Общая характеристика неорганических элементов клетки. Важность минеральных солей для клетки

В состав живой клетки входят те же химические элементы, которые входят в состав неживой природы. Из 104 элементов периодической системы Д. И. Менделеева в клетках обнаружено 60.

Их делят на три группы:

  1. основные элементы - кислород, углерод, водород и азот (98% состава клетки);
  2. элементы, составляющие десятые и сотые доли процента,- калий, фосфор, сера, магний, железо, хлор, кальций, натрий (в сумме 1,9%);
  3. все остальные элементы, присутствующие в еще более малых количествах,- микроэлементы.

Молекулярный состав клетки сложный и разнородный. Отдельные соединения - вода и минеральные соли - встречаются также в неживой природе; другие - органические соединения: углеводы, жиры, белки, нуклеиновые кислоты и др.- характерны только для живых организмов.

НЕОРГАНИЧЕСКИЕ ВЕЩЕСТВА

Вода составляет около 80% массы клетки; в молодых быстрорастущих клетках - до 95%, в старых - 60%.

Роль воды в клетке велика.

Она является основной средой и растворителем, участвует в большинстве химических реакций, перемещении веществ, терморегуляции, образовании клеточных структур, определяет объем и упругость клетки. Большинство веществ поступает в организм и выводится из него в водном растворе. Биологическая роль воды определяется специфичностью строения: полярностью ее молекул и способностью образовывать водородные связи, за счет которых возникают комплексы из нескольких молекул воды. Если энергия притяжения между молекулами воды меньше, чем между молекулами воды и вещества, оно растворяется в воде. Такие вещества называют гидрофильными (от греч. «гидро» - вода, «филее» - люблю). Это многие минеральные соли, белки, углеводы и др. Если энергия притяжения между молекулами воды больше, чем энергия притяжения между молекулами воды и вещества, такие вещества нерастворимы (или слаборастворимы), их называют гидрофобными (от греч. «фобос» - страх) - жиры, липиды и др.

Минеральные соли в водных растворах клетки диссоциируют на катионы и анионы, обеспечивая устойчивое количество необходимых химических элементов и осмотическое давление. Из катионов наиболее важны К + , Na + , Са 2+ , Mg + . Концентрация отдельных катионов в клетке и во внеклеточной среде неодинакова. В живой клетке концентрация К высокая, Na + - низкая, а в плазме крови, наоборот, высокая концентрация Na + и низкая К + . Это обусловлено избирательной проницаемостью мембран. Разность в концентрации ионов в клетке и среде обеспечивает поступление воды из окружающей среды в клетку и всасывание воды корнями растений. Недостаток отдельных элементов - Fe, Р, Mg, Со, Zn - блокирует образование нуклеиновых кислот, гемоглобина, белков и других жизненно важных веществ и ведет к серьезным заболеваниям. Анионы определяют постоянство рН-клеточной среды (нейтральной и слабощелочной). Из анионов наиболее важны НРО 4 2- , Н 2 РO 4 — , Cl — , HCO 3 —

ОРГАНИЧЕСКИЕ ВЕЩЕСТВА

Органические вещества в комплексе образуют около 20-30% состава клетки.

Углеводы - органические соединения, состоящие из углерода, водорода и кислорода. Их делят на простые - моносахариды (от греч. «монос» - один) и сложные - полисахариды (от греч. «поли» - много).

Моносахариды (их общая формула С n Н 2n О n) - бесцветные вещества с приятным сладким вкусом, хорошо растворимы в воде. Они различаются по количеству атомов углерода. Из моносахаридов наиболее распространены гексозы (с 6 атомами С): глюкоза, фруктоза (содержащиеся в фруктах, меде, крови) и галактоза (содержащаяся в молоке). Из пентоз (с 5 атомами С) наиболее распространены рибоза и дезоксирибоза, входящие в состав нуклеиновых кислот и АТФ.

Полисахариды относятся к полимерам - соединениям, у которых многократно повторяется один и тот же мономер. Мономерами полисахаридов являются моносахариды. Полисахариды растворимы в воде, многие обладают сладким вкусом. Из них наиболее просты дисахариды, состоящие из двух моносахаридов. Например, сахароза состоит из глюкозы и фруктозы; молочный сахар - из глюкозы и галактозы. С увеличением числа мономеров растворимость полисахаридов падает. Из высокомолекулярных полисахаридов наиболее распространены у животных гликоген, у растений - крахмал и клетчатка (целлюлоза). Последняя состоит из 150-200 молекул глюкозы.

Углеводы - основной источник энергии для всех форм клеточной активности (движение, биосинтез, секреция и т. д.). Расщепляясь до простейших продуктов СO 2 и Н 2 O, 1 г углевода освобождает 17,6 кДж энергии. Углеводы выполняют строительную функцию у растений (их оболочки состоят из целлюлозы) и роль запасных веществ (у растений - крахмал, у животных - гликоген).

Липиды - это нерастворимые в воде жироподобные вещества и жиры, состоящие из глицерина и высокомолекулярных жирных кислот. Животные жиры содержатся в молоке, мясе, подкожной клетчатке. При комнатной температуре это твердые вещества. У растений жиры находятся в семенах, плодах и других органах. При комнатной температуре это жидкости. С жирами по химической структуре сходны жироподобные вещества. Их много в желтке яиц, клетках мозга и других тканях.

Роль липидов определяется их структурной функцией. Из них состоят клеточные мембраны, которые вследствие своей гидрофобности препятствуют смешению содержимого клетки с окружающей средой. Липиды выполняют энергетическую функцию. Расщепляясь до СO 2 и Н 2 O, 1 г жира выделяет 38,9 кДж энергии. Они плохо проводят тепло, накапливаясь в подкожной клетчатке (и других органах и тканях), выполняют защитную функцию и роль запасных веществ.

Белки - наиболее специфичны и важны для организма. Они относятся к непериодическим полимерам. В отличие от других полимеров их молекулы состоят из сходных, но нетождественных мономеров - 20 различных аминокислот.

Каждая аминокислота имеет свое название, особое строение и свойства. Их общую формулу можно представить в следующем виде

Молекула аминокислоты состоит из специфической части (радикала R) и части, одинаковой для всех аминокислот, включающей аминогруппу (- NH 2) с основными свойствами, и карбоксильную группу (СООН) с кислотными свойствами. Наличие в одной молекуле кислотной и основной групп обусловливает их высокую реактивность. Через эти группы происходит соединение аминокислот при образовании полимера - белка. При этом из аминогруппы одной аминокислоты и карбоксила другой выделяется молекула воды, а освободившиеся электроны соединяются, образуя пептидную связь. Поэтому белки называют полипептидами.

Молекула белка представляет собой цепь из нескольких десятков или сотен аминокислот.

Молекулы белков имеют огромные размеры, поэтому их называют макромолекулами. Белки, как и аминокислоты, обладают высокой реактивностью и способны реагировать с кислотами и щелочами. Они различаются по составу, количеству и последовательности расположения аминокислот (число таких сочетаний из 20 аминокислот практически бесконечно). Этим объясняется многообразие белков.

В строении молекул белков различают четыре уровня организации (59)

  • Первичная структура - полипептидная цепь из аминокислот, связанных в определенной последовательности ковалентными (прочными) пептидными связями.
  • Вторичная структура - полипептидная цепь, закрученная в тугую спираль. В ней между пептидными связями соседних витков (и другими атомами) возникают малопрочные водородные связи. В комплексе они обеспечивают довольно прочную структуру.
  • Третичная структура представляет собой причудливую, но для каждого белка специфическую конфигурацию - глобулу. Она удерживается малопрочными гидрофобными связями или силами сцепления между неполярными радикалами, которые встречаются у многих аминокислот. Благодаря их многочисленности они обеспечивают достаточную устойчивость белковой макромолекулы и ее подвижность. Третичная структура белков поддерживается также за счет ковалентных S - S (эс - эс) связей, возникающих между удаленными друг от друга радикалами серосодержащей аминокислоты - цистеина.
  • Четвертичная структура типична не для всех белков. Она возникает при соединении нескольких белковых макромолекул, образующих комплексы. Например, гемоглобин крови человека представляет комплекс из четырех макромолекул этого белка.

Такая сложность структуры белковых молекул связана с разнообразием функций, свойственных этим биополимерам. Однако строение белковых молекул зависит от свойств окружающей среды.

Нарушение природной структуры белка называют денатурацией . Она может возникать под воздействием высокой температуры, химических веществ, лучистой энергии и других факторов. При слабом воздействии распадается только четвертичная структура, при более сильном - третичная, а затем - вторичная, и белок остается в виде первичной структуры - полипептидной цепи, Этот процесс частично обратим, и денатурированный белок способен восстанавливать свою структуру.

Роль белка в жизни клетки огромна.

Белки - это строительный материал организма. Они участвуют в построении оболочки, органоидов и мембран клетки и отдельных тканей (волос, сосудов и др.). Многие белки выполняют в клетке роль катализаторов - ферментов, ускоряющих клеточные реакции в десятки, сотни миллионов раз. Известно около тысячи ферментов. В их состав, кроме белка, входят металлы Mg, Fe, Мn, витамины и т. д.

Каждая реакция катализируется своим особым ферментом. При этом действует не весь фермент, а определенный участок - активный центр. Он подходит к субстрату, как ключ к замку. Действуют ферменты при определенной температуре и рН среды. Особые сократительные белки обеспечивают двигательные функции клеток (движение жгутиковых, инфузорий, сокращение мышц и т. д.). Отдельные белки (гемоглобин крови) выполняют транспортную функцию, доставляя кислород ко всем органам и тканям тела. Специфические белки - антитела - выполняют защитную функцию, обезвреживая чужеродные вещества. Некоторые белки выполняют энергетическую функцию. Распадаясь до аминокислот, а затем до еще более простых веществ, 1 г белка освобождает 17,6 кДж энергии.

Нуклеиновые кислоты (от лат. «нуклеус» - ядро) впервые обнаружены в ядре. Они бывают двух типов - дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). Биологическая роль их велика, они определяют синтез белков и передачу наследственной информации от одного поколения к другому.

Молекула ДНК имеет сложное строение. Она состоит из двух спирально закрученных цепей. Ширина двойной спирали 2 нм 1 , длина несколько десятков и даже сотен микромикрон (в сотни или тысячи раз больше самой крупной белковой молекулы). ДНК - полимер, мономерами которой являются нуклеотиды - соединения, состоящие из молекулы фосфорной кислоты, углевода - дезоксирибозы и азотистого основания. Их общая формула имеет следующий вид:

Фосфорная кислота и углевод одинаковы у всех нуклеотидов, а азотистые основания бывают четырех типов: аденин, гуанин, цитозин и тимин. Они и определяют название соответствующих нуклеотидов:

  • адениловый (А),
  • гуаниловый (Г),
  • цитозиловый (Ц),
  • тимидиловый (Т).

Каждая цепь ДНК представляет полинуклеотид, состоящий из нескольких десятков тысяч нуклеотидов. В ней соседние нуклеотиды соединены прочной ковалентной связью между фосфорной кислотой и дезоксирибозой.

При огромных размерах молекул ДНК сочетание в них из четырех нуклеотидов может быть бесконечно большим.

При образовании двойной спирали ДНК азотистые основания одной цепи располагаются в строго определенном порядке против азотистых оснований другой. При этом против А всегда оказывается Т, а против Г - только Ц. Это объясняется тем, что А и Т, а также Г и Ц строго соответствуют друг другу, как две половинки разбитого стекла, и являются дополнительными или комплементарными (от греч. «комплемент» - дополнение) друг другу. Если известна последовательность расположения нуклеотидов в одной цепи ДНК, то по принципу комплементарности можно установить нуклеотиды другой цепи (см. приложение, задача 1). Соединяются комплементарные нуклеотиды при помощи водородных связей.

Между А и Т возникают две связи, между Г и Ц - три.

Удвоение молекулы ДНК - ее уникальная особенность, обеспечивающая передачу наследственной информации от материнской клетки дочерним. Процесс удвоения ДНК называется редупликацией ДНК. Он осуществляется следующим образом. Незадолго перед делением клетки молекула ДНК раскручивается и ее двойная цепочка под действием фермента с одного конца расщепляется на две самостоятельные цепи. На каждой половине из свободных нуклеотидов клетки, по принципу комплементарности, выстраивается вторая цепь. В результате вместо одной молекулы ДНК возникают две совершенно одинаковые молекулы.

РНК - полимер, по структуре сходный с одной цепочкой ДНК, но значительно меньших размеров. Мономерами РНК являются нуклеотиды, состоящие из фосфорной кислоты, углевода (рибозы) и азотистого основания. Три азотистых основания РНК - аденин, гуанин и цитозин - соответствуют таковым ДНК, а четвертое - иное. Вместо тимина в РНК присутствует урацил. Образование полимера РНК происходит через ковалентные связи между рибозой и фосфорной кислотой соседних нуклеотидов. Известны три вида РНК: информационная РНК (и-РНК) передает информацию о структуре белка с молекулы ДНК; транспортная РНК (т-РНК) транспортирует аминокислоты к месту синтеза белка; рибосомная РНК (р-РНК) содержится в рибосомах, участвует в синтезе белка.

АТФ - аденозинтрифосфорная кислота - важное органическое соединение. По структуре это нуклеотид. В его состав входит азотистое основание аденин, углевод - рибоза и три молекулы фосфорной кислоты. АТФ - неустойчивая структура, под влиянием фермента разрывается связь между «Р» и «О», отщепляется молекула фосфорной кислоты и АТФ переходит в

Как мы уже знаем, клетка состоит из химических веществ органического и неорганического типа. Основными неорганическими веществами, входящими в состав клетки, являются соли и вода.

Вода как компонент живого

Вода – это доминирующий компонент всех организмов. Важные биологические функции воды осуществляются за счет уникальных свойств ее молекул, в частности наличии диполей, которые делают возможным возникновение водородных связей между клетками.

Благодаря молекулам воды в организме живых существ происходят процессы термостабилизации и терморегуляции. Процесс терморегуляции происходит за счет высокой теплоемкости молекул воды: внешние перепады температуры не влияют на температурные изменения внутри организма.

Благодаря воде органы человеческого организма сохраняют свою эластичность. Вода является одной из основных составляющих смазывающих жидкостей, необходимых для суставов позвоночных или околосердечной сумки.

Она входит в слизь, облегчающую передвижение веществ по кишечнику. Вода – составляющая желчи, слез и слюны.

Соли и другие неорганические вещества

Клетки живого организма помимо воды содержат такие неорганические вещества как кислоты, основания и соли. Наиболее важное значение в жизнедеятельности организма имеют Mg2+, H2PO4, K, CA2, Na, C1-. Слабые кислоты гарантируют стабильную внутреннюю среду клетки (слабощелочную).

Концентрация ионов в межклеточном веществе и внутри клетки может быть различной. Так к примеру ионы Na+ сконцентрированы только в межклеточной жидкости, в то время как К+ содержится исключительно в клетке.

Резкое сокращение либо повышения количества определенных ионов в составе клетке не только к ее дисфункции, но и к гибели. К примеру, снижение количества Са+ в клетке вызывает судороги внутри клетки и дальнейший ее отмирание.

Некоторые неорганические вещества часто вступают во взаимодействие с жирами, белками и углеводами. Так ярким примером являются органические соединения с фосфором и серой.

Сера, которая входит в состав молекул белка, отвечает за образование молекулярных связей организма. Благодаря синтезу фосфора и органических веществ происходит освобождение энергии с белковых молекул.

Соли кальция

Нормальному развитию костной ткани, а также функционированию головного и спинного мозга способствуют соли кальция. Обмен кальция в организме осуществляется за счет витамина D. Избыток или недостаток солей кальция влечет за собой дисфункцию организма.

Химический состав клеток растений и животных весьма сходен, что говорит о единстве их происхождения. В клетках обнаружено более 80 химических элементов.

Химические элементы, имеющиеся в клетке, делят на 3 большие группы : макроэлементы , мезоэлементы, микроэлементы .

К макроэлементы относятся углерод, кислород, водород и азот. Мезоэлементы - это сера, фосфор, калий, кальций, железо. Микроэлементы - цинк, йод, медь, марганец и другие.

Биологически важные химические элементы клетки:

Азот - структурный компонент белков и НК.

Водород - входит в состав воды и всех биологических соединений.

Магний - активирует работу многих ферментов; структурный компонент хлорофилла.

Кальций - основной компонент костей и зубов.

Железо - входит в гемоглобин.

Йод - входит в состав гормона щитовидной железы.

Вещества клетки делят на органические (белки, нуклеиновые кислоты, липиды, углеводы, АТФ) и неорганические (вода и минеральные соли).

Вода составляет до 80% массы клетки, играет важную роль :

· вода в клетке является растворителем

· переносит питательные вещества;

· с водой происходит удаление из организма вредных веществ;

· большая теплоемкость воды;

· испарение воды способствует охлаждению животных и растений.

· придает клетке упругость.

Минеральные вещества :

· участвуют в поддержании гомеостаза, регулируя поступление воды в клетку;

· калий и натрий обеспечивают перенос веществ через мембрану и участвуют в возникновении и проведении нервного импульса.

· минеральные соли, в первую очередь, фосфаты и карбонаты кальция, придают твердость костной ткани.

Решить задачу на генетику крови человека

Белки, их роль в организме

Белок - органические вещества, встречающие во всех клетках, которые состоят из мономеров.

Белок - высокомолекулярный непериодический полимер.

Мономером является аминокислота (20).

Аминокислоты содержат аминогруппу, карбоксильную группу и радикал. Соединяются аминокислоты между собой с образованием пептидной связи. Белки чрезвычайно разнообразны, например, в организме человека их свыше 10 млн.

Разнообразие белков зависит от:

1. разной последовательности АК

2. от размера

3. от состава

Структуры белка

Первичная структура белка - последовательность аминокислот, соединенных пептидной связью (линейная структура).

Вторичная структура белка - спиралевидная структура.

Третичная структура белка - глобула (клубочковидная структура).

Четвертичная структура белка - состоит из нескольких глобул. Характерна для гемоглобина и хлорофилла.

Свойства белков

1. Комплементарность: способность белка по форме подходить к какому-нибудь другому веществу как ключ к замку.

2. Денатурация : нарушение естественной структуры белка (температура, кислотность, соленость, присоединение других веществ и т.п.). Примеры денатурации: изменение свойств белка при варке яиц, переход белка из жидкого состояния в твердое.

3. Ренатурация - восстановление структуры белка, если не была нарушена первичная структура.

Функции белка

1. Строительная: образование всех клеточных мембран

2. Каталитическая: белки - катализаторы; ускоряют химические реакции

3. Двигательная: актин и миозин входят в состав мышечных волокон.

4. Транспортная: перенос веществ к различным тканям и органам тела (гемоглобин - белок, входит в состав эритроцитов)

5. Защитная: антитела, фибриноген, тромбин -- белки, участвующие в выработке иммунитета и свертывании крови;

6. Энергетическая: участвуют в реакциях пластического обмена для построения новых белков.

7. Регуляторная: роль гормона инсулина в регуляции содержания сахара в крови.

8. Запасающая: накопление белков в организме в качестве запасных питательных веществ, например в яйце, молоке, семенах растений.

Клетка - это не только структурная единица всего живого, своеобразный кирпичик жизни, но и маленькая биохимическая фабрика, на которой каждую долю секунды происходят различные превращения и реакции. Так формируются необходимые для жизни и роста организма структурные компоненты: минеральные вещества клетки, вода и органические соединения. Поэтому очень важно знать, что будет, если какого-то из них не хватит. Какую роль играют различные соединения в жизни этих крошечных, не видимых невооруженным глазом, структурных частичек живых систем? Постараемся разобраться в этом вопросе.

Классификация веществ клетки

Все соединения, составляющие массу клетки, формирующие ее структурные части и отвечающие за ее развитие, питание, дыхание, пластический и нормальное развитие, можно разделить на три большие группы. Это такие категории, как:

  • органические;
  • клетки (минеральные соли);
  • вода.

Часто последнюю относят ко второй группе неорганических компонентов. Кроме этих категорий, можно обозначить те, которые складываются из их сочетания. Это металлы, входящие в состав молекулы органических соединений (например, молекула гемоглобина, содержащая ион железа, является белковой по своей природе).

Минеральные вещества клетки

Если говорить конкретно о минеральных или неорганических соединениях, входящих в состав каждого живого организма, то они также неодинаковы и по природе, и по количественному содержанию. Поэтому имеют свою классификацию.

Все неорганические соединения можно разделить на три группы.

  1. Макроэлементы. Те, содержание которых внутри клетки больше 0,02% от общей массы неорганических веществ. Примеры: углерод, кислород, водород, азот, магний, кальций, калий, хлор, сера, фосфор, натрий.
  2. Микроэлементы - меньше 0,02%. К ним относятся: цинк, медь, хром, селен, кобальт, марганец, фтор, никель, ванадий, йод, германий.
  3. Ультрамикроэлементы - содержание меньше 0,0000001%. Примеры: золото, цезий, платина, серебро, ртуть и некоторые другие.

Также можно особенно выделить несколько элементов, которые являются органогенными, то есть составляют основу органических соединений, из которых построено тело живого организма. Это такие элементы, как:

  • водород;
  • азот;
  • углерод;
  • кислород.

Они выстраивают молекулы белков (основы жизни), углеводов, липидов и прочих веществ. Однако за нормальное функционирование организма отвечают так же и минеральные вещества. Химический состав клетки исчисляется десятками элементов из таблицы Менделеева, которые являются залогом успешной жизнедеятельности. Лишь около 12 из всех атомов не играют роли совсем либо она ничтожно мала и не изучена.

Особенно важны некоторые соли, которые должны поступать в организм с пищей каждый день в достаточном количестве, чтобы не развивались различные болезни. Для растений это, например, натриевая Для человека и животных это соли кальция, поваренная соль как источник натрия и хлора и др..

Вода

Минеральные вещества клетки объединяются с водой в общую группу поэтому не сказать о ее значении нельзя. Какую роль она играет в организме живых существ? Огромную. В начале статьи мы сравнивали клетку с биохимической фабрикой. Так вот, все ежесекундно происходящие превращения веществ осуществляются именно в водной среде. Она - универсальный растворитель и среда для химических взаимодействий, процессов синтеза и распада.

Кроме того, вода входит в состав внутренней среды:

  • цитоплазмы;
  • клеточного сока у растений;
  • крови у животных и человека;
  • мочи;
  • слюны прочих биологических жидкостей.

Обезвоживание означает смерть для всех организмов без исключения. Вода - это среда жизни для огромного количества разнообразных представителей флоры и фауны. Поэтому переоценить значение этого неорганического вещества сложно, оно поистине безгранично велико.

Макроэлементы и их значение

Минеральные вещества клетки для ее нормальной работы имеют большое значение. В первую очередь это касается как раз макроэлементов. Роль каждого из них подробно изучена и давно установлена. Какие атомы составляют группу макроэлементов, мы уже выше перечисляли, поэтому повторяться не будем. Кратко обозначим роль основных из них.

  1. Кальций. Соли его необходимы для поставки в организм ионов Са 2+ . Сами ионы участвуют в процессах остановки и свертывания крови, обеспечивают экзоцитоз клетки, а также мышечные сокращения, в том числе сердечные. Нерастворимые соли - основа крепких костей и зубов животных и человека.
  2. Калий и натрий. Поддерживают состояние клетки, формируют натриево-калиевый насос работы сердца.
  3. Хлор - участвует в обеспечении электронейтральности клетки.
  4. Фосфор, сера, азот - являются составными частями многих органических соединений, а также принимают участие в работе мышц, составе костей.

Конечно, если рассматривать каждый элемент более подробно, то можно многое сказать и о его избытке в организме, и о недостатке. Ведь и то и другое вредно и приводит к заболеваниям различного рода.

Микроэлементы

Роль минеральных веществ в клетке, которые относятся к группе микроэлементов, также велика. Несмотря на то что их содержание очень мало в клетке, без них она не сможет долго нормально функционировать. Самыми главными из всех перечисленных выше атомов в этой категории являются такие как:

  • цинк;
  • медь;
  • селен;
  • фтор;
  • кобальт.

Нормальный уровень йода необходим для поддержания работы щитовидной железы и выработки гормонов. Фтор нужен организму для укрепления эмали зубов, а растениям - для сохранения эластичности и насыщенной окраски листьев.

Цинк и медь - это элементы, входящие в состав многих ферментов и витаминов. Они выступают важными участниками процессов синтеза и пластического обмена.

Селен - активный участник процессов регуляции, является необходимым для работы эндокринной системы элементом. Кобальт же имеет другое название - витамин В 12 , а все соединения данной группы крайне важны для иммунной системы.

Поэтому функции минеральных веществ в клетке, которые образованы микроэлементами нисколько не меньше, чем те, что выполняют макроструктуры. Поэтому важно потреблять и те и другие в достаточном количестве.

Ультрамикроэлементы

Минеральные вещества клетки, которые образованы ультрамикроэлементами, играют не столь значительную роль, как вышеупомянутые. Однако длительный их недостаток может приводить к развитию очень неприятных, а иногда и весьма опасных для здоровья последствий.

Например, селен относят и к данной группе тоже. Его длительная нехватка провоцирует развитие раковых опухолей. Поэтому он считается незаменимым. А вот золото и серебро - это металлы, которые оказывают отрицательное воздействие на бактерии, уничтожая их. Поэтому внутри клетки играют бактерицидную роль.

Однако в целом следует сказать, что функции ультрамикроэлементов еще не до конца раскрыты учеными, и значение их остается пока неясным.

Металлы и органические вещества

Многие металлы входят в состав органических молекул. Например, магний - кофермент хлорофилла, необходимого для фотосинтеза растений. Железо - часть молекулы гемоглобина, без которого невозможно осуществлять дыхание. Медь, цинк, марганец и прочие - части молекул ферментов, витаминов и гормонов.

Очевидно, что все эти соединения важны для организма. Отнести их полностью к минеральным нельзя, однако частично все же следует.

Минеральные вещества клетки и их значение: 5 класс, таблица

Чтобы обобщить то, что было нами сказано в течение статьи, составим общую таблицу, в которой отразим, какие бывают минеральные соединения и зачем они нужны. Использовать ее можно при объяснении данной темы школьникам, например, в пятом классе обучения.

Таким образом, минеральные вещества клетки и их значение будут усвоены школьниками в курсе основной ступени обучения.

Последствия нехватки минеральных соединений

Когда мы говорим о том, что роль минеральных веществ в клетке важна, то должны привести примеры, доказывающие этот факт.

Перечислим некоторые заболевания, которые развиваются при недостатке или избытке каких-либо из обозначенных в ходе статьи соединений.

  1. Гипертония.
  2. Ишемия, сердечная недостаточность.
  3. Зоб и другие заболевания щитовидной железы (Базедова болезнь и прочие).
  4. Анемия.
  5. Неправильный рост и развитие.
  6. Раковые опухоли.
  7. Флюороз и кариес.
  8. Заболевания крови.
  9. Расстройство мышечной и нервной системы.
  10. Нарушение пищеварения.

Конечно, это далеко не полный список. Поэтому необходимо тщательно следить за тем, чтобы ежедневный рацион питания был правильным и сбалансированным.

Урок № 2.

Тема урока : Неорганические вещества клетки.

Цель урока: углубить знания о неорганических веществах клетки.

Задачи урока:

Образовательные : Рассмотреть особенности строения молекул воды в связи с ее важнейшей ролью в жизнедеятельности клетки, раскрыть роль воды и минеральных солей в жизни живых организмов;

Развивающие : Продолжить развитие логического мышления учащихся, продолжить формирование умений работать с различными источниками информации;

Воспитательные : Продолжить формирование научного мировоззрения, воспитание биологически грамотной личности; становление и развитие нравственных и мировоззренческих устоев личности; продолжить формирование экологического сознания, воспитание любви к природе;

Оборудование : мультимедийное приложение к учебнику, проектор, компьютер, карточки с заданиями, схема "Элементы. Вещества клетки". Пробирки, химический стакан, лед, спиртовка, поваренную соль, этиловый спирт, сахарозу, растительное масло.

Основные понятия : диполь, гидрофильность, гидрофобность, катионы, анионы.

Тип урока : комбинированный

Методы обучения : репродуктивные, частично-поисковые, экспериментальные.

Обучающиеся должны:

Знать основные химические элементы и соединения входящие в состав клетки;

Уметь объяснять значение неорганических веществ в процессах жизнедеятельности.

Структура урока

1.Организационный момент

Приветствие, подготовка к работе.

В начале и в конце урока проводится психологическая разминка. Ее цель–определить эмоциональное состояние учащихся. Каждому учащемуся выдаётся табличка с шестью лицами – шкала для определения эмоционального состояния (рис. 1). Каждый ученик ставит галочку под той рожицей, чье выражение отражает его настроение.

2. Проверка знаний учащихся

Тест «Химический состав клетки» (Приложение)

3. Целеполагание и мотивация

«Вода! Ты не имеешь ни вкуса, ни цвета, ни запаха, тебя невозможно описать. Тобой наслаждается человек, не понимая, что ты есть на самом деле. Нельзя сказать, что ты необходима для жизни, ты - сама жизнь. Ты везде и всюду даешь ощущение блаженства, которое нельзя понять ни одним из наших органов чувств. Ты возвращаешь нам силу. Твое милосердие заставляет ожить высохшие источники нашего сердца. Ты - самое большое богатство в мире. Ты богатство, которое легко можно спугнуть, но ты даешь нам такое простое и драгоценное счастье», - этот восторженный гимн воде написал французский писатель и летчик Антуан де Сент-Экзюпери, которому пришлось испытать на себе муки жажды в раскаленной пустыне.

Этими замечательными словами мы начинаем урок, целью которого является расширить представление о воде - веществе, которое создало нашу планету.

  1. Актуализация

Каково значение воды в жизни человека?

(Ответы учащихся о значение воды в жизни человека0

  1. Изложение нового материала.

Вода - самое распространенное в живых организмах неорганическое вещество, обязательный ее компонент, среда обитания для многих организмов, главный растворитель клетки.

Строки стихотворения М.Дудника:

Говорят, что из восьмидесяти процентов воды состоит человек,

Из воды, добавлю, родных его рек,

Из воды, добавлю, дождей, что его напоили,

Из воды, добавлю, из древней воды родников,

Из которых деды и прадеды пили.

Примеры содержания воды в различных клетках организма:

В молодом организме человека или животного – 80% от массы клетки;

В клетках старого организма – 60%

В головном мозге – 85%;

В клетках эмали зубов – 10-15%.

При потере 20% воды у человека наступает смерть.

Рассмотрим строение молекулы воды:

Н2О – молекулярная формула,

Н–О–Н – структурная формула,

Молекула воды имеет угловое строение: представляет собой равнобедренный треугольник с углом при вершине 104,5°.

Молекулярная масса воды в парообразном состоянии равна 18 г/моль. Однако молекулярная масса жидкой воды оказывается более высокой. Это свидетельствует о том, что в жидкой воде происходит ассоциация молекул, вызванная водородными связями.

Какова же роль воды в клетке?

Из-за высокой полярности молекул вода является растворителем других полярных соединений, не имея себе равных. В воде растворяется больше веществ, чем в любой другой жидкости. Именно поэтому в водной среде клетки осуществляется множество химических реакций. Вода растворяет продукты обмена веществ и выводит их из клетки и организма в целом.

Вода обладает большой теплоемкостью, т.е. способностью поглощать теплоту. При минимальном изменении ее собственной температуры выделяется или поглощается значительное количество теплоты. Благодаря этому она предохраняет клетку от резких изменений температуры. Поскольку на испарение воды расходуется много теплоты, то, испаряя воду, организмы могут защищать себя от перегрева (например, при потоотделении).

Вода обладает высокой теплопроводностью. Такое свойство создает возможность равномерно распределять теплоту между тканями тела.

Вода является одним из основных веществ природы, без которого невозможно развитие органического мира растений, животных, человека. Там, где она есть, – есть жизнь.

Демонстрация опытов. Составление таблицы вместе с учащимися.

а) Растворить в воде следующие вещества: поваренную соль, этиловый спирт, сахарозу, растительное масло.

Почему одни вещества в воде растворяются, а другие – нет?

Даётся понятие гидрофильных и гидрофобных веществ.

Гидрофильные вещества - хорошо растворимые в воде вещества.

Гидрофобные вещества - плохо растворимые в воде вещества.

Б) Опустить кусочек льда в стакан с водой.

Что вы можете сказать о плотности воды и льда?

С помощью учебника в группах нужно заполнить таблицу "Минеральные соли". По окончании работы идет обсуждение занесенных в таблицу данных.

Буферность - способность клетки поддерживать относительное постоянство слабощелочной среды.

  1. Закрепление изученного материала.

Решение биологических задач в группах.

Задача 1.

При некоторых заболеваниях в кровь вводят 0,85-процентный раствор поваренной соли, называемый физиологическим раствором. Вычислите: а) сколько граммов воды и соли нужно взять для получения 5 кг физиологического раствора; б) сколько граммов соли вводится в организм при вливании 400 г физиологического раствора.

Задача 2.

В медицинской практике для промывания ран и полоскания горла применяется 0,5-процентный раствор перманганата калия. Какой объем насыщенного раствора (содержащего 6,4 г этой соли в 100 г воды) и чистой воды необходимо взять для приготовления 1 л 0,5-процентного раствора (ρ = 1 г/см 3 ).

Задание.

Написать синквейн тема: вода

  1. Домашнее задание: п. 2.3

Найти в литературных произведениях примеры описания свойств и качеств воды, ее биологического значения.

Схема "Элементы. Вещества клетки"

Опорный конспект к уроку