Действительно, a 1 · a 2 · … · a k 2 = a 1 2 · a 2 2 · … · a k 2 = a 1 · a 2 · … · a k .

Из этого равенства следует, что a 1 · a 2 · … · a k = a 1 · a 2 · … · a k .

Рассмотрим несколько примеров для закрепления темы.

Пример 1

3 · 5 2 5 = 3 · 5 2 5 , 4 , 2 · 13 1 2 = 4 , 2 · 13 1 2 и 2 , 7 · 4 · 12 17 · 0 , 2 (1) = 2 , 7 · 4 · 12 17 · 0 , 2 (1) .

Необходимо доказать свойство арифметического квадратного корня из частного: a: b = a: b , a ≥ 0 , b > 0 . Свойство позволяет записать равенство a: b 2 = a 2: b 2 , а a 2: b 2 = a: b , при этом a: b является положительным числом или равно нулю. Данное выражение и станет доказательством.

Например, 0: 16 = 0: 16 , 80: 5 = 80: 5 и 3 0 , 121 = 3 0 , 121 .

Рассмотрим свойство квадратного корня из квадрата числа. Его можно записать в виде равенствакак a 2 = a Чтобы доказать данное свойство, необходимо подробно рассмотреть несколько равенств при a ≥ 0 и при a < 0 .

Очевидно, что при a ≥ 0 справедливо равенство a 2 = a . При a < 0 будет верно равенство a 2 = - a . На самом деле, в этом случае − a > 0 и (− a) 2 = a 2 . Можно сделать вывод, a 2 = a , a ≥ 0 - a , a < 0 = a . Именно это и требовалось доказать.

Рассмотрим несколько примеров.

Пример 2

5 2 = 5 = 5 и - 0 , 36 2 = - 0 , 36 = 0 , 36 .

Доказанное свойство поможет дать обоснование a 2 · m = a m , где a – действительное, а m –натуральное число. Действительно, свойство возведения степени позволяет заменить степень a 2 · m выражением (a m) 2 , тогда a 2 · m = (a m) 2 = a m .

Пример 3

3 8 = 3 4 = 3 4 и (- 8 , 3) 14 = - 8 , 3 7 = (8 , 3) 7 .

Свойства корня n-ой степени

Для начала необходимо рассмотреть основные свойства корней n -ой степени:

  1. Свойство из произведения чисел a и b , которые положительны или равны нулю, можно выразить в качестве равенства a · b n = a n · b n , данное свойство справедливо для произведения k чисел a 1 , a 2 , … , a k как a 1 · a 2 · … · a k n = a 1 n · a 2 n · … · a k n ;
  2. из дробного числа обладает свойством a b n = a n b n , где a – любое действительное число, которое положительно или равно нулю, а b – положительное действительное число;
  3. При любом a и четных показателях n = 2 · m справедливо a 2 · m 2 · m = a , а при нечетных n = 2 · m − 1 выполняется равенство a 2 · m - 1 2 · m - 1 = a .
  4. Свойство извлечения из a m n = a n · m , где a – любое число, положительное или равное нулю, n и m – натуральные числа, это свойство также может быть представлено в виде. . . a n k n 2 n 1 = a n 1 · n 2 . . . · n k ;
  5. Для любого неотрицательного a и произвольных n и m , которые являются натуральными, также можно определить справедливое равенство a m n · m = a n ;
  6. Свойство степени n из степени числа a , которое положительно или равно нулю, в натуральной степени m , определяемое равенством a m n = a n m ;
  7. Свойство сравнения, которые обладают одинаковыми показателями: для любых положительных чисел a и b таких, что a < b , выполняется неравенство a n < b n ;
  8. Свойство сравнения, которые обладают одинаковыми числами под корнем: если m и n – натуральные числа, что m > n , тогда при 0 < a < 1 справедливо неравенство a m > a n , а при a > 1 выполняется a m < a n .

Равенства, приведенные выше, являются справедливыми, если части до и после знака равно поменять местами. Они могут быть использованы и в таком виде. Это зачастую применяется во время упрощения или преобразовании выражений.

Доказательство приведенных выше свойств корня основывается на определении, свойствах степени и определении модуля числа. Данные свойства необходимо доказать. Но все по порядку.

  1. Первым делом докажем свойства корня n -ой степени из произведения a · b n = a n · b n . Для a и b , которые являются положительными или равными нулю, значение a n · b n также положительно или равно нулю, так как является следствием умножения неотрицательных чисел. Свойство произведения в натуральной степени позволяет записать равенство a n · b n n = a n n · b n n . По определению корня n -ой степени a n n = a и b n n = b , следовательно, a n · b n n = a · b . Полученное равенство – именно то, что и требовалось доказать.

Аналогично доказывается это свойство для произведения k множителей: для неотрицательных чисел a 1 , a 2 , … , a n выполняется a 1 n · a 2 n · … · a k n ≥ 0 .

Приведем примеры использования свойства корня n -ой степени из произведения: 5 · 2 1 2 7 = 5 7 · 2 1 2 7 и 8 , 3 4 · 17 , (21) 4 · 3 4 · 5 7 4 = 8 , 3 · 17 , (21) · 3 · 5 7 4 .

  1. Докажем свойство корня из частного a b n = a n b n . При a ≥ 0 и b > 0 выполняется условие a n b n ≥ 0 , а a n b n n = a n n b n n = a b .

Покажем примеры:

Пример 4

8 27 3 = 8 3 27 3 и 2 , 3 10: 2 3 10 = 2 , 3: 2 3 10 .

  1. Для следующего шага необходимо доказать свойства n -ой степени из числа в степени n . Представим это в виде равенства a 2 · m 2 · m = a и a 2 · m - 1 2 · m - 1 = a для любого действительного a и натурального m . При a ≥ 0 получаем a = a и a 2 · m = a 2 · m , что доказывает равенство a 2 · m 2 · m = a , а равенство a 2 · m - 1 2 · m - 1 = a очевидно. При a < 0 получаем соответственно a = - a и a 2 · m = (- a) 2 · m = a 2 · m . Последняя трансформация числа справедлива согласно свойству степени. Именно это доказывает равенство a 2 · m 2 · m = a , а a 2 · m - 1 2 · m - 1 = a будет справедливо, так как за нечетной степени рассматривается - c 2 · m - 1 = - c 2 · m - 1 для любого числа c , положительного или равного нулю.

Для того, чтобы закрепить полученную информацию, рассмотрим несколько примеров с использованием свойства:

Пример 5

7 4 4 = 7 = 7 , (- 5) 12 12 = - 5 = 5 , 0 8 8 = 0 = 0 , 6 3 3 = 6 и (- 3 , 39) 5 5 = - 3 , 39 .

  1. Докажем следующее равенство a m n = a n · m . Для этого необходимо поменять числа до знака равно и после него местами a n · m = a m n . Это будет означать верная запись. Для a , которое является положительным или равно нулю, из вида a m n является числом положительным или равным нулю. Обратимся к свойству возведения степени в степень и определению. С их помощью можно преобразовать равенства в виде a m n n · m = a m n n m = a m m = a . Этим доказано рассматриваемое свойство корня из корня.

Аналогично доказываются и другие свойства. Действительно, . . . a n k n 2 n 1 n 1 · n 2 · . . . · n k = . . . a n k n 3 n 2 n 2 · n 3 · . . . · n k = . . . a n k n 4 n 3 n 3 · n 4 · . . . · n k = . . . = a n k n k = a .

Например, 7 3 5 = 7 5 · 3 и 0 , 0009 6 = 0 , 0009 2 · 2 · 6 = 0 , 0009 24 .

  1. Докажем следующее свойство a m n · m = a n . Для этого необходимо показать, что a n – число, положительное или равное нулю. При возведении в степень n · m равно a m . Если число a является положительным или равным нулю, то n -ой степени из числа a является числом положительным или равным нулю При этом a n · m n = a n n m , что и требовалось доказать.

Для того, чтобы закрепить полученные знания, рассмотрим несколько примеров

  1. Докажем следующее свойство – свойство корня из степени вида a m n = a n m . Очевидно, что при a ≥ 0 степень a n m является неотрицательным числом. Более того, ее n -ая степень равна a m , действительно, a n m n = a n m · n = a n n m = a m . Этим и доказано рассматриваемое свойство степени.

Например, 2 3 5 3 = 2 3 3 5 .

  1. Необходимо доказательство, что для любых положительных чисел a и b выполнено условие a < b . Рассмотрим неравенство a n < b n . Воспользуемся методом от противного a n ≥ b n . Тогда, согласно свойству, о котором говорилось выше, неравенство считается верным a n n ≥ b n n , то есть, a ≥ b . Но это не соответствует условию a < b . Следовательно, a n < b n при a < b .

Для примера приведем 12 4 < 15 2 3 4 .

  1. Рассмотрим свойство корня n -ой степени. Необходимо для начала рассмотреть первую часть неравенства. При m > n и 0 < a < 1 справедливо a m > a n . Предположим, что a m ≤ a n . Свойства позволят упростить выражение до a n m · n ≤ a m m · n . Тогда, согласно свойствам степени с натуральным показателем, выполняется неравенство a n m · n m · n ≤ a m m · n m · n , то есть, a n ≤ a m . Полученное значение при m > n и 0 < a < 1 не соответствует свойствам, приведенным выше.

Таким же способом можно доказать, что при m > n и a > 1 справедливо условие a m < a n .

Для того, чтобы закрепить приведенные свойства, рассмотрим несколько конкретных примеров. Рассмотрим неравенства, используя конкретные числа.

Пример 6

0 , 7 3 < 0 , 7 5 и 12 > 12 7 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Видеоурок 2: Свойства корня степени n > 1

Лекция: Корень степени n > 1 и его свойства

Корень


Предположим, Вы имеете уравнение вида:

Решением данного уравнения будет х 1 = 2 и х 2 = (-2). В качестве ответа подходят оба решения, поскольку числа с равными модулями при возведении в четную степень дают одинаковый результат.


Это был простой пример, однако, что мы можем сделать в том случае, если, например,

Давайте попробуем построить график функции y=x 2 . Её графиком является парабола:

На графике необходимо найти точки, которым соответствует значение у = 3. Данными точками является:

Это означает, что данное значение нельзя назвать целым числом, но можно представить в виде корня квадратного.


Любой корень - это иррациональное число . К иррациональным числам относятся корни, непериодические бесконечные дроби.


Квадратный корень - это неотрицательное число "а", подкоренное выражение которого равно данному числу "а" в квадрате.

Например,


То есть в результате мы получим только положительное значение. Однако в качестве решения квадратного уравнения вида

Решением будет х 1 = 4, х 2 = (-4).

Свойства квадратного корня

1. Какое бы значение не принимала величина x, данное выражение верно в любом случае:

2. Сравнение чисел, содержащих квадратный корень. Чтобы сравнить данные числа, необходимо и одно, и второе число внести под знак корня. То число будет больше, чье подкоренное выражение больше.

Вносим число 2 под знак корня

А теперь давайте внесем число 4 под знак корня. В результате этого получим

И только теперь два полученных выражения можно сравнить:

3. Вынесение множителя из под корня.

Если подкоренное выражение может разложиться на два множителя, один из которых можно вынести из под знака корня, то необходимо пользоваться данным правилом.


4. Существует свойство, обратное данному - внесение множителя под корень. Этим свойством мы заведомо воспользовались во втором свойстве.

Урок и презентация на тему: "Свойства корня n-ой степени. Теоремы"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 11 класса
Интерактивное пособие для 9–11 классов "Тригонометрия"
Интерактивное пособие для 10–11 классов "Логарифмы"

Свойства корня n-ой степени. Теоремы

Ребята, мы продолжаем изучать корни n-ой степени из действительного числа. Как практически все математические объекты, корни n-ой степени обладают некоторыми свойствами, сегодня мы будем их изучать.
Все свойства, которые мы рассмотрим, формулируются и доказываются только для неотрицательных значений переменных, содержащихся под знаком корня.
В случае нечетного показателя корня они выполняются и для отрицательных переменных.

Теорема 1. Корень n-ой степени из произведения двух неотрицательных чисел равен произведению корней n-ой степени этих чисел: $\sqrt[n]{a*b}=\sqrt[n]{a}*\sqrt[n]{b}$ .

Давайте докажем теорему.
Доказательство. Ребята, для доказательства теоремы давайте введем новые переменные, обозначим:
$\sqrt[n]{a*b}=x$.
$\sqrt[n]{a}=y$.
$\sqrt[n]{b}=z$.
Нам надо доказать, что $x=y*z$.
Заметим, что выполняются и такие тождества:
$a*b=x^n$.
$a=y^n$.
$b=z^n$.
Тогда выполняется и такое тождество: $x^n=y^n*z^n=(y*z)^n$.
Степени двух неотрицательных чисел и их показатели равны, тогда и сами основания степеней равны. Значит $x=y*z$, что и требовалось доказать.

Теорема 2. Если $а≥0$, $b>0$ и n – натуральное число, которое большее 1, тогда выполняется следующее равенство: $\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ .

То есть корень n-ой степени частного равен частному корней n-ой степени.

Доказательство.
Для доказательства воспользуемся упрощенной схемой в виде таблицы:

Примеры вычисления корня n-ой степени

Пример.
Вычислить: $\sqrt{16*81*256}$.
Решение. Воспользуемся теоремой 1: $\sqrt{16*81*256}=\sqrt{16}*\sqrt{81}*\sqrt{256}=2*3*4=24$.

Пример.
Вычислить: $\sqrt{7\frac{19}{32}}$.
Решение. Представим подкоренное выражение в виде неправильной дроби: $7\frac{19}{32}=\frac{7*32+19}{32}=\frac{243}{32}$.
Воспользуемся теоремой 2: $\sqrt{\frac{243}{32}}=\frac{\sqrt{243}}{\sqrt{32}}=\frac{3}{2}=1\frac{1}{2}$.

Пример.
Вычислить:
а) $\sqrt{24}*\sqrt{54}$.
б) $\frac{\sqrt{256}}{\sqrt{4}}$.
Решение:
а) $\sqrt{24}*\sqrt{54}=\sqrt{24*54}=\sqrt{8*3*2*27}=\sqrt{16*81}=\sqrt{16}*\sqrt{81}=2*3=6$.
б) $\frac{\sqrt{256}}{\sqrt{4}}=\sqrt{\frac{256}{4}}=\sqrt{64}=24$.

Теорема 3. Если $a≥0$, k и n – натуральные числа больше 1, то справедливо равенство: $(\sqrt[n]{a})^k=\sqrt[n]{a^k}$.

Чтобы возвести корень в натуральную степень, достаточно возвести в эту степень подкоренное выражение.

Доказательство.
Давайте рассмотрим частный случай для $k=3$. Воспользуемся теоремой 1.
$(\sqrt[n]{a})^k=\sqrt[n]{a}*\sqrt[n]{a}*\sqrt[n]{a}=\sqrt[n]{a*a*a}=\sqrt[n]{a^3}$.
Так же можно доказать и для любого другого случая. Ребята, докажите сами для случая, когда $k=4$ и $k=6$.

Теорема 4. Если $a≥0$ b n,k – натуральные числа большие 1, то справедливо равенство: $\sqrt[n]{\sqrt[k]{a}}=\sqrt{a}$.

Чтобы извлечь корень из корня, достаточно перемножить показатели корней.

Доказательство.
Докажем опять кратко, используя таблицу. Для доказательства воспользуемся упрощенной схемой в виде таблицы:

Пример.
$\sqrt{\sqrt{a}}=\sqrt{a}$.
$\sqrt{\sqrt{a}}=\sqrt{a}$.
$\sqrt{\sqrt{a}}=\sqrt{a}$.

Теорема 5. Если показатели корня и подкоренного выражения умножить на одно и тоже натуральное число, то значение корня не изменится: $\sqrt{a^{kp}}=\sqrt[n]{a}$.

Доказательство.
Принцип доказательства нашей теоремы такой же, как и в других примерах. Введем новые переменные:
$\sqrt{a^{k*p}}=x=>a^{k*p}=x^{n*p}$ (по определению).
$\sqrt[n]{a^k}=y=>y^n=a^k$ (по определению).
Последнее равенство возведем в степень p
$(y^n)^p=y^{n*p}=(a^k)^p=a^{k*p}$.
Получили:
$y^{n*p}=a^{k*p}=x^{n*p}=>x=y$.
То есть $\sqrt{a^{k*p}}=\sqrt[n]{a^k}$, что и требовалось доказать.

Примеры:
$\sqrt{a^5}=\sqrt{a}$ (разделили показатели на 5).
$\sqrt{a^{22}}=\sqrt{a^{11}}$ (разделили показатели на 2).
$\sqrt{a^4}=\sqrt{a^{12}}$ (умножили показатели на 3).

Пример.
Выполнить действия: $\sqrt{a}*\sqrt{a}$.
Решение.
Показатели корней - это разные числа, поэтому мы не можем воспользоваться теоремой 1, но применив теорему 5, мы можем получить равные показатели.
$\sqrt{a}=\sqrt{a^3}$ (умножили показатели на 3).
$\sqrt{a}=\sqrt{a^4}$ (умножили показатели на 4).
$\sqrt{a}*\sqrt{a}=\sqrt{a^3}*\sqrt{a^4}=\sqrt{a^3*a^4}=\sqrt{a^7}$.

Задачи для самостоятельного решения

1. Вычислить: $\sqrt{32*243*1024}$.
2. Вычислить: $\sqrt{7\frac{58}{81}}$.
3. Вычислить:
а) $\sqrt{81}*\sqrt{72}$.
б) $\frac{\sqrt{1215}}{\sqrt{5}}$.
4. Упростить:
а) $\sqrt{\sqrt{a}}$.
б) $\sqrt{\sqrt{a}}$.
в) $\sqrt{\sqrt{a}}$.
5. Выполнить действия: $\sqrt{a^2}*\sqrt{a^4}$.