Общие формулы горения органических веществ. Горение

ГОРЕНИЕ, сложный физико-химический процесс превращения вещества; развивается в режиме прогрессирующего самоускорения, связанного с лавинообразным накоплением в реагирующей системе тепловой энергии и активных промежуточных частиц - атомов, свободных радикалов и др. Горение используется в энергетике при производстве теплоты, работе транспорта, реактивных двигателей, а также в технологических процессах и осуществляется главным образом в камерах сгорания двигателей, топках, печах. С явлением горения человек имеет дело при пожарах, производстве и использовании взрывчатых веществ.

Развитие представлений о горении связано с именами М. Фарадея (горение свечи), М. В. Ломоносова (соединение веществ с кислородом), горения Шталя (теория флогистона), В. А. Михельсона (теория скорости распространения пламени) и др. В разработку современной теории горения значительный вклад внесли российские учёные Н. Н. Семёнов, Я. Б. Зельдович, Д. А. Франк-Каменецкий и др.

В большинстве случаев в основе горения лежит реакция окисления, в которой в качестве так называемого горючего могут участвовать почти все органические и многие неорганические вещества, в качестве окислителя - кислород, озон, галогены, перхлораты, нитросоединения и пр. Например, наибольшее практическое значение имеют процессы горения углеводородных горючих (природного горючего газа, нефти, углей, торфа и пр.) в присутствии кислорода. В режиме горения происходят также некоторые другие реакции (например, разложения, прямого синтеза из элементов).

В реальных условиях помимо продуктов полного сгорания, не способных к дальнейшему горению (диоксида углерода, воды и пр.), образуются другие химические соединения, называемые продуктами неполного горения, в том числе монооксид углерода, оксиды азота, серы, альдегиды, кислоты, бенз[а]пирен. Именно они обусловливают вредность и токсичность выбросов, загрязняют среду обитания и в итоге создают для современного общества экологические проблемы. Многие специалисты полагают, что за счёт процессов организованного горения, главным образом в энергетике, сопровождающихся образованием диоксида углерода и других парниковых газов, происходит потепление климата. К ухудшению качества среды обитания приводят также лесные и торфяные пожары, пожары на складах, химических предприятиях (в том числе использующих технологии хлорорганического синтеза), в местах добычи и переработки нефти и на других пожаро- и взрывоопасных объектах. Например, при горении трансформаторных жидкостей, твёрдых бытовых отходов, полимерных материалов на основе поливинилхлорида происходит образование диоксинов и других суперэкотоксикантов и загрязнение ими окружающей среды.

Основными характеристиками горения являются теплота сгорания горючего вещества, а также адиабатическая температура (температура, которая теоретически могла бы быть достигнута при полном сгорании вещества без потерь теплоты) и скорость процесса. Химические превращения при горении сопровождаются интенсивным тепло- и массообменом с окружающей средой и характеризуются соответствующими гидро- и газодинамическими закономерностями. При горении происходит излучение света в разных диапазонах длин волн, но, как правило, яркое свечение пламенем наблюдается в видимой области. Полное описание процесса горения можно провести с использованием закономерностей макрокинетики.

Важнейшая особенность процесса горения - способность к распространению в пространстве. Различают дефлаграционное и детонационное горение. В первом случае (дефлаграция) распространение горения осуществляется за счёт теплопроводности путём передачи теплоты от горящего объёма в соседние участки смеси, во втором - зажигание и распространение горения происходит за счёт сжатия вещества ударной волной (горение взрывчатых веществ). В свою очередь, дефлаграционное горение подразделяют на ламинарное и турбулентное.

Обычно линейная скорость горения выражается через скорость перемещения фронта реакции (пламени), массовая скорость горения - как количество горючего, сгорающего в единицу времени. Скорость горения зависит от природы и состава горючей смеси, давления и пр. Например, при ламинарном горении углеводородных воздушных смесей скорость распространения пламени составляет в среднем 0,4-0,8 м/с. Распространение пламени в турбулентном потоке газа приводит к искажению фронта горения, расширению зоны протекания химических реакций, а следовательно, к ускорению горения. На скорость горения влияют степень и масштабы турбулентности.

По агрегатному состоянию окислителя и горючего горение разделяют на гомогенное и гетерогенное. Примером гомогенного горения является горение пламенем горючих газов, паров керосина, бензина, спирта в воздухе. При гетерогенном горении (в том числе тлении - беспламенном горения) реакция происходит на поверхности раздела фаз газ - твёрдое тело (металлы, уголь). Если окислитель и горючее предварительно смешаны между собой, то гомогенное горения происходит в кинетическом режиме. Так как температура горения намного выше температуры кипения жидкостей и температуры возгонки некоторых твёрдых веществ, то их горение протекает в гомогенной смеси, а если горючее и окислитель заранее не смешаны, то в диффузионном режиме. Для газовых систем возможны как кинетический, так и диффузионный режимы горения. Определяющая роль разветвлённого цепного механизма процессов газофазного горения позволяет управлять этими процессами путём варьирования скоростей разветвления и обрыва цепей с помощью химически активных примесей.

Для любого вида горения характерны стадия воспламенения и последующий период устойчивого горения вещества с образованием продуктов полного и неполного горения. Различают два способа теплового воспламенения: самовоспламенение и зажигание. При самовоспламенении процесс происходит во всём объёме горючей смеси. При зажигании (вынужденном воспламенении) нагрев системы или накопление активных центров происходит вблизи источника зажигания (искра, пламя, нагретое тело). Температура воспламенения зависит от давления, состава горючего и прочих параметров и для большинства органических веществ находится в интервале 500-800 К.

Существуют критические предельные параметры горения, и вне этих пределов горения (как самопроизвольно протекающий процесс) невозможно. Этими параметрами для каждой горючей смеси являются соотношение объёмов горючего и окислителя, температура, давление, содержание примесей, в том числе концентрация в горючей смеси флегматизаторов (СО 2 , N 2 , Ar и др.) и ингибиторов (С 2 F 4 Br 2 , CH 2 CI 2 F 2 и др.), и пр. Для газов обычно указывают концентрационные, для жидкостей и твёрдых веществ - температурные пределы горения.

Выяснение законов горения и установление критических параметров воспламенения, развития и прекращения процесса горения - необходимое условие управления процессами горения, используемыми в различных сферах человеческой деятельности, обеспечения пожаро- и взрывобезопасности технологических процессов и объектов.

Лит.: Зельдович Я. Б. Теория горения и детонации газов. М.; Л., 1944; Иост В. Взрывы и горение в газах. М., 1952; Семенов Н. Н. О некоторых проблемах химической кинетики и реакционной способности. М., 1954; Хитрин Л. Н. Физика горения и взрыва. М., 1957; Кнорре Г. Ф. Топочные процессы. 2-е изд. М.; Л., 1959; Гейдон А. Г., Вольфгард Х. Пламя, его структура, излучение и температура. М., 1959; Вильямс Ф. А. Теория горения. М., 1971; Математическая теория горения и взрыва. М., 1980; Lewis В., Elbe G. von. Combustion, flames and explosions of gases. 3rd ed. Orlando, 1987; Франк-Каменецкий Д. А. Диффузия и теплопередача в химической кинетике. 3-е изд. М., 1987; Denisov Е. Т., Azatyan V. V. Inhibition of chain reactions. L., 2000; Исаева Л. К. Пожары и окружающая среда. М., 2001.

Скорость горения веществ и материалов в кислороде (жидком и газообразном) в 10-100 раз выше, чем на воздухе. Особенно велики скорости горения органических соединений. 

В природе окись углерода содержится лишь в газах вулканов, рудников и болот. В промышленности окись углерода получают сухой перегонкой, а также газификацией углей. Кроме того, она образуется при горении органических соединений в условиях недостатка кислорода. Например, при полном сгорании метана образуется двуокись углерода 

Примерное постоянство Тал, со объясняется следующим образом. Как было отмечено выше, горение органических соединений в воздухе протекает в две стадии. При этом лимитирую- 

Состав продуктов сгорания зависит от состава горящего вещества, условий, в которых происходит горение, и главным образом полноты сгорания. В продуктах сгорания могут содержаться многие неорганические вещества (углерод, азот, водород, сера, фосфор и др.) и их окислы, а также спирты, кетоны, альдегиды и другие органические соединения. Образующийся в процессе горения дым состоит из мельчайших твердых частиц размером от 0,01 до 

При умеренных температурах горения - обычно до 2000-2200° К для 1 ат (абс) - равновесный состав продуктов адиабатической реакции многих систем, состоящих из углерода, водорода, кислорода и азота, с хорошей точностью определяется простыми стехиометри-ческими соотношениями. Такие системы, образующиеся при сгорании смесей различных органических соединений с кислородом, - наиболее распространенный тип продуктов сгорания. При избытке 

Специфическое действие ингибирующих добавок ограничено. Наиболее эффективны производные насыщенных углеводородов, у которых большая часть атомов водорода замещена атомами галоидов. Галоидпроизводные органических соединений, способные окисляться, затрудняют горение и уменьшают нормальную скорость пламени, по-видимому, только для смесей с избытком горючего. Добавление таких продуктов к бедным смесям может увеличивать скорость пламени вследствие возрастания при этом калорийности смеси . 

Завершая обзор исследований в теории горения гетерогенных систем, посвященных выявлению роли радиации, отметим следующее. В литературе имеются экспериментальные доказательства существования радиационного механизма воспламенения аэрозолей некоторых металлов и углеродсодержащих соединений излучением горящих аэрозолей циркония и титана . Для ряда высокомолекулярных органических соединений, в том числе полимеров, можно наблюдать образование коксового остатка в процессе газификации вещества под действием внешнего излучения. Образующиеся высокоуглеродистые соединения в принципе могут явиться центрами зажигания в свежем аэрозоле. Оценки, однако, показывают, что практическая реализация схемы прогрева продукты горения - частицы свежей смеси ->- газификация с образованием кокса -> самовоспламенение летучих наступает при весьма широких фронтах пламени (диаметр канала составляет несколько метров), когда уже необходимо принимать во внимание газодинамические эффекты . Тем не менее энергетический баланс во фронте пламени при уточнении расчетных характеристик должен учитывать теплообмен радиацией (по оценкам Палмера доля радиации в теплообмене для систем различных масштабов меньше 20%), особенно для крупномасштабных процессов. 

Процесс горения частиц полимеров, распределенных в воздухе, имеет много общего с горением аэрозолей других органических веществ. Под воздействием теплового потока от источника зажигания (при воспламенении) или от фронта пламени (при распространении фронта пламени) происходит прогрев частиц. Прогрев сопровождается процессом термоокислительной деструкции, в результате которой образуются низкомолекулярные газообразные продукты. В зоне пламени эти низкомолекулярные продукты сгорают до конечного состояния (в условиях, максимально благоприятствующих горению, - до СОг и Н20). Состав продуктов термоокислительной деструкции зависит от химического строения макромолекул полимера, условий зажигания и горения. В общем случае полимеры состоят из горючей и негорючей частей. Горючую часть составляют водород, оксид углерода, насыщенные и ненасыщенные низшие углеводороды, низшие альдегиды, кетоны, спирты и другие органические соединения. В негорючую часть входят пары воды, азот, диоксид углерода, галогеноводороды. 

Энергию, используемую для расщепления, называют энергией разрыва связи. Она составляет 50-100 ккал-моль-1. При подводе малого количества энергии разрываются прежде всего ослабленные связи. В реакциях горения образование радикалов происходит почти исключительно за счет пиролиза. При пиролизе органических соединений могут возникнуть три случая  

Образование. ПАУ образуются в результате пиролиза или неполного сгорания органического вещества, содержащего углерод и водород. При высоких температурах в результате пиролиза органических соединений образуются фрагменты молекул и радикалы, которые соединяются и образуют ПАУ. Состав конечного продукта пиролизного синтеза зависит от топлива, температуры и от времени прерывания в зоне горения. К топливу, после сгорания которого образуются ПАУ, относится метан, другие углеводороды, лигнины, пептиды, липиды и т.д. Тем не менее, соединения, содержащие разветвление цепи, ненасыщенные связи или циклические структуры, обычно благоприятствуют образованию ПАУ. Очевидно, ПАУ выделяются в виде паров из зоны горения. Из-за низкого давления пара большинство ПАУ мгновенно концентрируются на частичках сажи либо сами образуют мельчайшие частички. ПАУ, поступающие в атмосферу в виде пара, адсорбируются содержащимися в воздухе частицами. Содержащие ПАУ аэрозоли, таким образом распыляемые в воздухе, могут переноситься ветром на большие расстояния. 

Распространение. Оксид углерода получается при сжигании органического материала типа угля, древесины, бумаги, масла, бензина, газа, взрывчатых веществ или карбонатных материалов любого другого типа в условиях недостатка воздуха или кислорода. Когда процесс горения происходит при избыточном питании воздухом и пламя не контактирует с какими-либо поверхностями, окись углерода не образуется. СО образуется в том случае, если пламя контактирует с поверхностью, температура которой ниже, чем температура воспламенения газообразной части пламени. Естественным путем образуется 90% атмосферного СО, а в результате деятельности человека производится 10%. На двигатели транспортных средств приходится от 55 до 60% всего количества СО искусственного происхождения. Выхлопной газ бензинового двигателя (электрическое зажигание) является обычным источником образования СО. Выхлопной газ дизельного двигателя (компрессионное воспламенение) содержит приблизительно 0,1 % СО, если двигатель работает надлежащим образом, однако неправильно отрегулированный, перегруженный или технически плохо обслуживаемый дизельный двигатель может выбрасывать значительные количества СО. Тепловые или каталитические дожигатели в выхлопных трубах значительно снижают количество СО. Другими основными источниками СО являются литейные производства, установки каталитического крекинга на нефтеперерабатывающих предприятиях, процессы дистилляции угля и древесины, известеобжигательные печи и печи восстановления на заводах крафт-бумаги, производство синтетического метанола и других органических соединений из оксида углерода, спекание загрузочного сырья доменной печи, производство карбида, производство формальдегида, заводы технического углерода, коксовые батареи, газовые предприятия и заводы по переработке отходов. 

Концентрации примесей, которые возникают преимущественно из источников, связанных с процессом горения, подвержены чрезвычайно большим временным изменениям, а их выделение является прерывистым. Эпизодические выпуски летучих органических соединений благодаря человеческой активности, например рисованию или малярным работам, также приводят к большим временным вариациям в выделениях. Другие выделения, подобные выпуску в воздух помещений формальдегида изделиями из дерева, могут варьироваться в зависимости от температуры и колебаний влажности в здании, но их эмиссия непрерывна. Эмиссия органических химикалий из других материалов может быть в меньшей степени подвержена влиянию температуры и влажности, но большое влияние на их концентрацию в воздухе помещений будет оказывать вентиляция данных помещений. 

Следует подчеркнуть, что каталитические эффекты для органических соединений очень велики. Так, скорость горения перхлората аммония с наиболее эффективным катализатором - оксинатом меди - при 300 ат превосходила скорость горения чистого перхлората в 21 раз. И даже при 1000 ат перхлорат с оксинатом меди горел в 4 раза быстрее чистого перхлората. 

В табл. 25 суммированы полученные результаты и приведены значения В и V в уравнении горения. Заметим, что присутствие аммиака в молекуле органического соединения (салицилат аммония) не отражается на скорости горения - кривые для смесей перхлората аммония с салицилатом аммония и салициловой кислотой совпадают. 

При полном сгорании большинства веществ образуются двуокись углерода, сернистый ангидрид и пары воды. При неполном сгорании образуются окись углерода, спирты, кетоны, альдегиды, кислоты и другие сложные органические соединения. Все они получаются в результате недостатка кислорода воздуха в зоне горения. Эти продукты способны гореть и могут образовать с воздухом взрывоопасные смеси, увеличивающие пожарную опасность. Кроме того, продукты неполного сгорания часто бывают едкими и ядовитыми, что затрудняет работу пожарных. 

Соединения азота с точки зрения техники безопасности работы в химических лабораториях заслуживают особого внимания. Многие как неорганические, так и органические соединения его являются высокотоксичными, многие идут на получение взрывчатых веществ. Сам азот не обладает ни ядовитыми, ни раздражающими свойствами, он пассивен в процессе горения. Но при вдыхании больших концентраций его у человека появляются патологические явления, связанные с недостатком кислорода (кессонная болезнь). В то же время в различных формах своих соединений азот участвует в жизненно важных физиологических процессах. Наруше-, ния нормального течения азотного обмена в организме часто являются причиной тяжелых заболеваний. В лабораториях находят широкое применение следующие соединения азота азотная и азотистая кислоты, аммиак, хлористый нитрозил и др. 

Как известно, все химические реакции подразделяются на гомогенные, протекающие в объеме, и гетерогенные, происходящие на поверхности раздела фаз. Процесс горения твердых материалов имеет гетерогенный характер. Поэтому исключительную роль в указанном процессе играют также размеры и природа поверхности твердой фазы и ее изменяемость. Для возникновения горения необходимы система, склонная к этому процессу (горючее вещество и окислитель), и импульс, вызывающий химическую реакцию горения. К горючему, способному взаимодействовать с окислителем, относятся значительное число жидкостей и газов, а также множество твердых веществ металлы в свободном виде, сера в элементарном и связанном виде, большинство органических соединений. Окислителями в процессах горения являются кислород (воздух), озон, перекиси, богатые кислородом вещества (нитросоединения, азотная кислота, перхлораты, нитраты), галогены. 

Горение - это интенсивные химические окислительные реакции, которые сопровождаются выделением тепла и свечением. Горение возникает при наличии горючего вещества, окислителя и источника воспламенения. В качестве окислителей в процессе горения могут выступать кислород, азотная кислота, пероксид натрия, бертолетова соль, перхлораты, нитросоединения и др. В качестве горючего - многие органические соединения, сера, сероводород, колчедан, большинство металлов в свободном виде, оксид углерода, водород и т. д. 

Большинство ВВ этой группы представляет собой кислородосодержащие органические соединения, способные к частичному или полному внутримолекулярному горению. 

Хладоны в отличие от водо-пенных средств и инертных разбавителей являются ингибиторами горения, т. е. веществами, способными активно вмешиваться в химические процессы, тормозя их. Наиболее эффективно хладоны тормозят горение органических веществ (нефтепродуктов, растворителей и др.) и значительно слабее тормозят горение водорода, аммиака и некоторых других веществ. Хладоны неприемлемы для тушения металлов, многих металлоорганических соединений, некоторых гидридов металлов, а также тогда, когда окислителем при пожаре является не кислород, а другие вещества (например, галогены, оксиды азота). 

Состав продуктов сгорания зависит от состава горящего вещества, условий, в которых происходит горение, и главным образом полноты сгорания-. В продуктах сгорания могут содержаться многие неорганические вещества (углерод, азот, водород, сера, фосфор и др.) и их окислы, а также спирты, кетоны, альдегиды и другие органические соединения. Образующийся в процессе горения дым состоит из мельчайших твердых частиц размером от 0,01 до 1 мкм. 

Для неполярных органических соединений близок единице для слабополярных соединений можно приближенно принимать =1,06. Для пожаров нефтепродуктов, имеющих площадь горения более 10 м2, скорость выгорания (в м/с) приближенно можно найти по эмпирической формуле 

Левая часть уравнений (6.2) и (6.3) выражает абсолютную энтальпию (внутреннюю энергию) исходной горючей смеси при начальной температуре Т0, а правая - энтальпию (внутреннюю энергию) смеси продуктов горения при температуре горения Тт или взрыва Гвзр. Детальная методика расчета температуры горения органических соединений, основанная на этих представлениях, описана в следующих двух разделах. При этом рассматриваются только системы, образованные углеродом, водородом, кислородом, азотом и аргоном, так как точный термодинамический расчет систем, содержащих другие элементы, без применения ЭВМ чрезвычайно сложен и выходит за рамки предлагаемой книги. Приближенные методы расчета малоэффективны, поэтому тоже не приводятся. 

Острые и хронические отравления возможны также при розливе, фильтрации, очистке и транспортировке Hg при производстве гремучей ртути (при этом в воздух могут одновременно поступать окислы азота, эфиры азотной кислоты, пары летучих органических соединений, цианистый водород) прп извлечении благородных металлов из руд, сплавов, лома, отбросов при различных электролитических процессах при работах с фотореактивами, содержащими при различных химических процессах и операциях (например, в производстве синтетической уксусной кислоты в процессе анализа органических соединений при определении азота) при пропитке шпал, столбов и различных деревянных конструкций с целью их консервирования при использовании 1 как зонирующей (изолирующей) жидкости прп производстве электродов и электрических батарей при чистке, сварке илп ремонте котлов, в которых ранее содержалась при окраске подводных частей морских судов (Голдуотер и Джефферс) при контроле водомерных установок иногда - при пожарах на ртутных рудниках (Кулбасов Мирочник), при взрыве ртутных ламп, горении так называемых фараоновых змей (роданид ртути), взрыве гремучей ртути вблизи ртутных заводов при различных работах с Н, в частности в процессе изготовления ртутных колб (малых выпрямителей) и в производстве термометров. 

Однако специфическое действие ингибирующих добавок ограничено. Наиболее эффективны галоидалканы, у которых большая часть атомов водорода заменена галоидом. Способные окисляться галоидопроизводные органических соединений, по-видимому, затрудняют горение только богатых горючим смесей. Добавление таких продуктов к бедным смесям может даже увеличивать скорость пламени вследствие возрастания при этом калорийности смеси. 

В результате горения веществ образуются газообразные, жидкие и твердые продукты при полном сгорании получаются С02, Н20, ЯОз и Р205, не горящие и не поддерживающие горения вещества. При неполном сгорании органических веществ образуются более разнообразные продукты. В состав их, кроме продуктов полного сгорания, входят окись углерода, спирты, кетоны, альдегиды, кислоты и другие сложные органические соединения. Продукты неполного сгорания часто являются ядовитыми, способными гореть и образовывать с воздухом взрывчатые смесн. Продукты полного и неполного горения образуют различный по составу дым. Дым состоит из мельчайших твердых частиц, находящихся во взвешенном состоянии в каком-либо газе. Твердыми частицами являются главным образом углерод диаметром от 0,002 до 1 мм. Эти частицы легко оседают в виде копоти или сажи. 

В результате горения образуются газообразные, жидкие и твердые продукты. При полном сгорании - СОг, НгО, БОг и Р2О5 при неполном сгорании образуются более разнообразные продукты, в состав которых, кроме продуктов полного сгорания, входят окись углерода, кетоны, альдегиды, кислоты и другие сложные органические соединения. Продукты неполного сгорания часто ядовиты, способны гореть и образовывать с воздухом взрывоопасные смеси. 

Натрий Ыа, серебристо-белый мягкий металл. Ат. вес 22,997 плоти. 970 кг/м3, т. пл. 97,7° С т. кип. 883° С уд. электр. сопр. при 20° С 4,879 10" ом см. Теплота сгорания до Ыа202 2600 ккал/кг коэф. теплопроводности в кал/(см сек град) 0,317 при 21° С, 0,205 при 100° С. Обладает большой реакционной способностью. При нагревании на воздухе легко воспламеняется. Т. го-рёния около 900°С т. самовоспл. 330-360° С (в воздухе), 97-106°С (в присутствии перекиси натрия) II8°С (в кислороде) минимальное содержание кислорода, необходимое для горения, 5% объемн. скорость выгорания 0,7-0.9 кг/(м -мин). При сгорании в избытке кислорода образуется перекись Ыаг02, которая с легко-окисляющимися веществами (порошками алюминия, серой, углем и др.) реагирует очень энергично, иногда со взрывом. Твердая углекислота при соприкосновение с металлом, нагретым до 350°С, взрывается. Реакция с водой начинается при -98°С с выделением водорода. Взаимодействие натрия с водой, растворами кислот или органическими соединениями часто сопровождается взрывом. Натрий (особенно расплавленный) при горении образует взрывоопасные смеси с галоидпроизвод-ными углеводородами. Тушить составом ПС-1 и сжиженными инертными газами. При тушении в закрытых помещениях наибольший эффект дают аргон и азот. Тушение см. также Металлы. Средства тушения. 

Пожароопасные свойства Горючий металл. Т. самовоспл. в воздухе 330-360°С (в присутствии пероксида натрия 97-106°С), в кислороде 118°С МВСК 5% об. скорость выгорания (1,1-1,5) I02 кг/(м3с). При сгорании в избытке кислорода образуется Na202, реагирующий с легкоокисляющимися веществами (порошками алюминия, серой, углем и др.), очень энергично, иногда со взрывом. Карбиды щелочных металлов обладают большой химической активностью в атмосфере диоксида углерода они самовоспламеняются, с водой взаимодействуют со взрывом. Твердый диоксид углерода с расплавленным натрием взрывается при 350°С. Реакция со льдом начинается при -98°С с выделением водорода. При соприкосновении значительных количеств натрия и воды реакция сопровождается взрывом. Взаимодействие с растворами кислот протекает подобно реакции с водой. Взаимодействие натрия с органическими соединениями зависит от их природы и температуры. Натрий, особенно расплавленный, при определенных условиях (например, при горении) образует взрывоопасные смеси с галоидопроизводными углеводородов. Азид натрия NaN3 взрывается при т-ре, близкой к т-ре плавления. В хлоре и фторе натрий воспламеняется при комнатной т-ре, с бромом взаимодействует при 200°С со взрывом. Вследствие повышенной химической активности натрий хранят под слоем керосина или минерального масла. 

Атмосферные за1рязнения могут являться результатом практически любой операции, выполняемой при строительстве, техническом обслуживании или техническом ремонте кораблей и катеров. Загрязнители воздуха, которые контролируются во многих странах, включают в себя оксиды серы, оксиды азота, моноксиды углерода, микрочастицы (дым, сажа, пыль и т.д.), свинец и летучие органические соединения. При выполнении видов деятельности судостроения и судоремонта загрязнители включают в себя источники горения, такие как котельные и тепловые станции для обработки металла, генераторы и печи. Микрочастицы могут быть видимыми в качестве дыма от процесса горения, а также в качестве пыли при деревообработке, при операциях пескоструйной очистки, шлифовании песком, растирании и полировке. 

Интересно отметить, что в интервале давлений 250-500 ат дигидрат бихромата меди(II) более эффективен, чем некоторые из рассмотренных выше органических соединений, что связано, вероятно, с лучшей растворимостью неорганических солей в воде, которая оказывает значительное влияние на процесс горения в этом диапазоне давлений. Органическая часть молекулы также оказывает весьма существенное влияние на каталитическую активность медьсодержащих соединений. Так, из табл. 20 и рис. 88 видно, что в зависимости от органической части молекулы коэффициент К может изменяться от 1,2 до 3,0 при 50 ат и от 10 до 21 при 300 ат, однако с ростом давления это различие становится меньше. При этом различие в каталитической эффективности, например, медьсодержащих органических соединений, не связано с абсолютным количеством металла в молекуле соединения. Так, в 5 вес.% салицилата меди содержится 0,96 г металла, а в оксинате меди - 0,83 г, тем не менее последнее соединение значительно более эффективно как катализатор. Аналогичная картина наблюдается и для натрийсодерямщих солей, например при 50 ат К - 1,3 для бензоата натрия, К = 1,8 для салицилата натрия и К = 0,7 для фуксина. 

Что касается парадоксального уменьшения скорости горения перхлората аммония в присутствии некоторых органических соединений (см. табл. 20), особенно в области низких давлений, то оно связано, вероятно, с тем, что, поскольку ион данного металла (например, висмута, ртути, магния15 или кадмия) не оказывает каталитического воздействия на процесс, преобладающим является влияние органической части молекулы и, в частности, ее восстановительных свойств . Кроме того, не исключается участие иона металла в обменной реакции по типу, описанному ранее , и замедление горения вследствие связывания хлорной кислоты, продукты распада которой являются окислителем для горючих элементов перхлората. 

Исходя из результатов таблицы, можно сделать вывод, что все изученные нами органические соединения ингибируют горение метана, но не в одинаковой мере. В зависимости от химической природы одни добавки имеют эффективность того же порядка, что и хлорид натрия (например, поливинилхлорид), другие - менее эффективны (о-фенилендиамин, бензоат лития, окись кремния), третьи - более эффективны (бензоат и сали-цилат натрия, индол, салицилат калия, дифтилметандисульфонат натрия). 

Хотя многие из изученных нами органических соединений более эффективно чем хлорид натрия ингибировали распространение пламени в стехиометрической метано-воздушной смеси, однако следовало иметь в виду, что органические соединения могли принимать участие в процессе горения, переобогащая смесь. Для проверки этого предположения были поставлены опыты, когда в метано-воздушную смесь на бедном пределе горения (5% СН.) вводились изученные добавки. Результаты опытов представлены в табл. 58. Как видно из таблицы, твердые органические соединения, содержащие в молекуле щелочные металлы или хлор, а также соединения, содержащие аминогруппу, действительно являются ингибиторами. 

Для каждого ВВ в определенной области давлений имеется свой наиболее эффективный катализатор горения - пятиокись ванадия, хромат свинца и хлорид меди для нитрогуанидина, дигидрат бихромата меди(II) я оксинат меди для перхлората аммония, соли шестивалентного хрома и хлориды, а также органические соединения щелочных металлов для литрата аммония. 

В работе найдено, что окислы свинца реагируют с гидроксилпро-изводными углеводородов, горение которых они промотируют, и не реагируют с эфирами и углеводородами, горение которых они ингибируют. (Напомним, что промотирующее влияние гидроксила на каталитическое действие бихромата калия наблюдалось нами при горении пикриновой кислоты, что обусловлено, вероятно, его промотирующим влиянием на газофазное окисление СО.) В то же время органические соединения тетраэтилсвинец и пентакарбонилжелезо сильно ингибируют гексано-воздушные пламена , кроме того, они являются наилучшими антидетонаторами . 

При горении ВВ соединения свинца и железа - эффективные катализаторы. Так, например, хромат и хлорид свинца катализировали горение нитрогуанидина и нитрата аммония, а органические соединения железа - эффективные катализаторы горения смееевых порохов на основе перхлората аммония. В то же время при термическом распаде этилнитра-та окись свинца была ингибитором, а медная поверхность ускоряла распад . 

При полном сгорании органических соединений образуются С02, БОг, Н20, N2, а при сгорании неорганических соединений- оксиды. В зависимости от температуры плавления продукты реакции могут либо находиться в виде расплава (А1203, ТЮ2), либо подниматься в воздух в виде дыма (Р2О5, Ыа20,. А О). Расплавленные твердые частицы создают светимость пламени. При горении углеводородов сильная светимость пламени обеспечивается свечением частиц технического углерода, который образуется в больших количествах. Уменьшение содержания технического углерода в результате его окисления уменьшает светимость пламени, а снижение температуры затрудняет окисление технического углерода и приводит к образованию в пламени копоти. 

Рассматривая любое органическое соединение как углеводород, в котором некоторое число атомов водорода замещено другими атомами и группами атомов и считая теплоту сгорания функцией числа электронов, перемещающихся при горении от атомов углерода и водорода к атомам кислорода, Карраш для жидких органических соединений пришел к зависимости 

Хлористый водород как флегматизатор горения. Оксихлориро-вание углеводородов . В промышленности хлороорганического синтеза широко распространены системы, содержащие горючее, кислород и хлористый водород. Особенно часто встречаются такие смеси в процессах окислительного хлорирования (оксихлори-рования) . Основная задача этих процессов заключается в утилизации хлористого водорода, образующегося в качестве побочного продукта во многих производствах, прежде всего, в процессах прямого хлорирования органических соединений, а также дегидрохлорирования полихлоралканов. При прямом хлорировании насыщенных органических соединений основную брутто-реак-цию можно записать как 

Общие сведения о горении

Сущность процесса горения

Одним из первых химических явлений, с которым человечество познакомилось на заре своего существования, было горение. Вначале оно использовалось для приготовления пищи и обогрева, и лишь через тысячелетия человек научился использовать его для преобразования энергии химической реакции в механическую, электрическую и другие виды энергии.


Горение - это химическая реакция окисления, сопровождающаяся выделением большого количества тепла и свечением. В печах, двигателях внутреннего сгорания, на пожарах всегда наблюдается процесс горения, в котором участвуют какие-либо горючие вещества и кислород воздуха. Между ними протекает реакция соединения, в результате которой выделяется тепло и продукты реакции нагреваются до свечения. Так горят нефтепродукты, дерево, торф и многие другие вещества.


Однако процесс горения может сопровождать не только реакции соединения горючего вещества с кислородом воздуха, но и другие химические реакции, связанные со значительным выделением тепла. Водород, фосфор, ацетилен и другие вещества горят, например, в хлоре; медь - в парах серы, магний - в углекислом газе. Сжатый ацетилен хлористый азот и ряд других веществ способны взрываться. В процессе взрыва происходит разложение веществ с выделением тепла и образованием пламени. Таким образом, процесс горения является результатом реакций соединения и разложения веществ.

Условия, способствующие горению

Для возникновения горения необходимы определенные условия: наличие горючей среды (горючее вещество + окислитель) и источника воспламенения. Воздух и горючее вещество составляют систему, способную гореть, а температурные условия обуславливают возможность воспламенения и горения этой системы.


Как известно, основными горючими элементами в природе являются углерод и водород. Они входят в состав почти всех твердых, жидких и газообразных веществ, например, древесины, ископаемых углей, торфа, хлопка, ткани, бумаги и др.


Воспламенение и горение большинства горючих веществ происходит в газовой или паровой фазе. Образование паров и газов у твердых и жидких горючих веществ происходит в результате их нагревания. Твердые горючие вещества, например, сера, стеарин, фосфор, некоторые пластмассы при нагревании плавятся и испаряются. Дерево, торф, каменный уголь при нагревании разлагаются с образованием паров, газов и твердого остатка - угля.


Рассмотрим этот процесс подробнее на примере древесины. При нагревании до 110°С происходит высушивание древесины и незначительные испарения смолы. Слабое разложение начинается при 130°С. Более заметное разложение древесины (изменение цвета) происходит при 150°С и выше. Образующиеся при 150-200°С продукты разложения составляют, в основном, воду и углекислый газ, поэтому гореть не могут.


При температуре выше 200°С начинает разлагаться главная составная часть древесины - клетчатка. Газы, образующиеся при этих температурах, являются горючими, так как они содержат значительное количество окиси углерода-, водорода, углеводородов и паров других органических веществ. Когда концентрация этих продуктов в воздухе станет достаточной, при определенных условиях произойдет их воспламенение.


Все горючие жидкости способны испаряться, и горение их происходит в газовой фазе. Поэтому, когда говорят о горении или воспламенении жидкости, то под этим подразумевают горение или воспламенение ее паров.


Горение всех веществ начинается с их воспламенения. У большинства горючих веществ момент воспламенения характеризуется появлением пламени, а у тех веществ, которые пламенем не горят, - появлением свечения (напала).


Начальный элемент горения, возникающий под действием источников, имеющих более высокую температуру, чем температура самовоспламенения вещества, называется воспламенением.


Некоторые вещества способны без воздействия внешнего источника тепла выделять теплоту и самонагреваться. Процесс самонагревания, заканчивающийся горением, принято называть самовозгоранием.


Самовозгорание - это способность вещества воспламеняться не только при нагревании, но и при комнатной температуре под воздействием химических, микробиологических и физико-химических процессов.


Температура, до которой нужно нагреть горючее вещество, чтобы оно воспламенилось без поднесения к нему источника зажигания, называется температурой самовоспламенения.


Процесс самовоспламенения вещества проходит следующим образом. При нагревании горючего вещества, например, смеси паров бензина с воздухом, можно достигнуть такой температуры, при которой в смеси начинает протекать медленная реакция окисления. Реакция окисления сопровождается выделением тепла, и смесь начинает нагреваться выше той температуры, до которой ее нагрели.


Однако вместе с выделением тепла и повышением температуры смеси происходит теплоотдача от реагирующей смеси в окружающую среду. При малой скорости окисления величина теплоотдачи всегда превышает выделение тепла, поэтому температура смеси после некоторого повышения начинает снижаться и самовоспламенение не происходит. Если смесь нагреть извне до более высокой температуры, то вместе с увеличением скорости реакции увеличивается количество тепла, выделяемого в единицу времени.


При достижении определенной температуры тепловыделение начинает превышать теплоотдачу, и реакция приобретает условия для интенсивного ускорения. В этот момент происходит самовоспламенение вещества. Температура самовоспламенения у горючих веществ разная.



Процесс самовоспламенения, рассмотренный выше, является характерным явлением, присущим всем горючим веществам, в каком бы агрегатном состоянии они не находились. Однако в технике и быту горение веществ возникает вследствие воздействия на них пламени, искр или накаленных предметов.


Температура указанных источников воспламенения всегда выше температуры самовоспламенения горючих веществ, поэтому горение возникает очень быстро. Вещества, способные самовозгораться, делятся на три группы. К первой относятся вещества, способные самовозгораться при контакте с воздухом, ко второй со слабо нагретыми предметами. К третьей группе относятся вещества, которые самовозгораются при контакте с водой.


Например, склонными к самовозгоранию могут быть растительные продукты, древесный уголь, сульфаты железа, бурый уголь, жиры и масла, химические вещества и смеси.


Из растительных продуктов склонны к самовозгоранию сено, солома, клевер, листья, солод, хмель. Особенно подвержены самовозгоранию недосушенные растительные продукты, в которых продолжается жизнедеятельность растительных клеток.


Согласно бактериальной теории, наличие влаги и повышение температуры за счет жизнедеятельности растительных клеток способствует размножению имеющихся в растительных продуктах микроорганизмов. Вследствие плохой теплопроводности растительных продуктов выделяющаяся теплота постепенно накапливается и температура повышается.


При повышенной температуре микроорганизмы погибают и превращаются в пористый уголь, который обладает свойством нагреваться за счет интенсивного окисления и поэтому является следующим, после микроорганизмов, источником выделения тепла. Температура в растительных продуктах поднимается до 300°С, и они самовозгораются.


Древесный, бурый и каменный уголь, торф самовозгораются также за счет интенсивного окисления кислородом воздуха.


Растительные и животные жиры, если они нанесены на измельченные или волокнистые материалы (тряпки, веревки, пакля, рогожа, шерсть, опилки, сажа и др.) обладают способностью самовозгораться.


При смачивании измельченных или волокнистых материалов маслом, оно распределяется по поверхности и при соприкосновении с воздухом, начинает окисляться. Одновременно с окислением в масле происходит процесс полимеризации (соединения нескольких молекул в одну). Как первый, так и второй процессы сопровождаются значительным выделением тепла. Если выделяемое тепло не рассеивается, то температура в промасленном материале поднимается, и может достигнуть температуры самовоспламенения.


Некоторые химические вещества способны самовозгораться при соприкосновении с воздухом. К ним относится фосфор (белый, желтый), фосфористый водород, цинковая пыль, алюминиевая пудра, металлы: рубидий, цезий и др. Все эти вещества способны окисляться на воздухе с выделением тепла, за счет которого реакция ускоряется до самовоспламенения.


Калий, натрий, рубидий, цезий, карбид кальция, карбиды щелочных и щелочно-земельных металлов энергично соединяются с водой, и при взаимодействии выделяют горючие газы, которые, будучи нагреты за счет теплоты реакции, самовозгораются.


При смешении таких окислителей, как сжатый кислород, хлор, бром, фтор, азотная кислота, перекись натрия и бария, марганцевокислый калий, селитра и др., с органическими веществами, происходит процесс самовозгорания этих смесей.


Пожарная опасность веществ и материалов определяется не только их способностью воспламеняться, но и массой других факторов: интенсивностью самого процесса горения и сопутствующих горению явлений (образование дыма, токсичных паров и т.д.), возможностью прекращения этого процесса. Общим показателем пожарной опасности является горючесть.


Согласно этому показателю все вещества и материалы условно делятся на три группы: негорючие, трудногорючие, горючие.


Негорючими считаются вещества и материалы, неспособные к горению в воздухе (около 21 % кислорода). К ним относятся сталь, кирпич, гранит и т.д. Однако было бы ошибкой относить негорючие материалы к безопасным в пожарном отношении. Не горючими, но пожароопасными считаются сильные окислители (азотная и серная кислоты, бром, перекись водорода, перманганаты и др.); вещества, выделяющие горючие газы при нагревании, при реакции с водой, вещества, реагирующие с водой с выделением большого количества тепла, например, негашеная известь.


Трудногорючие - это вещества и материалы, способные гореть в воздухе от источника зажигания, но не способные самостоятельно гореть после его удаления.


Горючие - это вещества и материалы, способные самовозгораться, возгораться от источника зажигания и гореть после его удаления.

Такой подход оправдан, если в ходе реакции в органическом веществе разрушаются все химические связи (горение, полное разложение).

2) определение с.о. каждого атома углерода:

В этом случае степень окисления любого атома углерода в органическом соединении равна алгебраической сумме чисел всех связей с атомами более электроотрицательных элементов, учитываемых со знаком «+» у атома углерода, и числа связей с атомами водорода (или другого более электроположительного элемента), учитываемых со знаком «-» у атома углерода. При этом связи с соседними атомами углерода не учитывают.

В качестве простейшего примера определим степень окисления углерода в молекуле метанола.

Атом углерода связан с тремя атомами водорода (эти связи учитываются со знаком « – »), одной связью – с атомом кислорода (ее учитывают со знаком «+»). Получаем: -3 + 1 = -2.Таким образом, степень окисления углерода в метаноле равна -2.

Вычисленная степень окисления углерода хотя и условное значение, но оно указывает на характер смещения электронной плотности в молекуле, а ее изменение в результате реакции свидетельствует об имеющем место окислительно-восстановительном процессе.

Уточняем, в каких случаях лучше использовать тот или иной способ.

Процессы окисления, горения, галогенирования, нитрования, дегидрирования, разложения относятся к окислительно-восстановительным процессам. При переходе от одного класса органических соединений к другому и увеличения степени разветвленности углеродного скелета молекул соединений внутри отдельного класса степень окисления атома углерода, ответственного за восстанавливающую способность соединения, изменяется.

Органические вещества, в молекулах которых содержатся атомы углерода с максимальными (- и +) значениями СО (-4, -3, +2, +3), вступают в реакцию полного окисления-горения, но устойчивых к воздействию мягких окислителей и окислителей средней силы.

Вещества, в молекулах которых содержится атомы углерода в СО -1; 0; +1, окисляются легко, восстановительные способности их близки, поэту их неполное окисление может быть достигнуто за счет одного из известных окислителей малой и средней силы. Эти вещества могут проявлять двойственную природу, выступая и в качестве окислителя, подобно тому, как это присуще неорганическим веществам.

При написании уравнений реакций горения и разложения органических веществ лучше использовать среднее значение с.о. углерода.

Например:

Составим полное уравнение химической реакции методом баланса. Среднее значение степени окисления углерода в н-бутане:

Степень окисления углерода в оксиде углерода(IV) равна +4.

Составим схему электронного баланса:

Обратите внимание на первую половину электронного баланса: у атома углерода в дробном значении с.о. знаменатель равен 4, поэтому расчет передачи электронов ведем по этому коэффициенту.

Т.е. переход от -2,5 до +4 соответствует переходу 2,5 + 4 = 6,5 единиц. Т.к. участвует 4 атома углерода, то 6,5 · 4 = 26 электронов будет отдано суммарно атомами углерода бутана.

C учетом найденных коэффициентов уравнение химической реакции горения н-бутана будет выглядеть следующим образом:

Можно воспользоваться методом определения суммарного заряда атомов углерода в молекуле:

(4C)-10 …… → (1C)+4 , учитывая, что количество атомов до знака = и после должно быть одинаково, уравниваем (4C)-10 …… →[(1C)+4] · 4

Следовательно, переход от -10 до +16 связан с потерей 26 электронов. В остальных случаях определяем значения с.о. каждого атома углерода в соединении,обращая при этом внимание на последовательность замещения атомов водорода у первичных, вторичных, третичных атомов углерода:

Вначале протекает процесс замещения у третичных, затем – у вторичных, и, в последнюю очередь – у первичных атомов углерода.

Алкены

Процессы окисления зависят от строения алкена и среды протекания реакции.

1.При окислении алкенов концентрированным раствором перманганата калия KMnO4 в кислой среде (жесткое окисление) происходит разрыв σ- и π-связей с образованием карбоновых кислот, кетонов и оксида углерода(IV). Эта реакция используется для определения положения двойной связи.

а) Если двойная связь находится на конце молекулы (например, у бутена-1), то одним из продуктов окисления является муравьиная кислота, легко окисляющаяся до углекислого газа и воды:

б) Если в молекуле алкена атом углерода при двойной связи содержит два углеродных заместителя (например, в молекуле 2-метилбутена-2), то при его окислении происходит образование кетона , т. к. превращение такого атома в атом карбоксильной группы невозможно без разрыва C–C-связи, относительно устойчивой в этих условиях:

в) Если молекула алкена симметрична и двойная связь содержится в середине молекулы, то при окислении образуется только одна кислота:

Особенностью окисления алкенов, в которых атомы углерода при двойной связи содержат по два углеродных радикала, является образование двух кетонов:

2.В нейтральной или слабощелочной средах окисление сопровождается образованием диолов (двухатомных спиртов) , причем гидроксильные группы присоединяются к тем атомам углерода, между которыми существовала двойная связь:

В ходе этой реакции происходит обесцвечивание фиолетовой окраски водного раствора KMnO4. Поэтому она используется как качественная реакция на алкены (реакция Вагнера).

3. Окисление алкенов в присутствии солей палладия (Вакер-процесс) приводит к образованию альдегидов и кетонов:

2CH2=CH2 + O2 PdCl2/H2O → 2 CH3-CO-H

Гомологи окисляются по менее гидрированному атому углерода:

СH3-CH2-CH=CH2 + 1/2O2 PdCl2/H2O → CH3- CH2-CO-CH3

Алкины

Окисление ацетилена и его гомологов протекает в зависимости от того, в какой среде протекает процесс.

а) В кислой среде процесс окисления сопровождается образованием карбоновых кислот: Реакция используется для определения строения алкинов по продуктам окисления:

В нейтральной и слабощелочной средах окисление ацетилена сопровождается образованием соответствующих оксалатов (солей щавелевой кислоты), а окисление гомологов – разрывом тройной связи и образованием солей карбоновых кислот:

Для ацетилена :

1) В кислой среде:

H-C≡C-H KMnO4, H2SO4→ HOOC-COOH (щавелевая кислота)

3CH≡CH +8KMnO4 H2O→ 3KOOC-COOK оксалат калия +8MnO2↓+ 2KOH+ 2H2O Арены (бензол и его гомологи)

При окисления аренов в кислой среде следует ожидать образования кислот, а в щелочной – солей.

Гомологи бензола с одной боковой цепью (независимо от ее длины) окисляются сильным окислителем до бензойной кислоты по α -углеродному атому. Гомологи бензола при нагревании окисляются перманганатом калия в нейтральной среде с образованием калиевых солей ароматических кислот.

а.5C6H5–CH3 + 6KMnO4 + 9H2SO4 = 5C6H5COOH + 6MnSO4 + 3K2SO4 + 14H2O, 5C6H5–б.C2H5 + 12KMnO4 + 18H2SO4 = 5C6H5COOH + 5CO2 + 12MnSO4 + 6K2SO4 + 28H2O, в.C6H5–CH3 + 2KMnO4 = C6H5COOK + 2MnO2 + KOH + H2O.

Подчеркиваем, что если в молекуле арена несколько боковых цепей, то в кислой среде каждая из них окисляется по a-углеродному атому до карбоксильной группы, в результате чего образуются многоосновные ароматические кислоты:

1) В кислой среде:

С6H5-CH2-R KMnO4, H2SO4→ С6H5-COOH бензойная кислота+ CO2

2) В нейтральной или щелочной среде:

С6H5-CH2-R KMnO4, H2O/(OH)→ С6H5-COOK + CO2

3) Окисление гомологов бензола перманганатом калия или бихроматом калия при нагревании:

С6H5-CH2-R KMnO4, H2SO4, t˚C→ С6H5-COOHбензойная кислота+ R-COOH

4) Окисление кумола кислородом в присутствии катализатора (кумольный способ получения фенола):

C6H5CH(CH3)2 (O2, H2SO) → C6H5-OH фенол + CH3-CO-CH3 ацетон

5C6H5CH(CH3)2 + 18KMnO4 + 27H2SO4 → 5C6H5COOH + 42H2O + 18MnSO4 + 10CO2 + K2SO4

C6H5CH(CH3)2 + 6H2O – 18ē → C6H5COOH + 2CO2 + 18H+ | x 5

MnO4- + 8H+ + 5ē → Mn+2 + 4H2O | x 18

Следует обратить внимание на то, что при мягком окислении стирола перманганатом калия КMnO4 в нейтральной или слабощелочной среде происходит разрыв π -связи,образуется гликоль (двухатомный спирт). В результате реакции окрашенный раствор перманганата калия быстро обесцвечивается и выпадает коричневый осадок оксида марганца (IV).

Горение древесины представляет собою окисление составных частей ее до углекислого газа СO 2 и воды Н 2 О.

Для осуществления этого процесса необходимо достаточное количество окислителя (кислорода) и нагревание древесины до определенной температуры.

При нагревании без доступа кислорода происходит термическое разложение древесины (пиролиз), в результате чего образуются уголь, газы, вода и летучие органические вещества.

В соответствии с теорией, развитой Г. Ф. Кнорре и другими учеными, горение древесины можно представить следующим образом.

В начале нагревания из древесины испаряется влага. В дальнейшем происходит термическое разложение составных частей ее. Составные части древесины в значительной степени окислены, поэтому они распадаются при невысокой температуре. Образование летучих веществ, достигает максимума (до 85% к весу начинается около 160° и сухой древесины) при 300°.

Продукты первичного распада древесины в результате сложных окислительных и восстановительных процессов переходят, в газообразное состояние, в котором они могут легко перемешиваться с молекулами кислорода, образуя горючую смесь, воспламеняющуюся при определенных условиях (избыток кислорода, достаточно высокая температура). В зависимости от качественного состояния древесина воспламеняется при 250-350°.

Газифицированные продукты горят во внешней кромке пламени, внутри же пламени летучие продукты пиролиза древесины превращаются в газообразное состояние.

Свечение пламени вызывается раскаленными частицами углерода, сгорающими в СО 2 во внешней его кромке при избытке кислорода. Наоборот, при недостатке кислорода, когда температура сравнительно невелика, пламя имеет красноватый цвет, при этом за счет несгоревших частиц углерода выделяется значительное количество копоти.

Чем больше подача кислорода, тем выше температура, больше и ярче пламя.

Внешний вид пламени также зависит от состава древесины и в первую очередь от содержания углеводородов и смол. Больше всего смол в сосновых деревьях, и березе, при горении которых образуется густое, яркое пламя. Пламя осины, летучие вещества которой содержат больше окиси углерода и меньше углеводородов, невелико, прозрачно, имеет синеватый оттенок. При горении ольхи, содержащей мало смол, также образуется более короткое и прозрачное пламя.

Последовательность термического разложения опилок при образовании коптильного дыма можно условно представить следующими этапами.

На первом этапе очередная «свежая» частица древесных опилок под воздействием горячей смеси паров и газов и теплового излучения соседних горящих частиц прогревается до 150-160°. В этот период в основном испаряется влага, заметного уменьшения объема частицы не наблюдается.

В последующие этапы температура частицы также повышается, вследствие чего происходит термическое разложение органической массы древесной частицы и воспламенение части газифицированных продуктов пиролиза с выделением тепла; часть же летучих веществ вместе с некоторым количеством несгоревшего углерода (сажи) увлекается конвекционными токами вверх, образуя дым. В конце процесса разложения древесины и выделения летучих соединений заметно уменьшаются размеры частицы.

Уголь (твердый углерод), образовавшийся в процессе термического разложения древесных опилок, нагревается теплом, выделяемым при окислении части летучих соединений и начинает реагировать с углекислотой и кислородом:

C + CO 2 → 2CO

2CO + O 2 → 2CO 2

При этом образуется небольшое, полупрозрачное синеватое пламя горения окиси углерода.

Объем частицы продолжает сокращаться; на заключительном этапе образуется зола. Под действием выделяющегося тепла начинает прогреваться следующая «свежая» частица древесных опилок.

Механизм и химизм сгорания древесины в виде поленьев дров, щепок или кучи опилок одинаков. Имеются отличия в количественной и качественной сторонах процесса собственно горения, т. е. окисления органических соединений кислородом при использовании дров или опилок.

Здесь мы сталкиваемся с понятиями так называемого полного и неполного горения. При полном горении летучие, паро- и газообразные вещества полностью окисляются (или сгорают) до углекислого газа и паров воды.

Примером полного горения может служить реакция окисления одного из компонентов коптильного дыма - метилового спирта СН 3 ОН:

СН 3 ОН + O 2 → CO 2 + 2H 2 O

Аналогично могут протекать реакции, окисления и других органических соединений, возникающих при термическом разложении древесины.

В результате полного горения образуется парогазовая смесь, которая состоит из углекислого газа и паров воды, не содержит коптильных компонентов и не представляет ценности для копчения.

Чтобы получить дым, пригодный для коптильного производства, необходимо создать условия неполного горения древесины. Для этого, например, сверху на дрова помещают слой увлажненных опилок, в результате чего зона и интенсивность горения значительно уменьшаются. При неполном горении летучие органические вещества окисляются лишь частично, а дым насыщается коптильными компонентами.

Глубина окисления продуктов пиролиза древесины зависит от количества кислорода, а также от температуры горения и скорости отвода летучих веществ из зоны горения.

При недостатке кислорода окисление летучих веществ, на пример метилового спирта, протекает по следующей реакции:

2СН 3 ОН + O 2 → 2C + 4H 2 O

Несгоревшие частички углерода, выйдя из зоны пламени, быстро охлаждаются и образуют вместе с другими, не окисленными до конца продуктами разложения древесины дым. Часть их оседает на стенках коптильных камер в виде копоти (сажи). При недостаточно хорошей изоляции коптильных камер на стенках их оседают также сконденсированные парообразные летучие вещества дыма (смола, деготь).

При более глубоком, но также неполном окислении горючих веществ образуется окись углерода:

СН 3 ОН + O 2 → CO + 2H 2 O

Таким образом, количество кислорода - один из самых существенных факторов, влияющих на химический состав дыма, в частности на изменение содержания в нем метилового спирта, формальдегида и муравьиной кислоты. Так, при ограниченном доступе воздуха в зону горения из метилового спирта образуется муравьиный альдегид:

СН 3 ОН + O 2 → CH 2 O + 4H 2 O

При поступлении большего количества воздуха, а, следовательно, и кислорода образовавшийся формальдегид окисляется до муравьиной кислоты:

2СН 2 О + O 2 → 2CHOOH

При избытке воздуха муравьиная кислота полностью окисляется до углекислого газа и воды:

2СНOOH + O 2 → 2CO 2 + 2H 2 O

При горении других продуктов пиролиза в зависимости от степени окисления аналогично образуются органические вещества, влияющие на состав дыма.

От количества кислорода, поступающего в сгорающий слой, зависит также температура горения. В обычных условиях древесина в виде поленьев не может сгорать без пламени, а, следовательно, без выделения тепла. В этом случае окисляется значительно большее количество веществ, образующихся из органической массы древесины, чем при сгорании (тлении) опилок. Поэтому значительная часть летучих веществ при сжигании дров не используется для копчения, а коптильный дым по составу уступает дыму, полученному при медленном сгорании опилок. При засыпке горящих дров влажными опилками увеличивается количество дыма, но и в этом случае дрова расходуются неэкономично.

Температурный режим естественного сгорания (тления) опилок значительно мягче по сравнению со сгоранием дров. При горении угля, оставшегося после выделения летучих веществ, образуется небольшое пламя. Полученное тепло расходуется главным образом на нагревание соседних слоев опилок, которые подвергаются термическому разложению без доступа кислорода, так как воздух оттесняется парами и газами горящего слоя.

Сгорание протекает медленно. Значительная часть продуктов термического разложения не окисляется в пламени, поэтому конвекционными потоками отводится сравнительно много летучих веществ.

Примером неполного сгорания опилок может служить сжигание их при нефорсированной нижней подаче воздуха. В этом случае сгорает полностью только нижний слой опилок. Горячие газы и пары вытесняют воздух и нагревают верхние слои опилок, что приводит к сухой перегонке древесины, в результате которой образуются уголь, газы, вода и органические соединения. При равномерном поступлении свежих опилок сверху горит только нижний слой угля, образующегося в результате сухой перегонки вышележащего слоя. При этом получается дым более насыщенный летучими органическими соединениями.

Лучшим способом получения дыма, богатого коптильными компонентами, является образование его в дымогенераторах, работающих на опилках с подогревом коптильной среды газом, глухим паром или электричеством, и во фрикционных дымогенераторах. В этом случае получается дым с повышенным содержанием летучих органических соединений, что обусловлено низкими температурами образования дыма и незначительным окислением первичных продуктов распада древесины.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .